Tune-A-Video-Training-UI / app_inference.py
Abdessamad12's picture
Duplicate from Tune-A-Video-library/Tune-A-Video-Training-UI
4e12bd4
#!/usr/bin/env python
from __future__ import annotations
import enum
import gradio as gr
from huggingface_hub import HfApi
from constants import MODEL_LIBRARY_ORG_NAME, UploadTarget
from inference import InferencePipeline
from utils import find_exp_dirs
class ModelSource(enum.Enum):
HUB_LIB = UploadTarget.MODEL_LIBRARY.value
LOCAL = 'Local'
class InferenceUtil:
def __init__(self, hf_token: str | None):
self.hf_token = hf_token
def load_hub_model_list(self) -> dict:
api = HfApi(token=self.hf_token)
choices = [
info.modelId
for info in api.list_models(author=MODEL_LIBRARY_ORG_NAME)
]
return gr.update(choices=choices,
value=choices[0] if choices else None)
@staticmethod
def load_local_model_list() -> dict:
choices = find_exp_dirs()
return gr.update(choices=choices,
value=choices[0] if choices else None)
def reload_model_list(self, model_source: str) -> dict:
if model_source == ModelSource.HUB_LIB.value:
return self.load_hub_model_list()
elif model_source == ModelSource.LOCAL.value:
return self.load_local_model_list()
else:
raise ValueError
def load_model_info(self, model_id: str) -> tuple[str, str]:
try:
card = InferencePipeline.get_model_card(model_id, self.hf_token)
except Exception:
return '', ''
base_model = getattr(card.data, 'base_model', '')
training_prompt = getattr(card.data, 'training_prompt', '')
return base_model, training_prompt
def reload_model_list_and_update_model_info(
self, model_source: str) -> tuple[dict, str, str]:
model_list_update = self.reload_model_list(model_source)
model_list = model_list_update['choices']
model_info = self.load_model_info(model_list[0] if model_list else '')
return model_list_update, *model_info
def create_inference_demo(pipe: InferencePipeline,
hf_token: str | None = None,
disable_run_button: bool = False) -> gr.Blocks:
app = InferenceUtil(hf_token)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
with gr.Box():
model_source = gr.Radio(
label='Model Source',
choices=[_.value for _ in ModelSource],
value=ModelSource.HUB_LIB.value)
reload_button = gr.Button('Reload Model List')
model_id = gr.Dropdown(label='Model ID',
choices=None,
value=None)
with gr.Accordion(
label=
'Model info (Base model and prompt used for training)',
open=False):
with gr.Row():
base_model_used_for_training = gr.Text(
label='Base model', interactive=False)
prompt_used_for_training = gr.Text(
label='Training prompt', interactive=False)
prompt = gr.Textbox(
label='Prompt',
max_lines=1,
placeholder='Example: "A panda is surfing"')
video_length = gr.Slider(label='Video length',
minimum=4,
maximum=12,
step=1,
value=8)
fps = gr.Slider(label='FPS',
minimum=1,
maximum=12,
step=1,
value=1)
seed = gr.Slider(label='Seed',
minimum=0,
maximum=100000,
step=1,
value=0)
with gr.Accordion('Advanced options', open=False):
num_steps = gr.Slider(label='Number of Steps',
minimum=0,
maximum=100,
step=1,
value=50)
guidance_scale = gr.Slider(label='Guidance scale',
minimum=0,
maximum=50,
step=0.1,
value=7.5)
run_button = gr.Button('Generate',
interactive=not disable_run_button)
gr.Markdown('''
- After training, you can press "Reload Model List" button to load your trained model names.
- It takes a few minutes to download model first.
- Expected time to generate an 8-frame video: 70 seconds with T4, 24 seconds with A10G, (10 seconds with A100)
''')
with gr.Column():
result = gr.Video(label='Result')
model_source.change(fn=app.reload_model_list_and_update_model_info,
inputs=model_source,
outputs=[
model_id,
base_model_used_for_training,
prompt_used_for_training,
])
reload_button.click(fn=app.reload_model_list_and_update_model_info,
inputs=model_source,
outputs=[
model_id,
base_model_used_for_training,
prompt_used_for_training,
])
model_id.change(fn=app.load_model_info,
inputs=model_id,
outputs=[
base_model_used_for_training,
prompt_used_for_training,
])
inputs = [
model_id,
prompt,
video_length,
fps,
seed,
num_steps,
guidance_scale,
]
prompt.submit(fn=pipe.run, inputs=inputs, outputs=result)
run_button.click(fn=pipe.run, inputs=inputs, outputs=result)
return demo
if __name__ == '__main__':
import os
hf_token = os.getenv('HF_TOKEN')
pipe = InferencePipeline(hf_token)
demo = create_inference_demo(pipe, hf_token)
demo.queue(api_open=False, max_size=10).launch()