NSFW-FLUX / app.py
Aarifkhan's picture
Update app.py
2d69d95 verified
raw
history blame
4.42 kB
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline
from transformers import CLIPTokenizer
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize CLIP tokenizer for prompt length checking
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
pipe = DiffusionPipeline.from_pretrained(
"UnfilteredAI/NSFW-Flux-v1",
torch_dtype=dtype
).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
MAX_TOKENS = 77 # CLIP's maximum token length
def truncate_prompt(prompt):
"""Truncate the prompt to fit within CLIP's token limit"""
tokens = tokenizer.encode(prompt, truncation=True, max_length=MAX_TOKENS)
return tokenizer.decode(tokens)
@spaces.GPU()
def infer(
prompt,
seed=42,
randomize_seed=False,
width=1024,
height=1024,
num_inference_steps=4,
progress=gr.Progress(track_tqdm=True)
):
# Truncate prompt if necessary
truncated_prompt = truncate_prompt(prompt)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
try:
image = pipe(
prompt=truncated_prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0
).images[0]
return image, seed
except Exception as e:
raise gr.Error(f"Error generating image: {str(e)}")
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
NSFW-Flux-v1 is a 12 billion parameter rectified flow transformer
capable of generating images from text descriptions.
Finetuned by UnfilteredAI, this model is designed to produce
a wide range of images, including explicit and NSFW
(Not Safe For Work) images from textual inputs.
Note: Long prompts will be automatically truncated to fit the model's requirements.
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
num_inference_steps
],
outputs=[result, seed]
)
demo.launch()