import streamlit as st import os import requests import pandas as pd import json import joblib # Function to create the payload for the model def create_tf_serving_json(data): return {'inputs': {name: data[name].tolist() for name in data.keys()} if isinstance(data, dict) else data.tolist()} # Function to send a request to the model endpoint def score_model(dataset, url, token): headers = {'Authorization': f'Bearer {token}', 'Content-Type': 'application/json'} ds_dict = {'dataframe_split': dataset.to_dict(orient='split')} if isinstance(dataset, pd.DataFrame) else create_tf_serving_json(dataset) data_json = json.dumps(ds_dict, allow_nan=True) response = requests.request(method='POST', headers=headers, url=url, data=data_json) if response.status_code != 200: raise Exception(f'Request failed with status {response.status_code}, {response.text}') return response.json() # Load local model function def load_local_model(): return joblib.load('Random Forest - Grid Search_model.pkl') # Function to make predictions with local model def predict_with_local_model(model, input_data): input_data = input_data[['satisfaction_level', 'last_evaluation', 'number_project', 'average_montly_hours', 'time_spend_company', 'Work_accident', 'promotion_last_5years', 'salaryVec_0', 'salaryVec_1']] prediction = model.predict(input_data) return prediction[0] # Streamlit app UI st.title('Employee Churn Prediction') # Create a form with st.form(key='churn_form'): satisfaction_level = st.slider('Satisfaction Level', 0.0, 1.0, 0.5) last_evaluation = st.slider('Last Evaluation', 0.0, 1.0, 0.5) number_project = st.slider('Number of Projects', 1, 10, 3) average_montly_hours = st.slider('Average Monthly Hours', 50, 350, 200) time_spend_company = st.slider('Time Spent in Company (years)', 1, 10, 3) work_accident = st.selectbox('Work Accident', [0, 1]) promotion_last_5years = st.selectbox('Promotion in Last 5 Years', [0, 1]) salary = st.selectbox('Salary Level', ['Low', 'Medium', 'High']) # Encode salary into one-hot vectors salaryVec_0, salaryVec_1 = 0.0, 0.0 if salary == 'Low': salaryVec_0 = 1.0 elif salary is 'Medium': salaryVec_1 = 1.0 # Submit button submit_button = st.form_submit_button(label='Predict Churn') # Handle form submission if submit_button: # Create a DataFrame with the input data input_data = pd.DataFrame({ 'satisfaction_level': [satisfaction_level], 'last_evaluation': [last_evaluation], 'number_project': [number_project], 'average_montly_hours': [average_montly_hours], 'time_spend_company': [time_spend_company], 'Work_accident': [work_accident], 'promotion_last_5years': [promotion_last_5years], 'salaryVec_0': [salaryVec_0], 'salaryVec_1': [salaryVec_1] }) # Check if URL and token are specified url = 'Add_Model_URL' token = 'Add_Databricks_Token' try: if url != 'Add_Model_URL' and token != 'Add_Databricks_Token': # Use the API if URL and token are specified prediction = score_model(input_data, url, token) churn_prediction = prediction['predictions'][0] else: # Use the local model if URL and token are not specified local_model = load_local_model() churn_prediction = predict_with_local_model(local_model, input_data) if churn_prediction == 1: st.write('The employee is likely to churn.') else: st.write('The employee is not likely to churn.') except Exception as e: st.error(f'Error: {e}')