Update app.py
Browse files
app.py
CHANGED
@@ -15,7 +15,7 @@ text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", to
|
|
15 |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
|
16 |
text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype, revision="main")
|
17 |
tokenizer_2 = T5TokenizerFast.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype, revision="main")
|
18 |
-
vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder="vae", torch_dtype=dtype, revision="
|
19 |
transformer = FluxTransformer2DModel.from_pretrained(bfl_repo, subfolder="transformer", torch_dtype=dtype, revision="main")
|
20 |
|
21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
15 |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
|
16 |
text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype, revision="main")
|
17 |
tokenizer_2 = T5TokenizerFast.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype, revision="main")
|
18 |
+
vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder="vae", torch_dtype=dtype, revision="main")
|
19 |
transformer = FluxTransformer2DModel.from_pretrained(bfl_repo, subfolder="transformer", torch_dtype=dtype, revision="main")
|
20 |
|
21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|