Upload folder using huggingface_hub
Browse files- .gitignore +1 -0
- convert-caffe2-to-onnx.exe +0 -0
- convert-onnx-to-caffe2.exe +0 -0
- dotenv.exe +0 -0
- isympy.exe +0 -0
- lmstudio_gradio.py +354 -189
- nltk.exe +0 -0
- torchfrtrace.exe +0 -0
- torchrun.exe +0 -0
- transformers-cli.exe +0 -0
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
.env
|
convert-caffe2-to-onnx.exe
ADDED
|
Binary file (108 kB). View file
|
|
|
convert-onnx-to-caffe2.exe
ADDED
|
Binary file (108 kB). View file
|
|
|
dotenv.exe
ADDED
|
Binary file (108 kB). View file
|
|
|
isympy.exe
ADDED
|
Binary file (108 kB). View file
|
|
|
lmstudio_gradio.py
CHANGED
|
@@ -1,217 +1,382 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import requests
|
| 3 |
import logging
|
| 4 |
import json
|
| 5 |
import os
|
| 6 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
url = f"{BASE_URL}/chat/completions"
|
| 17 |
payload = {
|
| 18 |
-
"model": "
|
| 19 |
"messages": messages,
|
| 20 |
"temperature": 0.7,
|
| 21 |
-
"max_tokens":
|
| 22 |
-
"stream": True
|
| 23 |
}
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
yield "An error occurred while connecting to LM Studio. Please try again later."
|
| 53 |
-
|
| 54 |
-
# Function to get embeddings from LM Studio
|
| 55 |
-
def get_embeddings(text):
|
| 56 |
-
url = f"{BASE_URL}/embeddings"
|
| 57 |
-
payload = {
|
| 58 |
-
"model": "nomad_embed_text_v1_5_Q8_0", # Use the exact model name registered in LM Studio
|
| 59 |
-
"input": text
|
| 60 |
-
}
|
| 61 |
-
logging.debug(f"Sending POST request to URL: {url}")
|
| 62 |
-
logging.debug(f"Payload: {json.dumps(payload, indent=2)}")
|
| 63 |
-
try:
|
| 64 |
-
response = requests.post(url, json=payload)
|
| 65 |
-
response.raise_for_status()
|
| 66 |
-
data = response.json()
|
| 67 |
-
embedding = data['data'][0]['embedding']
|
| 68 |
-
logging.debug(f"Received Embedding: {embedding}")
|
| 69 |
-
return embedding
|
| 70 |
-
except requests.exceptions.RequestException as e:
|
| 71 |
-
logging.error(f"Request to LM Studio for embeddings failed: {e}")
|
| 72 |
-
return None
|
| 73 |
-
|
| 74 |
-
# Function to calculate cosine similarity
|
| 75 |
-
def cosine_similarity(vec1, vec2):
|
| 76 |
-
if not vec1 or not vec2:
|
| 77 |
-
return 0
|
| 78 |
-
vec1 = np.array(vec1)
|
| 79 |
-
vec2 = np.array(vec2)
|
| 80 |
-
if np.linalg.norm(vec1) == 0 or np.linalg.norm(vec2) == 0:
|
| 81 |
-
return 0
|
| 82 |
-
return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
|
| 83 |
-
|
| 84 |
-
# Gradio Blocks interface for chat with file upload and embeddings
|
| 85 |
def gradio_chat_interface():
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
state = gr.State([]) # To store conversation history as list of dicts
|
| 92 |
-
embeddings_state = gr.State([]) # To store embeddings
|
| 93 |
-
|
| 94 |
-
with gr.Row():
|
| 95 |
-
with gr.Column(scale=4):
|
| 96 |
-
user_input = gr.Textbox(
|
| 97 |
-
label="Type your message here",
|
| 98 |
-
placeholder="Enter text and press enter",
