|  | import json | 
					
						
						|  | import os | 
					
						
						|  | import pprint | 
					
						
						|  | import re | 
					
						
						|  | from datetime import datetime, timezone | 
					
						
						|  |  | 
					
						
						|  | import click | 
					
						
						|  | from colorama import Fore | 
					
						
						|  | from huggingface_hub import HfApi, snapshot_download | 
					
						
						|  |  | 
					
						
						|  | EVAL_REQUESTS_PATH = "eval-queue" | 
					
						
						|  | QUEUE_REPO = "open-llm-leaderboard/requests" | 
					
						
						|  |  | 
					
						
						|  | precisions = ("float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)", "GPTQ") | 
					
						
						|  | model_types = ("pretrained", "fine-tuned", "RL-tuned", "instruction-tuned") | 
					
						
						|  | weight_types = ("Original", "Delta", "Adapter") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_model_size(model_info, precision: str): | 
					
						
						|  | size_pattern = size_pattern = re.compile(r"(\d\.)?\d+(b|m)") | 
					
						
						|  | try: | 
					
						
						|  | model_size = round(model_info.safetensors["total"] / 1e9, 3) | 
					
						
						|  | except (AttributeError, TypeError): | 
					
						
						|  | try: | 
					
						
						|  | size_match = re.search(size_pattern, model_info.modelId.lower()) | 
					
						
						|  | model_size = size_match.group(0) | 
					
						
						|  | model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3) | 
					
						
						|  | except AttributeError: | 
					
						
						|  | return 0 | 
					
						
						|  |  | 
					
						
						|  | size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1 | 
					
						
						|  | model_size = size_factor * model_size | 
					
						
						|  | return model_size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def main(): | 
					
						
						|  | api = HfApi() | 
					
						
						|  | current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") | 
					
						
						|  | snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH, repo_type="dataset") | 
					
						
						|  |  | 
					
						
						|  | model_name = click.prompt("Enter model name") | 
					
						
						|  | revision = click.prompt("Enter revision", default="main") | 
					
						
						|  | precision = click.prompt("Enter precision", default="float16", type=click.Choice(precisions)) | 
					
						
						|  | model_type = click.prompt("Enter model type", type=click.Choice(model_types)) | 
					
						
						|  | weight_type = click.prompt("Enter weight type", default="Original", type=click.Choice(weight_types)) | 
					
						
						|  | base_model = click.prompt("Enter base model", default="") | 
					
						
						|  | status = click.prompt("Enter status", default="FINISHED") | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | model_info = api.model_info(repo_id=model_name, revision=revision) | 
					
						
						|  | except Exception as e: | 
					
						
						|  | print(f"{Fore.RED}Could not find model info for {model_name} on the Hub\n{e}{Fore.RESET}") | 
					
						
						|  | return 1 | 
					
						
						|  |  | 
					
						
						|  | model_size = get_model_size(model_info=model_info, precision=precision) | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | license = model_info.cardData["license"] | 
					
						
						|  | except Exception: | 
					
						
						|  | license = "?" | 
					
						
						|  |  | 
					
						
						|  | eval_entry = { | 
					
						
						|  | "model": model_name, | 
					
						
						|  | "base_model": base_model, | 
					
						
						|  | "revision": revision, | 
					
						
						|  | "private": False, | 
					
						
						|  | "precision": precision, | 
					
						
						|  | "weight_type": weight_type, | 
					
						
						|  | "status": status, | 
					
						
						|  | "submitted_time": current_time, | 
					
						
						|  | "model_type": model_type, | 
					
						
						|  | "likes": model_info.likes, | 
					
						
						|  | "params": model_size, | 
					
						
						|  | "license": license, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | user_name = "" | 
					
						
						|  | model_path = model_name | 
					
						
						|  | if "/" in model_name: | 
					
						
						|  | user_name = model_name.split("/")[0] | 
					
						
						|  | model_path = model_name.split("/")[1] | 
					
						
						|  |  | 
					
						
						|  | pprint.pprint(eval_entry) | 
					
						
						|  |  | 
					
						
						|  | if click.confirm("Do you want to continue? This request file will be pushed to the hub"): | 
					
						
						|  | click.echo("continuing...") | 
					
						
						|  |  | 
					
						
						|  | out_dir = f"{EVAL_REQUESTS_PATH}/{user_name}" | 
					
						
						|  | os.makedirs(out_dir, exist_ok=True) | 
					
						
						|  | out_path = f"{out_dir}/{model_path}_eval_request_{False}_{precision}_{weight_type}.json" | 
					
						
						|  |  | 
					
						
						|  | with open(out_path, "w") as f: | 
					
						
						|  | f.write(json.dumps(eval_entry)) | 
					
						
						|  |  | 
					
						
						|  | api.upload_file( | 
					
						
						|  | path_or_fileobj=out_path, | 
					
						
						|  | path_in_repo=out_path.split(f"{EVAL_REQUESTS_PATH}/")[1], | 
					
						
						|  | repo_id=QUEUE_REPO, | 
					
						
						|  | repo_type="dataset", | 
					
						
						|  | commit_message=f"Add {model_name} to eval queue", | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | click.echo("aborting...") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  | main() | 
					
						
						|  |  |