r44alc6g4n / upcunet_v3.py
ASesYusuf1's picture
Update upcunet_v3.py
b161336 verified
'''
cache_mode:
0:使用cache缓存必要参数
1:使用cache缓存必要参数,对cache进行8bit量化节省显存,带来小许延时增长
2:不使用cache,耗时约为mode0的2倍,但是显存不受输入图像分辨率限制,tile_mode填得够大,1.5G显存可超任意比例
'''
import torch,pdb
from torch import nn as nn
from torch.nn import functional as F
import os,sys
import numpy as np
root_path=os.path.abspath('.')
sys.path.append(root_path)
def q(inp,cache_mode):
maxx = inp.max()
minn = inp.min()
delta = maxx - minn
if(cache_mode==2):
return ((inp-minn)/delta*255).round().byte().cpu(),delta,minn,inp.device#大概3倍延时#太慢了,屏蔽该模式
elif(cache_mode==1):
return ((inp-minn)/delta*255).round().byte(),delta,minn,inp.device#不用CPU转移
def dq(inp,if_half,cache_mode,delta,minn,device):
if(cache_mode==2):
if(if_half==True):return inp.to(device).half()/255*delta+minn
else:return inp.to(device).float()/255*delta+minn
elif(cache_mode==1):
if(if_half==True):return inp.half()/255*delta+minn#不用CPU转移
else:return inp.float()/255*delta+minn
class SEBlock(nn.Module):
def __init__(self, in_channels, reduction=8, bias=False):
super(SEBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, in_channels // reduction, 1, 1, 0, bias=bias)
self.conv2 = nn.Conv2d(in_channels // reduction, in_channels, 1, 1, 0, bias=bias)
def forward(self, x):
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor
x0 = torch.mean(x.float(), dim=(2, 3), keepdim=True).half()
else:
x0 = torch.mean(x, dim=(2, 3), keepdim=True)
x0 = self.conv1(x0)
x0 = F.relu(x0, inplace=True)
x0 = self.conv2(x0)
x0 = torch.sigmoid(x0)
x = torch.mul(x, x0)
return x
def forward_mean(self, x,x0):
x0 = self.conv1(x0)
x0 = F.relu(x0, inplace=True)
x0 = self.conv2(x0)
x0 = torch.sigmoid(x0)
x = torch.mul(x, x0)
return x
class UNetConv(nn.Module):
def __init__(self, in_channels, mid_channels, out_channels, se):
super(UNetConv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, 3, 1, 0),
nn.LeakyReLU(0.1, inplace=True),
nn.Conv2d(mid_channels, out_channels, 3, 1, 0),
nn.LeakyReLU(0.1, inplace=True),
)
if se:
self.seblock = SEBlock(out_channels, reduction=8, bias=True)
else:
self.seblock = None
def forward(self, x):
z = self.conv(x)
if self.seblock is not None:
z = self.seblock(z)
return z
class UNet1(nn.Module):
def __init__(self, in_channels, out_channels, deconv):
super(UNet1, self).__init__()
self.conv1 = UNetConv(in_channels, 32, 64, se=False)
self.conv1_down = nn.Conv2d(64, 64, 2, 2, 0)
self.conv2 = UNetConv(64, 128, 64, se=True)
self.conv2_up = nn.ConvTranspose2d(64, 64, 2, 2, 0)
self.conv3 = nn.Conv2d(64, 64, 3, 1, 0)
if deconv:
self.conv_bottom = nn.ConvTranspose2d(64, out_channels, 4, 2, 3)
else:
self.conv_bottom = nn.Conv2d(64, out_channels, 3, 1, 0)
for m in self.modules():
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv1_down(x1)
x1 = F.pad(x1, (-4, -4, -4, -4))
x2 = F.leaky_relu(x2, 0.1, inplace=True)
x2 = self.conv2(x2)
x2 = self.conv2_up(x2)
x2 = F.leaky_relu(x2, 0.1, inplace=True)
x3 = self.conv3(x1 + x2)
x3 = F.leaky_relu(x3, 0.1, inplace=True)
z = self.conv_bottom(x3)
return z
def forward_a(self, x):
x1 = self.conv1(x)
x2 = self.conv1_down(x1)
x1 = F.pad(x1, (-4, -4, -4, -4))
x2 = F.leaky_relu(x2, 0.1, inplace=True)
x2 = self.conv2.conv(x2)
return x1,x2
def forward_b(self, x1,x2):
x2 = self.conv2_up(x2)
x2 = F.leaky_relu(x2, 0.1, inplace=True)
x3 = self.conv3(x1 + x2)
x3 = F.leaky_relu(x3, 0.1, inplace=True)
z = self.conv_bottom(x3)
return z
class UNet1x3(nn.Module):
def __init__(self, in_channels, out_channels, deconv):
super(UNet1x3, self).__init__()
self.conv1 = UNetConv(in_channels, 32, 64, se=False)
self.conv1_down = nn.Conv2d(64, 64, 2, 2, 0)
self.conv2 = UNetConv(64, 128, 64, se=True)
self.conv2_up = nn.ConvTranspose2d(64, 64, 2, 2, 0)
self.conv3 = nn.Conv2d(64, 64, 3, 1, 0)
if deconv:
self.conv_bottom = nn.ConvTranspose2d(64, out_channels, 5, 3, 2)
else:
self.conv_bottom = nn.Conv2d(64, out_channels, 3, 1, 0)
for m in self.modules():
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv1_down(x1)
x1 = F.pad(x1, (-4, -4, -4, -4))
x2 = F.leaky_relu(x2, 0.1, inplace=True)
x2 = self.conv2(x2)
x2 = self.conv2_up(x2)
x2 = F.leaky_relu(x2, 0.1, inplace=True)
x3 = self.conv3(x1 + x2)
x3 = F.leaky_relu(x3, 0.1, inplace=True)
z = self.conv_bottom(x3)
return z
def forward_a(self, x):
x1 = self.conv1(x)
x2 = self.conv1_down(x1)
x1 = F.pad(x1, (-4, -4, -4, -4))
x2 = F.leaky_relu(x2, 0.1, inplace=True)
x2 = self.conv2.conv(x2)
return x1,x2
def forward_b(self, x1,x2):
x2 = self.conv2_up(x2)
x2 = F.leaky_relu(x2, 0.1, inplace=True)
x3 = self.conv3(x1 + x2)
x3 = F.leaky_relu(x3, 0.1, inplace=True)
z = self.conv_bottom(x3)
return z
class UNet2(nn.Module):
def __init__(self, in_channels, out_channels, deconv):
super(UNet2, self).__init__()
self.conv1 = UNetConv(in_channels, 32, 64, se=False)
self.conv1_down = nn.Conv2d(64, 64, 2, 2, 0)
self.conv2 = UNetConv(64, 64, 128, se=True)
self.conv2_down = nn.Conv2d(128, 128, 2, 2, 0)
self.conv3 = UNetConv(128, 256, 128, se=True)
self.conv3_up = nn.ConvTranspose2d(128, 128, 2, 2, 0)
self.conv4 = UNetConv(128, 64, 64, se=True)
self.conv4_up = nn.ConvTranspose2d(64, 64, 2, 2, 0)
self.conv5 = nn.Conv2d(64, 64, 3, 1, 0)
if deconv:
self.conv_bottom = nn.ConvTranspose2d(64, out_channels, 4, 2, 3)
else:
self.conv_bottom = nn.Conv2d(64, out_channels, 3, 1, 0)
for m in self.modules():
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x,alpha=1):
x1 = self.conv1(x)
x2 = self.conv1_down(x1)
x1 = F.pad(x1, (-16, -16, -16, -16))
x2 = F.leaky_relu(x2, 0.1, inplace=True)
x2 = self.conv2(x2)
x3 = self.conv2_down(x2)
x2 = F.pad(x2, (-4, -4, -4, -4))
x3 = F.leaky_relu(x3, 0.1, inplace=True)
x3 = self.conv3(x3)
x3 = self.conv3_up(x3)
x3 = F.leaky_relu(x3, 0.1, inplace=True)
x4 = self.conv4(x2 + x3)
x4*=alpha
x4 = self.conv4_up(x4)
x4 = F.leaky_relu(x4, 0.1, inplace=True)
x5 = self.conv5(x1 + x4)
x5 = F.leaky_relu(x5, 0.1, inplace=True)
z = self.conv_bottom(x5)
return z
def forward_a(self, x):#conv234结尾有se
x1 = self.conv1(x)
x2 = self.conv1_down(x1)
x1 = F.pad(x1, (-16, -16, -16, -16))
x2 = F.leaky_relu(x2, 0.1, inplace=True)
x2 = self.conv2.conv(x2)
return x1,x2
def forward_b(self, x2): # conv234结尾有se
x3 = self.conv2_down(x2)
x2 = F.pad(x2, (-4, -4, -4, -4))
x3 = F.leaky_relu(x3, 0.1, inplace=True)
x3 = self.conv3.conv(x3)
return x2,x3
def forward_c(self, x2,x3): # conv234结尾有se
x3 = self.conv3_up(x3)
x3 = F.leaky_relu(x3, 0.1, inplace=True)
x4 = self.conv4.conv(x2 + x3)
return x4
def forward_d(self, x1,x4): # conv234结尾有se
x4 = self.conv4_up(x4)
x4 = F.leaky_relu(x4, 0.1, inplace=True)
x5 = self.conv5(x1 + x4)
x5 = F.leaky_relu(x5, 0.1, inplace=True)
z = self.conv_bottom(x5)
return z
class UpCunet2x(nn.Module):
def __init__(self, in_channels=3, out_channels=3):
super(UpCunet2x, self).__init__()
self.unet1 = UNet1(in_channels, out_channels, deconv=True)
self.unet2 = UNet2(in_channels, out_channels, deconv=False)
def forward(self, x,tile_mode,cache_mode,alpha,pro):
n, c, h0, w0 = x.shape
if ("Half" in x.type()):if_half=True
else:if_half=False
if(tile_mode==0):#不tile
ph = ((h0 - 1) // 2 + 1) * 2
pw = ((w0 - 1) // 2 + 1) * 2
x = F.pad(x, (18, 18 + pw - w0, 18, 18 + ph - h0), 'reflect') # 需要保证被2整除
x = self.unet1.forward(x)
x0 = self.unet2.forward(x,alpha)
x = F.pad(x, (-20, -20, -20, -20))
x = torch.add(x0, x)
if (w0 != pw or h0 != ph): x = x[:, :, :h0 * 2, :w0 * 2]
if(pro):
return ((x-0.15) * (255/0.7)).round().clamp_(0, 255).byte()
else:
return (x * 255).round().clamp_(0, 255).byte()
elif(tile_mode==1):# 对长边减半
if(w0>=h0):
crop_size_w=((w0-1)//4*4+4)//2#减半后能被2整除,所以要先被4整除
crop_size_h=(h0-1)//2*2+2#能被2整除