|
| 99 |
-
lines=1
|
| 100 |
-
)
|
| 101 |
-
with gr.Column(scale=1):
|
| 102 |
-
file_input = gr.File(
|
| 103 |
-
label="Upload a file",
|
| 104 |
-
file_types=[".txt"], # Restrict to text files; modify as needed
|
| 105 |
-
type="binary" # Corrected from 'file' to 'binary'
|
| 106 |
-
)
|
| 107 |
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
history = []
|
| 115 |
-
if embeddings is None:
|
| 116 |
-
embeddings = []
|
| 117 |
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
try:
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
logging.debug(f"Processed uploaded file: {uploaded_file.name}")
|
| 125 |
-
|
| 126 |
-
# Generate embedding for the file content
|
| 127 |
-
file_embedding = get_embeddings(file_content)
|
| 128 |
-
if file_embedding:
|
| 129 |
-
embeddings.append((file_content, file_embedding))
|
| 130 |
-
logging.debug(f"Stored embedding for uploaded file: {uploaded_file.name}")
|
| 131 |
except Exception as e:
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
similarities.sort(reverse=True, key=lambda x: x[0])
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
#
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
# Append all messages from history
|
| 169 |
-
messages.extend(history)
|
| 170 |
-
|
| 171 |
-
# Get response from LM Studio
|
| 172 |
-
response_stream = chat_with_lmstudio(messages)
|
| 173 |
response = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
)
|
| 208 |
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
|
|
|
| 212 |
|
| 213 |
-
|
|
|
|
|
|
|
| 214 |
|
| 215 |
-
# Main function to launch the chat interface
|
| 216 |
if __name__ == "__main__":
|
| 217 |
-
gradio_chat_interface()
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
|
| 4 |
+
"""
|
| 5 |
+
High-Performance Chat Interface for LM Studio
|
| 6 |
+
|
| 7 |
+
This script creates a robust and efficient chat interface using Gradio,
|
| 8 |
+
facilitating seamless interactions with the LM Studio API. It leverages
|
| 9 |
+
GPU capabilities for accelerated processing and adheres to best practices
|
| 10 |
+
in modern Python programming. Comprehensive logging and error handling
|
| 11 |
+
ensure reliability and ease of maintenance.
|
| 12 |
+
|
| 13 |
+
Author: Your Name
|
| 14 |
+
Date: YYYY-MM-DD
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
import gradio as gr
|
| 18 |
+
import httpx # Replacing 'requests' with 'httpx' for asynchronous HTTP calls
|
| 19 |
import logging
|
| 20 |
import json
|
| 21 |
import os
|
| 22 |
import numpy as np
|
| 23 |
+
import torch
|
| 24 |
+
import asyncio
|
| 25 |
+
|
| 26 |
+
# ===========================
|
| 27 |
+
# Configuration and Constants
|
| 28 |
+
# ===========================
|
| 29 |
+
|
| 30 |
+
# Set up logging for detailed diagnostics
|
| 31 |
+
logging.basicConfig(
|
| 32 |
+
level=logging.DEBUG, # Set to DEBUG for more verbose output
|
| 33 |
+
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
| 34 |
+
)
|
| 35 |
+
