File size: 5,538 Bytes
6d4e500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import gradio as gr
import torch
import time
from PIL import Image, ImageDraw, ImageFont
from transformers import (
    AutoProcessor, 
    Owlv2ForObjectDetection,
    Qwen2VLForConditionalGeneration,
    AutoTokenizer,
    AutoProcessor
)

# Initialize models
obj_processor = AutoProcessor.from_pretrained("google/owlv2-base-patch16-ensemble")
obj_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble")

cbt_model = Qwen2VLForConditionalGeneration.from_pretrained(
    "Qwen/Qwen2-VL-2B-Instruct",
    torch_dtype="auto",
    device_map="auto",
)
cbt_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")

colors = [
    (255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 165, 0), (75, 0, 130),
    (255, 255, 0), (0, 255, 255), (255, 105, 180), (138, 43, 226), (0, 128, 0),
    (0, 128, 128), (255, 20, 147), (64, 224, 208), (128, 0, 128), (70, 130, 180),
    (220, 20, 60), (255, 140, 0), (34, 139, 34), (218, 112, 214), (255, 99, 71),
    (47, 79, 79), (186, 85, 211), (240, 230, 140), (169, 169, 169), (199, 21, 133)
]

history = [
    {
        "role": "system",
        "content": [
            {
                "type": "image",
            },
            {
                "type": "text",
                "text": "You are an conversation image recognition chatbot. Communicate with humans using natural language. Recognize the images, have a spatial understanding and answer the questions in a concise manner. Generate the best response for a user query. It must be correct lexically and grammatically.",
            }
        ]
    }
]

def detect_objects(image, objects):
    texts = [objects]
    inputs = obj_processor(text=texts, images=image, return_tensors="pt")

    with torch.no_grad():
        outputs = obj_model(**inputs)

    target_sizes = torch.Tensor([image.size[::-1]])
    results = obj_processor.post_process_object_detection(
        outputs=outputs, threshold=0.2, target_sizes=target_sizes
    )

    i = 0
    text = texts[i]
    boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"]
    return image, boxes, scores, labels

def annotate_image(image, boxes, scores, labels, objects):
    draw = ImageDraw.Draw(image)
    font = ImageFont.load_default()

    for i, (box, score, label) in enumerate(zip(boxes, scores, labels)):
        box = [round(coord, 2) for coord in box.tolist()]
        color = colors[label % len(colors)]
        draw.rectangle(box, outline=color, width=3)
        draw.text((box[0], box[1]), f"{objects[label]}: {score:.2f}", font=font, fill=color)

    return image

def run_object_detection(image, objects):
    object_list = [obj.strip() for obj in objects.split(",")]
    image, boxes, scores, labels = detect_objects(image, object_list)
    annotated_image = annotate_image(image, boxes, scores, labels, object_list)
    history.append({
        'role': 'system',
        'content': [
            {
                'type': 'text',
                'text': f'In the image the objects detected are {labels}'
            }
        ]
    })
    return annotated_image

def user(message, chat_history):
    return "", chat_history + [[message, ""]]

def chat_function(image, chat_history):
    message = ''

    if chat_history[-1][0] is not None:
        message = str(chat_history[-1][0])

    history.append({
        "role": "user",
        "content": [
            {
                "type": "text",
                "text": message
            }
        ]
    })

    text_prompt = cbt_processor.apply_chat_template(history, add_generation_prompt=True)

    inputs = cbt_processor(
        text=[text_prompt],
        images=[image],
        padding=True,
        return_tensors="pt"
    )

    inputs = inputs.to("cuda" if torch.cuda.is_available() else "cpu")

    output_ids = cbt_model.generate(**inputs, max_new_tokens=1024)

    generated_ids = [
        output_ids[len(input_ids):]
        for input_ids, output_ids in zip(inputs.input_ids, output_ids)
    ]

    bot_output = cbt_processor.batch_decode(
        generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
    )

    history.append({
        "role": "assistant",
        "content": [
            {
                "type": "text",
                "text": str(bot_output)
            }
        ]
    })

    bot_output_str = str(bot_output).replace('"', '').replace('[', '').replace(']', '').replace("\n", "<br>")

    chat_history[-1][1] = ""
    for character in bot_output_str:
        chat_history[-1][1] += character
        time.sleep(0.05)
        yield chat_history

with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("## Upload an Image")
            image_input = gr.Image(type="pil", label="Upload your image here")
            objects_input = gr.Textbox(label="Enter the objects to detect (comma-separated)", placeholder="e.g. 'cat, dog, car'")
            image_output = gr.Image(type="pil", label="Detected Objects")
            detect_button = gr.Button("Detect Objects")
            detect_button.click(fn=run_object_detection, inputs=[image_input, objects_input], outputs=image_output)

        with gr.Column(scale=2):
            chatbot = gr.Chatbot()
            msg = gr.Textbox()
            clear = gr.ClearButton([msg, chatbot])

    msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
        chat_function, [image_input, chatbot], [chatbot]
    )
    clear.click(lambda: None, None, chatbot, queue=False)

demo.launch()