else:
crop_size_h=((h0-1)//4*4+4)//2#减半后能被2整除,所以要先被4整除
crop_size_w=(w0-1)//2*2+2#能被2整除
crop_size=(crop_size_h,crop_size_w)
elif(tile_mode>=2):
tile_mode=min(min(h0,w0)//128,int(tile_mode))#最小短边为128*128
t2=tile_mode*2
crop_size=(((h0-1)//t2*t2+t2)//tile_mode,((w0-1)//t2*t2+t2)//tile_mode)
else:
print("tile_mode config error")
os._exit(233)
ph = ((h0 - 1) // crop_size[0] + 1) * crop_size[0]
pw = ((w0 - 1) // crop_size[1] + 1) * crop_size[1]
x=F.pad(x,(18,18+pw-w0,18,18+ph-h0),'reflect')
n,c,h,w=x.shape
if (if_half):se_mean0=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float16)
else:se_mean0=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float32)
n_patch=0
tmp_dict={}
for i in range(0,h-36,crop_size[0]):
tmp_dict[i]={}
for j in range(0,w-36,crop_size[1]):
x_crop=x[:,:,i:i+crop_size[0]+36,j:j+crop_size[1]+36]
n,c1,h1,w1=x_crop.shape
tmp0,x_crop = self.unet1.forward_a(x_crop)
if(if_half): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(x_crop.float(), dim=(2, 3),keepdim=True).half()
else:
tmp_se_mean = torch.mean(x_crop, dim=(2, 3),keepdim=True)
se_mean0+=tmp_se_mean
n_patch+=1
tmp_dict[i][j]=(tmp0,x_crop)
se_mean0/=n_patch
if (if_half):se_mean1=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float16)
else:se_mean1=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float32)
for i in range(0,h-36,crop_size[0]):
for j in range(0,w-36,crop_size[1]):
tmp0, x_crop=tmp_dict[i][j]
x_crop=self.unet1.conv2.seblock.forward_mean(x_crop,se_mean0)
opt_unet1=self.unet1.forward_b(tmp0,x_crop)
tmp_x1,tmp_x2 = self.unet2.forward_a(opt_unet1)
opt_unet1 = F.pad(opt_unet1,(-20,-20,-20,-20))
if(cache_mode):opt_unet1,tmp_x1=q(opt_unet1,cache_mode), q(tmp_x1,cache_mode)
if(if_half): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(tmp_x2.float(), dim=(2, 3),keepdim=True).half()
else:
tmp_se_mean = torch.mean(tmp_x2, dim=(2, 3),keepdim=True)
if(cache_mode):tmp_x2=q(tmp_x2,cache_mode)
se_mean1+=tmp_se_mean
tmp_dict[i][j]=(opt_unet1,tmp_x1,tmp_x2)
se_mean1/=n_patch
if (if_half):se_mean0=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float16)
else:se_mean0=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float32)
for i in range(0,h-36,crop_size[0]):
for j in range(0,w-36,crop_size[1]):
opt_unet1,tmp_x1, tmp_x2=tmp_dict[i][j]
if(cache_mode):tmp_x2=dq(tmp_x2[0],if_half,cache_mode,tmp_x2[1],tmp_x2[2],tmp_x2[3])
tmp_x2=self.unet2.conv2.seblock.forward_mean(tmp_x2,se_mean1)
tmp_x2,tmp_x3=self.unet2.forward_b(tmp_x2)
if(cache_mode):tmp_x2=q(tmp_x2,cache_mode)
if(if_half): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(tmp_x3.float(), dim=(2, 3),keepdim=True).half()
else:
tmp_se_mean = torch.mean(tmp_x3, dim=(2, 3),keepdim=True)
if(cache_mode):tmp_x3=q(tmp_x3,cache_mode)
se_mean0+=tmp_se_mean
tmp_dict[i][j]=(opt_unet1,tmp_x1,tmp_x2,tmp_x3)
se_mean0/=n_patch
if (if_half):se_mean1=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float16)
else:se_mean1=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float32)
for i in range(0,h-36,crop_size[0]):
for j in range(0,w-36,crop_size[1]):
opt_unet1,tmp_x1, tmp_x2,tmp_x3=tmp_dict[i][j]
if(cache_mode):tmp_x3=dq(tmp_x3[0],if_half,cache_mode,tmp_x3[1],tmp_x3[2],tmp_x3[3])
tmp_x3=self.unet2.conv3.seblock.forward_mean(tmp_x3,se_mean0)
if(cache_mode):tmp_x2=dq(tmp_x2[0],if_half,cache_mode,tmp_x2[1],tmp_x2[2],tmp_x2[3])
tmp_x4=self.unet2.forward_c(tmp_x2,tmp_x3)*alpha
if(if_half): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(tmp_x4.float(), dim=(2, 3),keepdim=True).half()
else:
tmp_se_mean = torch.mean(tmp_x4, dim=(2, 3),keepdim=True)
if(cache_mode):tmp_x4=q(tmp_x4,cache_mode)
se_mean1+=tmp_se_mean
tmp_dict[i][j]=(opt_unet1,tmp_x1,tmp_x4)
se_mean1/=n_patch
res = torch.zeros((n, c, h * 2 - 72, w * 2 - 72),dtype=torch.uint8,device=x.device)