logger = logging.getLogger(__name__)
|
| 36 |
+
|
| 37 |
+
# LM Studio REST API Base URL
|
| 38 |
+
BASE_URL = os.getenv("LMSTUDIO_API_BASE_URL", "http://localhost:1234/v1")
|
| 39 |
+
|
| 40 |
+
# GPU Availability and Device Configuration
|
| 41 |
+
USE_GPU = torch.cuda.is_available()
|
| 42 |
+
DEVICE = torch.device("cuda" if USE_GPU else "cpu")
|
| 43 |
+
logger.info(f"Using device: {DEVICE}")
|
| 44 |
+
|
| 45 |
+
# Constants for Dynamic max_tokens Calculation
|
| 46 |
+
MODEL_MAX_TOKENS = 32768 # Model's maximum context length
|
| 47 |
+
AVERAGE_CHARS_PER_TOKEN = 4 # Approximate average characters per token
|
| 48 |
+
BUFFER_TOKENS = 2000 # Reserved tokens for system prompts and overhead
|
| 49 |
+
MIN_OUTPUT_TOKENS = 1000 # Minimum tokens to ensure meaningful responses
|
| 50 |
+
|
| 51 |
+
# Maximum number of embeddings to store to optimize memory usage
|
| 52 |
+
MAX_EMBEDDINGS = 100
|
| 53 |
+
|
| 54 |
+
# HTTPX Timeout Configuration
|
| 55 |
+
HTTPX_TIMEOUT = 300 # seconds, adjust as needed for longer processing times
|
| 56 |
+
|
| 57 |
+
# ===========================
|
| 58 |
+
# Utility Functions
|
| 59 |
+
# ===========================
|
| 60 |
+
|
| 61 |
+
def calculate_max_tokens(message, model_max_tokens=MODEL_MAX_TOKENS,
|
| 62 |
+
buffer=BUFFER_TOKENS, avg_chars_per_token=AVERAGE_CHARS_PER_TOKEN,
|
| 63 |
+
min_tokens=MIN_OUTPUT_TOKENS):
|
| 64 |
+
"""
|
| 65 |
+
Calculate the maximum number of tokens for the output based on the input message length.
|
| 66 |
|
| 67 |
+
Args:
|
| 68 |
+
message (str): The input message from the user.
|
| 69 |
+
model_max_tokens (int): The total token capacity of the model.
|
| 70 |
+
buffer (int): Reserved tokens for system prompts and overhead.
|
| 71 |
+
avg_chars_per_token (int): Approximate number of characters per token.
|
| 72 |
+
min_tokens (int): Minimum number of tokens to ensure a meaningful response.
|
| 73 |
|
| 74 |
+
Returns:
|
| 75 |
+
int: The calculated maximum tokens for the output.
|
| 76 |
+
"""
|
| 77 |
+
input_length = len(message)
|
| 78 |
+
input_tokens = input_length / avg_chars_per_token
|
| 79 |
+
max_tokens = model_max_tokens - int(input_tokens) - buffer
|
| 80 |
+
calculated_max = max(max_tokens, min_tokens)
|
| 81 |
+
logger.debug(f"Input length (chars): {input_length}, "
|
| 82 |
+
f"Estimated input tokens: {input_tokens}, "
|
| 83 |
+
f"Max tokens for output: {calculated_max}")
|
| 84 |
+
return calculated_max
|
| 85 |
|
| 86 |
+
async def get_embeddings(text):
|
| 87 |
+
"""
|
| 88 |
+
Retrieve embeddings for the given text from the LM Studio API.
|
| 89 |
+
|
| 90 |
+
Args:
|
| 91 |
+
text (str): The input text to generate embeddings for.
|
| 92 |
+
|
| 93 |
+
Returns:
|
| 94 |
+
list or None: The embedding vector as a list if successful, else None.
|
| 95 |
+
"""
|
| 96 |
+
url = f"{BASE_URL}/embeddings"
|
| 97 |
+
payload = {"model": "nomad_embed_text_v1_5_Q8_0", "input": text}
|
| 98 |
+
logger.info(f"Requesting embeddings for input: {text[:100]}...")
