Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,41 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
|
|
3 |
|
4 |
-
#
|
5 |
-
|
|
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def predict_customer_segment(data):
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Function to handle predictions from form input
|
23 |
def predict_from_form(CUST_ID, BALANCE, BALANCE_FREQUENCY, PURCHASES, ONEOFF_PURCHASES, INSTALLMENTS_PURCHASES, CASH_ADVANCE, PURCHASES_FREQUENCY, ONEOFF_PURCHASES_FREQUENCY, PURCHASES_INSTALLMENTS_FREQUENCY, CASH_ADVANCE_FREQUENCY, CASH_ADVANCE_TRX, PURCHASES_TRX, CREDIT_LIMIT, PAYMENTS, MINIMUM_PAYMENTS, PRC_FULL_PAYMENT, TENURE):
|
|
|
1 |
import gradio as gr
|
2 |
+
import pickle
|
3 |
+
import numpy as np
|
4 |
|
5 |
+
# Load the preprocessor and model
|
6 |
+
with open("processor.pkl", "rb") as f:
|
7 |
+
processor = pickle.load(f)
|
8 |
|
9 |
+
with open("model.pkl", "rb") as f:
|
10 |
+
model = pickle.load(f)
|
11 |
+
|
12 |
+
# The original FastAPI endpoint URL (not active now)
|
13 |
+
# API_URL = "http://4.186.39.227/predict"
|
14 |
+
|
15 |
+
# Function to preprocess input data and predict customer segment
|
16 |
def predict_customer_segment(data):
|
17 |
+
# Preprocess the data
|
18 |
+
processed_data = processor.transform(np.array([[
|
19 |
+
data["CUST_ID"], data["BALANCE"], data["BALANCE_FREQUENCY"], data["PURCHASES"],
|
20 |
+
data["ONEOFF_PURCHASES"], data["INSTALLMENTS_PURCHASES"], data["CASH_ADVANCE"],
|
21 |
+
data["PURCHASES_FREQUENCY"], data["ONEOFF_PURCHASES_FREQUENCY"], data["PURCHASES_INSTALLMENTS_FREQUENCY"],
|
22 |
+
data["CASH_ADVANCE_FREQUENCY"], data["CASH_ADVANCE_TRX"], data["PURCHASES_TRX"],
|
23 |
+
data["CREDIT_LIMIT"], data["PAYMENTS"], data["MINIMUM_PAYMENTS"], data["PRC_FULL_PAYMENT"],
|
24 |
+
data["TENURE"]
|
25 |
+
]]))
|
26 |
+
|
27 |
+
# Predict the cluster label using the model
|
28 |
+
cluster_label = model.predict(processed_data)[0]
|
29 |
+
|
30 |
+
# Map the cluster label to a human-readable description
|
31 |
+
cluster_descriptions = {
|
32 |
+
0: "Low Value Customer",
|
33 |
+
1: "Medium Value Customer",
|
34 |
+
2: "High Value Customer",
|
35 |
+
3: "Premium Customer"
|
36 |
+
}
|
37 |
+
|
38 |
+
return cluster_descriptions.get(cluster_label, "Unknown Cluster")
|
39 |
|
40 |
# Function to handle predictions from form input
|
41 |
def predict_from_form(CUST_ID, BALANCE, BALANCE_FREQUENCY, PURCHASES, ONEOFF_PURCHASES, INSTALLMENTS_PURCHASES, CASH_ADVANCE, PURCHASES_FREQUENCY, ONEOFF_PURCHASES_FREQUENCY, PURCHASES_INSTALLMENTS_FREQUENCY, CASH_ADVANCE_FREQUENCY, CASH_ADVANCE_TRX, PURCHASES_TRX, CREDIT_LIMIT, PAYMENTS, MINIMUM_PAYMENTS, PRC_FULL_PAYMENT, TENURE):
|