for i in range(0,h-36,crop_size[0]):
for j in range(0,w-36,crop_size[1]):
x,tmp_x1, tmp_x4=tmp_dict[i][j]
if(cache_mode):tmp_x4=dq(tmp_x4[0],if_half,cache_mode,tmp_x4[1],tmp_x4[2],tmp_x4[3])
tmp_x4=self.unet2.conv4.seblock.forward_mean(tmp_x4,se_mean1)
if(cache_mode):tmp_x1=dq(tmp_x1[0],if_half,cache_mode,tmp_x1[1],tmp_x1[2],tmp_x1[3])
x0=self.unet2.forward_d(tmp_x1,tmp_x4)
if(cache_mode):x = dq(x[0], if_half, cache_mode,x[1], x[2], x[3])
del tmp_dict[i][j]
x = torch.add(x0, x)#x0是unet2的最终输出
if(pro):
res[:, :, i * 2:i * 2 + h1 * 2 - 72, j * 2:j * 2 + w1 * 2 - 72] = ((x-0.15) * (255/0.7)).round().clamp_(0, 255).byte()
else:
res[:, :, i * 2:i * 2 + h1 * 2 - 72, j * 2:j * 2 + w1 * 2 - 72] = (x*255).round().clamp_(0, 255).byte()
del tmp_dict
#torch.cuda.empty_cache()
if(w0!=pw or h0!=ph):res=res[:,:,:h0*2,:w0*2]
return res
def forward_gap_sync(self, x,tile_mode,alpha,pro):
n, c, h0, w0 = x.shape
if("Half" in x.type()):if_half=True
else:if_half=False
if(tile_mode==0):#不tile
ph = ((h0 - 1) // 2 + 1) * 2
pw = ((w0 - 1) // 2 + 1) * 2
x = F.pad(x, (18, 18 + pw - w0, 18, 18 + ph - h0), 'reflect') # 需要保证被2整除
x = self.unet1.forward(x)
x0 = self.unet2.forward(x,alpha)
x = F.pad(x, (-20, -20, -20, -20))
x = torch.add(x0, x)
if (w0 != pw or h0 != ph): x = x[:, :, :h0 * 2, :w0 * 2]
if(pro):
return ((x-0.15) * (255/0.7)).round().clamp_(0, 255).byte()
else:
return (x * 255).round().clamp_(0, 255).byte()
elif(tile_mode==1):# 对长边减半
if(w0>=h0):
crop_size_w=((w0-1)//4*4+4)//2#减半后能被2整除,所以要先被4整除
crop_size_h=(h0-1)//2*2+2#能被2整除
else:
crop_size_h=((h0-1)//4*4+4)//2#减半后能被2整除,所以要先被4整除
crop_size_w=(w0-1)//2*2+2#能被2整除
crop_size=(crop_size_h,crop_size_w)#6.6G
elif(tile_mode>=2):#hw都减半
tile_mode=min(min(h0,w0)//128,int(tile_mode))#最小短边为128*128
t2=tile_mode*2
crop_size=(((h0-1)//t2*t2+t2)//tile_mode,((w0-1)//t2*t2+t2)//tile_mode)
else:
print("tile_mode config error")
os._exit(233)
ph = ((h0 - 1) // crop_size[0] + 1) * crop_size[0]
pw = ((w0 - 1) // crop_size[1] + 1) * crop_size[1]
x=F.pad(x,(18,18+pw-w0,18,18+ph-h0),'reflect')
n,c,h,w=x.shape
if (if_half):se_mean0=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float16)
else:se_mean0=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float32)
n_patch=0
h1,w1=crop_size[0]+36,crop_size[1]+36
######stage1
for i in range(0,h-36,crop_size[0]):
for j in range(0,w-36,crop_size[1]):
tmp0,x_crop = self.unet1.forward_a(x[:,:,i:i+crop_size[0]+36,j:j+crop_size[1]+36])
if(if_half): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(x_crop.float(), dim=(2, 3),keepdim=True).half()
else:
tmp_se_mean = torch.mean(x_crop, dim=(2, 3),keepdim=True)
se_mean0+=tmp_se_mean
n_patch+=1
se_mean0/=n_patch
######stage1+state2
if (if_half):se_mean1=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float16)
else:se_mean1=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float32)
for i in range(0,h-36,crop_size[0]):
for j in range(0,w-36,crop_size[1]):
tmp0,x_crop = self.unet1.forward_a(x[:,:,i:i+crop_size[0]+36,j:j+crop_size[1]+36])
x_crop=self.unet1.conv2.seblock.forward_mean(x_crop,se_mean0)
opt_unet1=self.unet1.forward_b(tmp0,x_crop)
tmp_x1,tmp_x2 = self.unet2.forward_a(opt_unet1)
if(if_half): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(tmp_x2.float(), dim=(2, 3),keepdim=True).half()
else:
tmp_se_mean = torch.mean(tmp_x2, dim=(2, 3),keepdim=True)
se_mean1+=tmp_se_mean
se_mean1/=n_patch
######stage1+state2+state3
if (if_half):se_mean2=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float16)
else:se_mean2=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float32)
for i in range(0,h-36,crop_size[0]):
for j in range(0,w-36,crop_size[1]):
tmp0,x_crop = self.unet1.forward_a(x[:,:,i:i+crop_size[0]+36,j:j+crop_size[1]+36])
x_crop=self.unet1.conv2.seblock.forward_mean(x_crop,se_mean0)
opt_unet1=self.unet1.forward_b(tmp0,x_crop)