|
| 99 |
+
async with httpx.AsyncClient(timeout=HTTPX_TIMEOUT) as client:
|
| 100 |
+
try:
|
| 101 |
+
response = await client.post(
|
| 102 |
+
url,
|
| 103 |
+
json=payload, # Proper JSON serialization
|
| 104 |
+
headers={
|
| 105 |
+
"Content-Type": "application/json" # Ensuring correct Content-Type
|
| 106 |
+
}
|
| 107 |
+
)
|
| 108 |
+
logger.info(f"Embeddings response status code: {response.status_code}")
|
| 109 |
+
response.raise_for_status()
|
| 110 |
+
data = response.json()
|
| 111 |
+
logger.debug(f"Embeddings response data: {data}")
|
| 112 |
+
if "data" in data and len(data["data"]) > 0:
|
| 113 |
+
embedding = np.array(data["data"][0]["embedding"])
|
| 114 |
+
if USE_GPU:
|
| 115 |
+
embedding = torch.tensor(embedding, device=DEVICE).tolist() # Convert to list for serialization
|
| 116 |
+
return embedding
|
| 117 |
+
else:
|
| 118 |
+
logger.error("Invalid response structure for embeddings.")
|
| 119 |
+
return None
|
| 120 |
+
except httpx.RequestError as e:
|
| 121 |
+
logger.error(f"Failed to retrieve embeddings: {e}")
|
| 122 |
+
return None
|
| 123 |
+
except httpx.HTTPStatusError as e:
|
| 124 |
+
logger.error(f"HTTP error while retrieving embeddings: {e}")
|
| 125 |
+
return None
|
| 126 |
+
except json.JSONDecodeError as e:
|
| 127 |
+
logger.error(f"JSON decode error: {e}")
|
| 128 |
+
return None
|
| 129 |
+
|
| 130 |
+
def calculate_similarity(vec1, vec2):
|
| 131 |
+
"""
|
| 132 |
+
Calculate the cosine similarity between two vectors using GPU acceleration.
|
| 133 |
+
|
| 134 |
+
Args:
|
| 135 |
+
vec1 (list or torch.Tensor): The first embedding vector.
|
| 136 |
+
vec2 (list or torch.Tensor): The second embedding vector.
|
| 137 |
+
|
| 138 |
+
Returns:
|
| 139 |
+
float: The cosine similarity score.
|
| 140 |
+
"""
|
| 141 |
+
if vec1 is None or vec2 is None:
|
| 142 |
+
logger.warning("One or both vectors for similarity calculation are None.")
|
| 143 |
+
return 0.0
|
| 144 |
+
logger.debug("Calculating similarity between vectors.")
|
| 145 |
+
vec1_tensor = torch.tensor(vec1, device=DEVICE) if not isinstance(vec1, torch.Tensor) else vec1.to(DEVICE)
|
| 146 |
+
vec2_tensor = torch.tensor(vec2, device=DEVICE) if not isinstance(vec2, torch.Tensor) else vec2.to(DEVICE)
|
| 147 |
+
similarity = torch.nn.functional.cosine_similarity(vec1_tensor.unsqueeze(0), vec2_tensor.unsqueeze(0)).item()
|
| 148 |
+
logger.debug(f"Calculated similarity: {similarity}")
|
| 149 |
+
return similarity
|
| 150 |
+
|
| 151 |
+
# ===========================
|
| 152 |
+
# API Interaction Handling
|
| 153 |
+
# ===========================
|
| 154 |
+
|
| 155 |
+
async def chat_with_lmstudio(messages, max_tokens):
|
| 156 |
+
"""
|
| 157 |
+
Handle chat completions with the LM Studio API using streaming.
|
| 158 |
+
|
| 159 |
+
Args:
|
| 160 |
+
messages (list): A list of message dictionaries following OpenAI's format.
|
| 161 |
+
max_tokens (int): The maximum number of tokens to generate in the response.
|
| 162 |
+
|
| 163 |
+
Yields:
|
| 164 |
+
str: Chunks of the generated response.
