import gradio as gr import numpy as np import random import spaces import torch from diffusers import DiffusionPipeline from transformers import CLIPTokenizer dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" # Initialize CLIP tokenizer for prompt length checking tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32") pipe = DiffusionPipeline.from_pretrained( "UnfilteredAI/NSFW-Flux-v1", torch_dtype=dtype ).to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 MAX_TOKENS = 77 # CLIP's maximum token length def truncate_prompt(prompt): """Truncate the prompt to fit within CLIP's token limit""" tokens = tokenizer.encode(prompt, truncation=True, max_length=MAX_TOKENS) return tokenizer.decode(tokens) @spaces.GPU() def infer( prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True) ): # Truncate prompt if necessary truncated_prompt = truncate_prompt(prompt) if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) try: image = pipe( prompt=truncated_prompt, width=width, height=height, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=0.0 ).images[0] return image, seed except Exception as e: raise gr.Error(f"Error generating image: {str(e)}") examples = [ "a tiny astronaut hatching from an egg on the moon", "a cat holding a sign that says hello world", "an anime illustration of a wiener schnitzel", ] css = """ #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(""" NSFW-Flux-v1 is a 12 billion parameter rectified flow transformer capable of generating images from text descriptions. Finetuned by UnfilteredAI, this model is designed to produce a wide range of images, including explicit and NSFW (Not Safe For Work) images from textual inputs. Note: Long prompts will be automatically truncated to fit the model's requirements. """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=4, ) gr.Examples( examples=examples, fn=infer, inputs=[prompt], outputs=[result, seed], cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, seed, randomize_seed, width, height, num_inference_steps ], outputs=[result, seed] ) demo.launch()