tmp_x1,tmp_x2 = self.unet2.forward_a(opt_unet1)
tmp_x2=self.unet2.conv2.seblock.forward_mean(tmp_x2,se_mean1)
tmp_x2,tmp_x3=self.unet2.forward_b(tmp_x2)
if(if_half): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(tmp_x3.float(), dim=(2, 3),keepdim=True).half()
else:
tmp_se_mean = torch.mean(tmp_x3, dim=(2, 3),keepdim=True)
se_mean2+=tmp_se_mean
se_mean2/=n_patch
#########stage1+state2+state3+stage4
if (if_half):se_mean3=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float16)
else:se_mean3=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float32)
if(if_half):
se_mean3=se_mean3.half()
for i in range(0,h-36,crop_size[0]):
for j in range(0,w-36,crop_size[1]):
tmp0,x_crop = self.unet1.forward_a(x[:,:,i:i+crop_size[0]+36,j:j+crop_size[1]+36])
x_crop=self.unet1.conv2.seblock.forward_mean(x_crop,se_mean0)
opt_unet1=self.unet1.forward_b(tmp0,x_crop)
tmp_x1,tmp_x2 = self.unet2.forward_a(opt_unet1)
tmp_x2=self.unet2.conv2.seblock.forward_mean(tmp_x2,se_mean1)
tmp_x2,tmp_x3=self.unet2.forward_b(tmp_x2)
tmp_x3=self.unet2.conv3.seblock.forward_mean(tmp_x3,se_mean2)
tmp_x4=self.unet2.forward_c(tmp_x2,tmp_x3)*alpha
if(if_half): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(tmp_x4.float(), dim=(2, 3),keepdim=True).half()
else:
tmp_se_mean = torch.mean(tmp_x4, dim=(2, 3),keepdim=True)
se_mean3+=tmp_se_mean
se_mean3/=n_patch
###########stage1+state2+state3+stage4+stage_tail
res = torch.zeros((n, c, h * 2 - 72, w * 2 - 72),dtype=torch.uint8,device=x.device)
for i in range(0,h-36,crop_size[0]):
for j in range(0,w-36,crop_size[1]):
tmp0,x_crop = self.unet1.forward_a(x[:,:,i:i+crop_size[0]+36,j:j+crop_size[1]+36])
x_crop=self.unet1.conv2.seblock.forward_mean(x_crop,se_mean0)
x_crop=self.unet1.forward_b(tmp0,x_crop)
tmp_x1,tmp_x2 = self.unet2.forward_a(x_crop)
x_crop = F.pad(x_crop,(-20,-20,-20,-20))
tmp_x2=self.unet2.conv2.seblock.forward_mean(tmp_x2,se_mean1)
tmp_x2, tmp_x3 = self.unet2.forward_b(tmp_x2)
tmp_x3=self.unet2.conv3.seblock.forward_mean(tmp_x3,se_mean2)
tmp_x4=self.unet2.forward_c(tmp_x2,tmp_x3)
tmp_x4=self.unet2.conv4.seblock.forward_mean(tmp_x4,se_mean3)
x0=self.unet2.forward_d(tmp_x1,tmp_x4)
x_crop = torch.add(x0, x_crop)
if(pro):
res[:, :, i * 2:i * 2 + h1 * 2 - 72, j * 2:j * 2 + w1 * 2 - 72] = ((x_crop-0.15) * (255/0.7)).round().clamp_(0, 255).byte()
else:
res[:, :, i * 2:i * 2 + h1 * 2 - 72, j * 2:j * 2 + w1 * 2 - 72] = (x_crop* 255.0).round().clamp_(0, 255).byte()
#torch.cuda.empty_cache()
if(w0!=pw or h0!=ph):res=res[:,:,:h0*2,:w0*2]
return res
def forward_fast_rough(self, x,tile_mode,alpha,pro):
n, c, h0, w0 = x.shape
if ("Half" in x.type()):if_half=True
else:if_half=False
if(tile_mode<3):return self.forward(x,tile_mode,1,alpha,pro)#至少切成3x3
elif(tile_mode>=3):
tile_mode=min(min(h0,w0)//128,int(tile_mode))#最小短边为128*128
if (tile_mode < 3): return self.forward(x, tile_mode, 1, alpha,pro)
t2=tile_mode*2
crop_size=(((h0-1)//t2*t2+t2)//tile_mode,((w0-1)//t2*t2+t2)//tile_mode)
ph = ((h0 - 1) // crop_size[0] + 1) * crop_size[0]
pw = ((w0 - 1) // crop_size[1] + 1) * crop_size[1]
x=F.pad(x,(18,18+pw-w0,18,18+ph-h0),'reflect')
n,c,h,w=x.shape
h1,w1=crop_size[0]+36,crop_size[1]+36
n_patch=0
###########stage1+state2+state3+stage4
if (if_half):se_mean0=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float16)
else:se_mean0=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float32)
if (if_half):se_mean1=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float16)
else:se_mean1=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float32)
if (if_half):se_mean2=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float16)
else:se_mean2=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float32)
if (if_half):se_mean3=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float16)
