File size: 5,467 Bytes
4e12bd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from __future__ import annotations

import datetime
import os
import pathlib
import shlex
import shutil
import subprocess
import sys

import slugify
import torch
from huggingface_hub import HfApi
from omegaconf import OmegaConf

from uploader import upload
from utils import save_model_card

sys.path.append('Tune-A-Video')


class Trainer:
    def __init__(self):
        self.checkpoint_dir = pathlib.Path('checkpoints')
        self.checkpoint_dir.mkdir(exist_ok=True)

        self.log_file = pathlib.Path('log.txt')
        self.log_file.touch(exist_ok=True)

    def download_base_model(self, base_model_id: str) -> str:
        model_dir = self.checkpoint_dir / base_model_id
        if not model_dir.exists():
            org_name = base_model_id.split('/')[0]
            org_dir = self.checkpoint_dir / org_name
            org_dir.mkdir(exist_ok=True)
            subprocess.run(shlex.split(
                f'git clone https://huggingface.co/{base_model_id}'),
                           cwd=org_dir)
        return model_dir.as_posix()

    def run(
        self,
        training_video: str,
        training_prompt: str,
        output_model_name: str,
        overwrite_existing_model: bool,
        validation_prompt: str,
        base_model: str,
        resolution_s: str,
        n_steps: int,
        learning_rate: float,
        gradient_accumulation: int,
        seed: int,
        fp16: bool,
        use_8bit_adam: bool,
        checkpointing_steps: int,
        validation_epochs: int,
        upload_to_hub: bool,
        use_private_repo: bool,
        delete_existing_repo: bool,
        upload_to: str,
        pause_space_after_training: bool,
        hf_token: str,
    ) -> None:
        if not torch.cuda.is_available():
            raise RuntimeError('CUDA is not available.')
        if training_video is None:
            raise ValueError('You need to upload a video.')
        if not training_prompt:
            raise ValueError('The training prompt is missing.')
        if not validation_prompt:
            raise ValueError('The validation prompt is missing.')

        resolution = int(resolution_s)

        if not output_model_name:
            timestamp = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
            output_model_name = f'tune-a-video-{timestamp}'
        output_model_name = slugify.slugify(output_model_name)

        repo_dir = pathlib.Path(__file__).parent
        output_dir = repo_dir / 'experiments' / output_model_name
        if overwrite_existing_model or upload_to_hub:
            shutil.rmtree(output_dir, ignore_errors=True)
        output_dir.mkdir(parents=True)

        config = OmegaConf.load('Tune-A-Video/configs/man-surfing.yaml')
        config.pretrained_model_path = self.download_base_model(base_model)
        config.output_dir = output_dir.as_posix()
        config.train_data.video_path = training_video.name  # type: ignore
        config.train_data.prompt = training_prompt
        config.train_data.n_sample_frames = 8
        config.train_data.width = resolution
        config.train_data.height = resolution
        config.train_data.sample_start_idx = 0
        config.train_data.sample_frame_rate = 1
        config.validation_data.prompts = [validation_prompt]
        config.validation_data.video_length = 8
        config.validation_data.width = resolution
        config.validation_data.height = resolution
        config.validation_data.num_inference_steps = 50
        config.validation_data.guidance_scale = 7.5
        config.learning_rate = learning_rate
        config.gradient_accumulation_steps = gradient_accumulation
        config.train_batch_size = 1
        config.max_train_steps = n_steps
        config.checkpointing_steps = checkpointing_steps
        config.validation_steps = validation_epochs
        config.seed = seed
        config.mixed_precision = 'fp16' if fp16 else ''
        config.use_8bit_adam = use_8bit_adam

        config_path = output_dir / 'config.yaml'
        with open(config_path, 'w') as f:
            OmegaConf.save(config, f)

        command = f'accelerate launch Tune-A-Video/train_tuneavideo.py --config {config_path}'
        with open(self.log_file, 'w') as f:
            subprocess.run(shlex.split(command),
                           stdout=f,
                           stderr=subprocess.STDOUT,
                           text=True)
        save_model_card(save_dir=output_dir,
                        base_model=base_model,
                        training_prompt=training_prompt,
                        test_prompt=validation_prompt,
                        test_image_dir='samples')

        with open(self.log_file, 'a') as f:
            f.write('Training completed!\n')

        if upload_to_hub:
            upload_message = upload(local_folder_path=output_dir.as_posix(),
                                    target_repo_name=output_model_name,
                                    upload_to=upload_to,
                                    private=use_private_repo,
                                    delete_existing_repo=delete_existing_repo,
                                    hf_token=hf_token)
            with open(self.log_file, 'a') as f:
                f.write(upload_message)

        if pause_space_after_training:
            if space_id := os.getenv('SPACE_ID'):
                api = HfApi(token=os.getenv('HF_TOKEN') or hf_token)
                api.pause_space(repo_id=space_id)