Abhishek0323 commited on
Commit
cd72bd6
·
verified ·
1 Parent(s): 5d5dc7b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -0
app.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
3
+ import gradio as gr
4
+
5
+ # Load the model and tokenizer
6
+ model_name = "deepset/roberta-base-squad2"
7
+ model = AutoModelForQuestionAnswering.from_pretrained(model_name)
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
9
+
10
+ # Setup the pipeline
11
+ nlp = pipeline('question-answering', model=model, tokenizer=tokenizer)
12
+
13
+ def answer_question(context, question):
14
+ """
15
+ Takes a context and a question, and returns the answer based on the context.
16
+ """
17
+ result = nlp(question=question, context=context)
18
+ return result['answer']
19
+
20
+ # Define the Gradio interface
21
+ iface = gr.Interface(fn=answer_question,
22
+ inputs=[gr.inputs.Textbox(label="Context", placeholder="Enter the text here..."),
23
+ gr.inputs.Textbox(label="Question", placeholder="Enter your question here...")],
24
+ outputs=gr.outputs.Textbox(label="Answer"),
25
+ title="Question and Answer Assistant",
26
+ description="Provide a context and ask a question based on that context. The assistant will find the answer for you.")
27
+
28
+ if __name__ == "__main__":
29
+ iface.launch()