else:se_mean3=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float32)
for i in range(0,h-36,crop_size[0]):
if((i//crop_size[0])%2==0):continue
for j in range(0,w-36,crop_size[1]):
if ((j//crop_size[1]) % 2 == 0): continue
n_patch+=1
tmp0,x_crop = self.unet1.forward_a(x[:,:,i:i+crop_size[0]+36,j:j+crop_size[1]+36])
if(if_half):se_mean0 += torch.mean(x_crop.float(), dim=(2, 3),keepdim=True).half()
else:se_mean0 += torch.mean(x_crop, dim=(2, 3),keepdim=True)
x_crop=self.unet1.conv2.seblock.forward_mean(x_crop,se_mean0/n_patch)
opt_unet1=self.unet1.forward_b(tmp0,x_crop)
tmp_x1,tmp_x2 = self.unet2.forward_a(opt_unet1)
if(if_half):se_mean1 += torch.mean(tmp_x2.float(), dim=(2, 3),keepdim=True).half()
else:se_mean1 += torch.mean(tmp_x2, dim=(2, 3),keepdim=True)
tmp_x2=self.unet2.conv2.seblock.forward_mean(tmp_x2,se_mean1/n_patch)
tmp_x2,tmp_x3=self.unet2.forward_b(tmp_x2)
if(if_half):se_mean2 += torch.mean(tmp_x3.float(), dim=(2, 3),keepdim=True).half()
else:se_mean2 += torch.mean(tmp_x3, dim=(2, 3),keepdim=True)
tmp_x3=self.unet2.conv3.seblock.forward_mean(tmp_x3,se_mean2/n_patch)
tmp_x4=self.unet2.forward_c(tmp_x2,tmp_x3)
if(if_half):se_mean3 += torch.mean(tmp_x4.float(), dim=(2, 3),keepdim=True).half()
else:se_mean3 += torch.mean(tmp_x4, dim=(2, 3),keepdim=True)
# print("2x-n_patch=%s,tile_mode=%s" % (n_patch,tile_mode))
###########stage1+state2+state3+stage4+stage_tail
res = torch.zeros((n, c, h * 2 - 72, w * 2 - 72),dtype=torch.uint8,device=x.device)
for i in range(0,h-36,crop_size[0]):
for j in range(0,w-36,crop_size[1]):
tmp0,x_crop = self.unet1.forward_a(x[:,:,i:i+crop_size[0]+36,j:j+crop_size[1]+36])
x_crop=self.unet1.conv2.seblock.forward_mean(x_crop,se_mean0/n_patch)
x_crop=self.unet1.forward_b(tmp0,x_crop)
tmp_x1,tmp_x2 = self.unet2.forward_a(x_crop)
x_crop = F.pad(x_crop,(-20,-20,-20,-20))
tmp_x2=self.unet2.conv2.seblock.forward_mean(tmp_x2,se_mean1/n_patch)
tmp_x2, tmp_x3 = self.unet2.forward_b(tmp_x2)
tmp_x3=self.unet2.conv3.seblock.forward_mean(tmp_x3,se_mean2/n_patch)
tmp_x4=self.unet2.forward_c(tmp_x2,tmp_x3)
tmp_x4=self.unet2.conv4.seblock.forward_mean(tmp_x4,se_mean3/n_patch)
x0=self.unet2.forward_d(tmp_x1,tmp_x4)
x_crop = torch.add(x0, x_crop)
if(pro):
res[:, :, i * 2:i * 2 + h1 * 2 - 72, j * 2:j * 2 + w1 * 2 - 72] = ((x_crop-0.15) * (255/0.7)).round().clamp_(0, 255).byte()
else:
res[:, :, i * 2:i * 2 + h1 * 2 - 72, j * 2:j * 2 + w1 * 2 - 72] = (x_crop* 255.0).round().clamp_(0, 255).byte()
#torch.cuda.empty_cache()
if(w0!=pw or h0!=ph):res=res[:,:,:h0*2,:w0*2]
return res
class UpCunet3x(nn.Module):
def __init__(self, in_channels=3, out_channels=3):
super(UpCunet3x, self).__init__()
self.unet1 = UNet1x3(in_channels, out_channels, deconv=True)
self.unet2 = UNet2(in_channels, out_channels, deconv=False)
def forward(self, x,tile_mode,cache_mode,alpha,pro):
n, c, h0, w0 = x.shape
if("Half" in x.type()):if_half=True
else:if_half=False
if(tile_mode==0):#不tile
ph = ((h0 - 1) // 4 + 1) * 4
pw = ((w0 - 1) // 4 + 1) * 4
x = F.pad(x, (14, 14 + pw - w0, 14, 14 + ph - h0), 'reflect') # 需要保证被2整除
x = self.unet1.forward(x)
x0 = self.unet2.forward(x,alpha)
x = F.pad(x, (-20, -20, -20, -20))
x = torch.add(x0, x)
if (w0 != pw or h0 != ph): x = x[:, :, :h0 * 3, :w0 * 3]
if(pro):
return ((x-0.15) * (255/0.7)).round().clamp_(0, 255).byte()
else:
return (x * 255).round().clamp_(0, 255).byte()
elif(tile_mode==1):# 对长边减半
if(w0>=h0):
crop_size_w=((w0-1)//8*8+8)//2#减半后能被2整除,所以要先被4整除
crop_size_h=(h0-1)//4*4+4#能被2整除
else:
crop_size_h=((h0-1)//8*8+8)//2#减半后能被2整除,所以要先被4整除
crop_size_w=(w0-1)//4*4+4#能被2整除
crop_size=(crop_size_h,crop_size_w)
elif (tile_mode >= 2):
tile_mode=min(min(h0,w0)//128,int(tile_mode))#最小短边为128*128
t4 = tile_mode * 4
crop_size = (((h0 - 1) // t4 * t4 + t4) // tile_mode, ((w0 - 1) // t4 * t4 + t4) // tile_mode)
