|
import streamlit as st |
|
import os |
|
import requests |
|
import pandas as pd |
|
import json |
|
import joblib |
|
|
|
|
|
def create_tf_serving_json(data): |
|
return {'inputs': {name: data[name].tolist() for name in data.keys()} if isinstance(data, dict) else data.tolist()} |
|
|
|
|
|
def score_model(dataset, url, token): |
|
headers = {'Authorization': f'Bearer {token}', 'Content-Type': 'application/json'} |
|
ds_dict = {'dataframe_split': dataset.to_dict(orient='split')} if isinstance(dataset, pd.DataFrame) else create_tf_serving_json(dataset) |
|
data_json = json.dumps(ds_dict, allow_nan=True) |
|
response = requests.request(method='POST', headers=headers, url=url, data=data_json) |
|
if response.status_code != 200: |
|
raise Exception(f'Request failed with status {response.status_code}, {response.text}') |
|
return response.json() |
|
|
|
|
|
def load_local_model(): |
|
return joblib.load('Random Forest - Grid Search_model.pkl') |
|
|
|
|
|
def predict_with_local_model(model, input_data): |
|
input_data = input_data[['satisfaction_level', 'last_evaluation', 'number_project', |
|
'average_montly_hours', 'time_spend_company', 'Work_accident', |
|
'promotion_last_5years', 'salaryVec_0', 'salaryVec_1']] |
|
prediction = model.predict(input_data) |
|
return prediction[0] |
|
|
|
|
|
st.title('Employee Churn Prediction') |
|
|
|
|
|
with st.form(key='churn_form'): |
|
satisfaction_level = st.slider('Satisfaction Level', 0.0, 1.0, 0.5) |
|
last_evaluation = st.slider('Last Evaluation', 0.0, 1.0, 0.5) |
|
number_project = st.slider('Number of Projects', 1, 10, 3) |
|
average_montly_hours = st.slider('Average Monthly Hours', 50, 350, 200) |
|
time_spend_company = st.slider('Time Spent in Company (years)', 1, 10, 3) |
|
work_accident = st.selectbox('Work Accident', [0, 1]) |
|
promotion_last_5years = st.selectbox('Promotion in Last 5 Years', [0, 1]) |
|
salary = st.selectbox('Salary Level', ['Low', 'Medium', 'High']) |
|
|
|
|
|
salaryVec_0, salaryVec_1 = 0.0, 0.0 |
|
if salary == 'Low': |
|
salaryVec_0 = 1.0 |
|
elif salary is 'Medium': |
|
salaryVec_1 = 1.0 |
|
|
|
|
|
submit_button = st.form_submit_button(label='Predict Churn') |
|
|
|
|
|
if submit_button: |
|
|
|
input_data = pd.DataFrame({ |
|
'satisfaction_level': [satisfaction_level], |
|
'last_evaluation': [last_evaluation], |
|
'number_project': [number_project], |
|
'average_montly_hours': [average_montly_hours], |
|
'time_spend_company': [time_spend_company], |
|
'Work_accident': [work_accident], |
|
'promotion_last_5years': [promotion_last_5years], |
|
'salaryVec_0': [salaryVec_0], |
|
'salaryVec_1': [salaryVec_1] |
|
}) |
|
|
|
|
|
url = 'Add_Model_URL' |
|
token = 'Add_Databricks_Token' |
|
|
|
try: |
|
if url != 'Add_Model_URL' and token != 'Add_Databricks_Token': |
|
|
|
prediction = score_model(input_data, url, token) |
|
churn_prediction = prediction['predictions'][0] |
|
else: |
|
|
|
local_model = load_local_model() |
|
churn_prediction = predict_with_local_model(local_model, input_data) |
|
|
|
if churn_prediction == 1: |
|
st.write('The employee is likely to churn.') |
|
else: |
|
st.write('The employee is not likely to churn.') |
|
except Exception as e: |
|
st.error(f'Error: {e}') |
|
|