|
| 165 |
+
"""
|
| 166 |
url = f"{BASE_URL}/chat/completions"
|
| 167 |
payload = {
|
| 168 |
+
"model": "Qwen2.5-Coder-32B-Instruct", # Adjusted model name if necessary
|
| 169 |
"messages": messages,
|
| 170 |
"temperature": 0.7,
|
| 171 |
+
"max_tokens": max_tokens,
|
| 172 |
+
"stream": True,
|
| 173 |
}
|
| 174 |
+
logger.info(f"Sending request to chat/completions with max_tokens: {max_tokens}")
|
| 175 |
+
async with httpx.AsyncClient(timeout=HTTPX_TIMEOUT) as client:
|
| 176 |
+
try:
|
| 177 |
+
async with client.stream("POST", url, json=payload, headers={"Content-Type": "application/json"}) as response:
|
| 178 |
+
logger.info(f"chat/completions response status code: {response.status_code}")
|
| 179 |
+
response.raise_for_status()
|
| 180 |
+
async for line in response.aiter_lines():
|
| 181 |
+
if line:
|
| 182 |
+
try:
|
| 183 |
+
decoded_line = line.strip()
|
| 184 |
+
if decoded_line.startswith("data: "):
|
| 185 |
+
data = json.loads(decoded_line[6:])
|
| 186 |
+
logger.debug(f"Received chunk: {data}")
|
| 187 |
+
content = data.get("choices", [{}])[0].get("delta", {}).get("content", "")
|
| 188 |
+
yield content
|
| 189 |
+
except json.JSONDecodeError as e:
|
| 190 |
+
logger.error(f"JSON decode error: {e}")
|
| 191 |
+
except httpx.RequestError as e:
|
| 192 |
+
logger.error(f"LM Studio chat/completions request failed: {e}")
|
| 193 |
+
yield "An error occurred while generating a response."
|
| 194 |
+
except httpx.HTTPStatusError as e:
|
| 195 |
+
logger.error(f"HTTP error during chat/completions: {e}")
|
| 196 |
+
yield "An HTTP error occurred while generating a response."
|
| 197 |
+
|
| 198 |
+
# ===========================
|
| 199 |
+
# User Interface Implementation
|
| 200 |
+
# ===========================
|
| 201 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
def gradio_chat_interface():
|
| 203 |
+
"""
|
| 204 |
+
Create and launch the Gradio Blocks interface for the chat application.
|
| 205 |
+
"""
|
| 206 |
+
with gr.Blocks() as interface:
|
| 207 |
+
gr.Markdown("# 🚀 High-Performance Chat Interface for LM Studio")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
+
# Chatbot component to display the conversation
|
| 210 |
+
chatbot = gr.Chatbot(label="Conversation", type="messages")
|
| 211 |
+
|
| 212 |
+
# User input textbox
|
| 213 |
+
user_input = gr.Textbox(
|
| 214 |
+
label="Your Message",
|
| 215 |
+
placeholder="Type your message here...",
|
| 216 |
+
lines=2,
|
| 217 |
+
interactive=True
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
# File upload component for context files
|
| 221 |
+
file_input = gr.File(
|
| 222 |
+
label="Upload Context File (.txt)",
|
| 223 |
+
type="binary", # Correct value as per Gradio's expectations
|
| 224 |
+
interactive=True
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
# Display relevant context based on similarity
|
| 228 |
+
context_display = gr.Textbox(
|
| 229 |
+
label="Relevant Context",
|
| 230 |
+
interactive=False
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
# State to store embeddings and message history
|
| 234 |
+
embeddings_state = gr.State({"embeddings": [], "messages_history": []})
|
| 235 |
+
|
| 236 |
+
async def chat_handler(message, file, state):
|
| 237 |
+
"""
|
| 238 |
+
Handle user input, process embeddings, retrieve context, and generate responses.
|
| 239 |
|
| 240 |
+
Args:
|
| 241 |
+
message (str): The user's input message.
|
| 242 |
+
file (UploadedFile): The uploaded context file.
|
| 243 |
+
state (dict): The current state containing embeddings and message history.
|
|
|
|
|
|
|
|
|
|
| 244 |
|
| 245 |
+
Yields:
|
| 246 |
+
list: Updated chatbot messages, new state, and context display text.