else:
print("tile_mode config error")
os._exit(233)
ph = ((h0 - 1) // crop_size[0] + 1) * crop_size[0]
pw = ((w0 - 1) // crop_size[1] + 1) * crop_size[1]
x=F.pad(x,(14,14+pw-w0,14,14+ph-h0),'reflect')
n,c,h,w=x.shape
if (if_half):se_mean0=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float16)
else:se_mean0=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float32)
n_patch=0
tmp_dict={}
for i in range(0,h-28,crop_size[0]):
tmp_dict[i]={}
for j in range(0,w-28,crop_size[1]):
x_crop=x[:,:,i:i+crop_size[0]+28,j:j+crop_size[1]+28]
n,c1,h1,w1=x_crop.shape
tmp0,x_crop = self.unet1.forward_a(x_crop)
if(if_half): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(x_crop.float(), dim=(2, 3),keepdim=True).half()
else:
tmp_se_mean = torch.mean(x_crop, dim=(2, 3),keepdim=True)
se_mean0+=tmp_se_mean
n_patch+=1
tmp_dict[i][j]=(tmp0,x_crop)
se_mean0/=n_patch
if (if_half):se_mean1=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float16)
else:se_mean1=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float32)
for i in range(0,h-28,crop_size[0]):
for j in range(0,w-28,crop_size[1]):
tmp0, x_crop=tmp_dict[i][j]
x_crop=self.unet1.conv2.seblock.forward_mean(x_crop,se_mean0)
opt_unet1=self.unet1.forward_b(tmp0,x_crop)
tmp_x1,tmp_x2 = self.unet2.forward_a(opt_unet1)
opt_unet1 = F.pad(opt_unet1,(-20,-20,-20,-20))
if(cache_mode):opt_unet1,tmp_x1=q(opt_unet1,cache_mode), q(tmp_x1,cache_mode)
if(if_half): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(tmp_x2.float(), dim=(2, 3),keepdim=True).half()
else:
tmp_se_mean = torch.mean(tmp_x2, dim=(2, 3),keepdim=True)
if(cache_mode):tmp_x2=q(tmp_x2,cache_mode)
se_mean1+=tmp_se_mean
tmp_dict[i][j]=(opt_unet1,tmp_x1,tmp_x2)
se_mean1/=n_patch
if (if_half):se_mean0=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float16)
else:se_mean0=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float32)
for i in range(0,h-28,crop_size[0]):
for j in range(0,w-28,crop_size[1]):
opt_unet1,tmp_x1, tmp_x2=tmp_dict[i][j]
if(cache_mode):tmp_x2=dq(tmp_x2[0],if_half,cache_mode,tmp_x2[1],tmp_x2[2],tmp_x2[3])
tmp_x2=self.unet2.conv2.seblock.forward_mean(tmp_x2,se_mean1)
tmp_x2,tmp_x3=self.unet2.forward_b(tmp_x2)
if(cache_mode):tmp_x2=q(tmp_x2,cache_mode)
if(if_half): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(tmp_x3.float(), dim=(2, 3),keepdim=True).half()
else:
tmp_se_mean = torch.mean(tmp_x3, dim=(2, 3),keepdim=True)
if(cache_mode):tmp_x3=q(tmp_x3,cache_mode)
se_mean0+=tmp_se_mean
tmp_dict[i][j]=(opt_unet1,tmp_x1,tmp_x2,tmp_x3)
se_mean0/=n_patch
if (if_half):se_mean1=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float16)
else:se_mean1=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float32)
for i in range(0,h-28,crop_size[0]):
for j in range(0,w-28,crop_size[1]):
opt_unet1,tmp_x1, tmp_x2,tmp_x3=tmp_dict[i][j]
if(cache_mode):tmp_x3=dq(tmp_x3[0],if_half,cache_mode,tmp_x3[1],tmp_x3[2],tmp_x3[3])
tmp_x3=self.unet2.conv3.seblock.forward_mean(tmp_x3,se_mean0)
if(cache_mode):tmp_x2=dq(tmp_x2[0],if_half,cache_mode,tmp_x2[1],tmp_x2[2],tmp_x2[3])
tmp_x4=self.unet2.forward_c(tmp_x2,tmp_x3)*alpha
if(if_half): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(tmp_x4.float(), dim=(2, 3),keepdim=True).half()
else:
tmp_se_mean = torch.mean(tmp_x4, dim=(2, 3),keepdim=True)
if(cache_mode):tmp_x4=q(tmp_x4,cache_mode)
se_mean1+=tmp_se_mean
tmp_dict[i][j]=(opt_unet1,tmp_x1,tmp_x4)
se_mean1/=n_patch
res = torch.zeros((n, c, h * 3 - 84, w * 3 - 84),dtype=torch.uint8,device=x.device)
for i in range(0,h-28,crop_size[0]):
for j in range(0,w-28,crop_size[1]):
x,tmp_x1, tmp_x4=tmp_dict[i][j]
if(cache_mode):tmp_x4=dq(tmp_x4[0],if_half,cache_mode,tmp_x4[1],tmp_x4[2],tmp_x4[3])
tmp_x4=self.unet2.conv4.seblock.forward_mean(tmp_x4,se_mean1)