|
| 247 |
+
"""
|
| 248 |
+
embeddings = state.get("embeddings", [])
|
| 249 |
+
messages_history = state.get("messages_history", [])
|
| 250 |
+
|
| 251 |
+
# ===========================
|
| 252 |
+
# File Processing
|
| 253 |
+
# ===========================
|
| 254 |
+
if file:
|
| 255 |
try:
|
| 256 |
+
file_content = file.read().decode("utf-8")
|
| 257 |
+
message += f"\n[File Content]:\n{file_content}"
|
| 258 |
+
logger.info("Successfully processed uploaded file.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
except Exception as e:
|
| 260 |
+
error_msg = f"Error reading file: {e}"
|
| 261 |
+
logger.error(error_msg)
|
| 262 |
+
yield [error_msg, state, ""]
|
| 263 |
+
return # Terminate the generator after yielding the error
|
| 264 |
+
|
| 265 |
+
# ===========================
|
| 266 |
+
# Embeddings Generation
|
| 267 |
+
# ===========================
|
| 268 |
+
user_embedding = await get_embeddings(message)
|
| 269 |
+
if user_embedding is not None:
|
| 270 |
+
embeddings.append(user_embedding)
|
| 271 |
+
messages_history.append({"role": "user", "content": message})
|
| 272 |
+
logger.info("Embeddings generated and appended to state.")
|
| 273 |
+
else:
|
| 274 |
+
error_msg = "Failed to generate embeddings."
|
| 275 |
+
logger.error(error_msg)
|
| 276 |
+
yield [error_msg, state, ""]
|
| 277 |
+
return # Terminate the generator after yielding the error
|
| 278 |
+
|
| 279 |
+
# Limit the number of stored embeddings to optimize memory usage
|
| 280 |
+
if len(embeddings) > MAX_EMBEDDINGS:
|
| 281 |
+
embeddings = embeddings[-MAX_EMBEDDINGS:]
|
| 282 |
+
messages_history = messages_history[-MAX_EMBEDDINGS:]
|
| 283 |
+
|
| 284 |
+
# ===========================
|
| 285 |
+
# Similarity Calculation and Context Retrieval
|
| 286 |
+
# ===========================
|
| 287 |
+
history = [{"role": "user", "content": message}]
|
| 288 |
+
context_text = ""
|
| 289 |
+
if len(embeddings) > 1:
|
| 290 |
+
similarities = [
|
| 291 |
+
(calculate_similarity(user_embedding, emb), idx)
|
| 292 |
+
for idx, emb in enumerate(embeddings[:-1])
|
| 293 |
+
]
|
| 294 |
similarities.sort(reverse=True, key=lambda x: x[0])
|
| 295 |
+
top_context = similarities[:3]
|
| 296 |
+
for similarity, idx in top_context:
|
| 297 |
+
context_message = messages_history[idx]
|
| 298 |
+
history.insert(0, {"role": "system", "content": context_message["content"]})
|
| 299 |
+
context_text += f"Context: {context_message['content'][:100]}...\n"
|
| 300 |
+
logger.info("Relevant context retrieved based on similarity.")
|
| 301 |
+
|
| 302 |
+
# ===========================
|
| 303 |
+
# Dynamic max_tokens Calculation
|
| 304 |
+
# ===========================
|
| 305 |
+
max_tokens = calculate_max_tokens(message)
|
| 306 |
+
logger.info(f"Calculated max_tokens for output: {max_tokens}")
|
| 307 |
+
|
| 308 |
+
# ===========================
|
| 309 |
+
# Chat with LM Studio API
|
| 310 |
+
# ===========================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 311 |
response = ""
|
| 312 |
+
try:
|
| 313 |
+
async for chunk in chat_with_lmstudio(history, max_tokens):
|
| 314 |
+
response += chunk
|
| 315 |
+
# Ensure response is a string
|
| 316 |
+
if not isinstance(response, str):
|
| 317 |
+
response = str(response)
|
| 318 |
+
# Handle empty response
|
| 319 |
+
if not response.strip():
|
| 320 |
+
response = "Sorry, I couldn't process your request."
|
| 321 |
|
| 322 |
+
# Update chatbot in real-time with partial responses
|
| 323 |
+
updated_chat = chatbot.value.copy()
|
| 324 |
+
updated_chat.append({"role": "user", "content": message})
|
| 325 |
+
updated_chat.append({"role": "assistant", "content": response})
|
| 326 |
+
logger.debug(f"Updated Chat: {updated_chat}")
|
| 327 |
+
yield [
|
| 328 |
+
updated_chat,
|
| 329 |
+
{"embeddings": embeddings, "messages_history": messages_history},
|
| 330 |
+
context_text
|
| 331 |
+
]
|
| 332 |
+
logger.info("Response generation completed.")
|
| 333 |
+
except Exception as e:
|
| 334 |
+
error_msg = f"An error occurred while generating a response: {e}"
|
| 335 |
+
logger.error(error_msg)
|
| 336 |
+
yield [error_msg, state, ""]
|
| 337 |
+
return # Terminate the generator after yielding the error
|
| 338 |
+
|
| 339 |
+
# ===========================
|
| 340 |
+
# Final State Update
|
| 341 |
+
# ===========================
|
| 342 |
+
messages_history.append({"role": "assistant", "content": response})
|
| 343 |
+
new_state = {"embeddings": embeddings, "messages_history": messages_history}
|
| 344 |
+
updated_chat = chatbot.value.copy()
|
| 345 |
+
updated_chat.append({"role": "user", "content": message})
|
| 346 |
+
updated_chat.append({"role": "assistant", "content": response})
|
| 347 |
|
| 348 |
+
# Final yield
|
| 349 |
+
try:
|
| 350 |
+
logger.debug(f"Final Updated Chat: {updated_chat}")
|
| 351 |
+
yield [
|
| 352 |
+
updated_chat,
|
| 353 |
+
new_state,
|
| 354 |
+
context_text
|
| 355 |
+
]
|
| 356 |
+
except Exception as e:
|
| 357 |
+
error_msg = f"Error updating chatbot: {e}"
|
| 358 |
+
logger.error(error_msg)
|
| 359 |
+
yield ["An error occurred while updating the chat.", state, ""]
|
| 360 |
+
|
| 361 |
+
# ===========================
|
| 362 |
+
# Send Button Configuration
|
| 363 |
+
# ===========================
|
| 364 |
+
send_button = gr.Button("Send")
|
| 365 |
+
send_button.click(
|
| 366 |
+
chat_handler,
|
| 367 |
+
inputs=[user_input, file_input, embeddings_state],
|
| 368 |
+
outputs=[chatbot, embeddings_state, context_display],
|
| 369 |
+
show_progress=True
|
| 370 |
)
|
| 371 |
|
| 372 |
+
# ===========================
|
| 373 |
+
# Launch the Interface
|
| 374 |
+
# ===========================
|
| 375 |
+
interface.launch(share=True, server_name="0.0.0.0", server_port=7860)
|
| 376 |
|
| 377 |
+
# ===========================
|
| 378 |
+
# Main Execution
|
| 379 |
+
# ===========================
|
| 380 |
|
|
|
|
| 381 |
if __name__ == "__main__":
|
| 382 |
+
asyncio.run(gradio_chat_interface())
|
nltk.exe
ADDED
|
Binary file (108 kB). View file
|
|
|
torchfrtrace.exe
ADDED
|
Binary file (108 kB). View file
|
|
|
torchrun.exe
ADDED
|
Binary file (108 kB). View file
|
|
|
transformers-cli.exe
ADDED
|
Binary file (108 kB). View file
|
|
|