if(cache_mode):tmp_x1=dq(tmp_x1[0],if_half,cache_mode,tmp_x1[1],tmp_x1[2],tmp_x1[3])
x0=self.unet2.forward_d(tmp_x1,tmp_x4)
if(cache_mode):x = dq(x[0], if_half, cache_mode,x[1], x[2], x[3])
del tmp_dict[i][j]
x = torch.add(x0, x)#x0是unet2的最终输出
if(pro):
res[:, :, i * 3:i * 3 + h1 * 3 - 84, j * 3:j * 3 + w1 * 3 - 84] = ((x-0.15) * (255/0.7)).round().clamp_(0, 255).byte()
else:
res[:, :, i * 3:i * 3 + h1 * 3 - 84, j * 3:j * 3 + w1 * 3 - 84] = (x*255).round().clamp_(0, 255).byte()
del tmp_dict
#torch.cuda.empty_cache()
if(w0!=pw or h0!=ph):res=res[:,:,:h0*3,:w0*3]
return res
def forward_gap_sync(self, x,tile_mode,alpha,pro):
n, c, h0, w0 = x.shape
if("Half" in x.type()):if_half=True
else:if_half=False
if(tile_mode==0):#不tile
ph = ((h0 - 1) // 4 + 1) * 4
pw = ((w0 - 1) // 4 + 1) * 4
x = F.pad(x, (14, 14 + pw - w0, 14, 14 + ph - h0), 'reflect') # 需要保证被2整除
x = self.unet1.forward(x)
x0 = self.unet2.forward(x,alpha)
x = F.pad(x, (-20, -20, -20, -20))
x = torch.add(x0, x)
if (w0 != pw or h0 != ph): x = x[:, :, :h0 * 3, :w0 * 3]
if(pro):
return ((x-0.15) * (255/0.7)).round().clamp_(0, 255).byte()
else:
return (x * 255).round().clamp_(0, 255).byte()
elif(tile_mode==1):# 对长边减半
if(w0>=h0):
crop_size_w=((w0-1)//8*8+8)//2#减半后能被2整除,所以要先被4整除
crop_size_h=(h0-1)//4*4+4#能被2整除
else:
crop_size_h=((h0-1)//8*8+8)//2#减半后能被2整除,所以要先被4整除
crop_size_w=(w0-1)//4*4+4#能被2整除
crop_size=(crop_size_h,crop_size_w)
elif (tile_mode >= 2):
tile_mode=min(min(h0,w0)//128,int(tile_mode))#最小短边为128*128
t4 = tile_mode * 4
crop_size = (((h0 - 1) // t4 * t4 + t4) // tile_mode, ((w0 - 1) // t4 * t4 + t4) // tile_mode)
else:
print("tile_mode config error")
os._exit(233)
ph = ((h0 - 1) // crop_size[0] + 1) * crop_size[0]
pw = ((w0 - 1) // crop_size[1] + 1) * crop_size[1]
x=F.pad(x,(14,14+pw-w0,14,14+ph-h0),'reflect')
n,c,h,w=x.shape
if (if_half):se_mean0=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float16)
else:se_mean0=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float32)
n_patch=0
h1,w1=crop_size[0]+28,crop_size[1]+28
######stage1
for i in range(0,h-28,crop_size[0]):
for j in range(0,w-28,crop_size[1]):
tmp0,x_crop = self.unet1.forward_a(x[:,:,i:i+crop_size[0]+28,j:j+crop_size[1]+28])
if(if_half): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(x_crop.float(), dim=(2, 3),keepdim=True).half()
else:
tmp_se_mean = torch.mean(x_crop, dim=(2, 3),keepdim=True)
se_mean0+=tmp_se_mean
n_patch+=1
se_mean0/=n_patch
######stage1+state2
if (if_half):se_mean1=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float16)
else:se_mean1=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float32)
for i in range(0,h-28,crop_size[0]):
for j in range(0,w-28,crop_size[1]):
tmp0,x_crop = self.unet1.forward_a(x[:,:,i:i+crop_size[0]+28,j:j+crop_size[1]+28])
x_crop=self.unet1.conv2.seblock.forward_mean(x_crop,se_mean0)
opt_unet1=self.unet1.forward_b(tmp0,x_crop)
tmp_x1,tmp_x2 = self.unet2.forward_a(opt_unet1)
if (if_half): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(tmp_x2.float(), dim=(2, 3),keepdim=True).half()
else:
tmp_se_mean = torch.mean(tmp_x2, dim=(2, 3),keepdim=True)
se_mean1+=tmp_se_mean
se_mean1/=n_patch
######stage1+state2+state3
if (if_half):se_mean2=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float16)
else:se_mean2=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float32)
for i in range(0,h-28,crop_size[0]):
for j in range(0,w-28,crop_size[1]):
tmp0,x_crop = self.unet1.forward_a(x[:,:,i:i+crop_size[0]+28,j:j+crop_size[1]+28])
x_crop=self.unet1.conv2.seblock.forward_mean(x_crop,se_mean0)
opt_unet1=self.unet1.forward_b(tmp0,x_crop)
tmp_x1,tmp_x2 = self.unet2.forward_a(opt_unet1)
tmp_x2=self.unet2.conv2.seblock.forward_mean(tmp_x2,se_mean1)
tmp_x2,tmp_x3=self.unet2.forward_b(tmp_x2)
if(if_half): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(tmp_x3.float(), dim=(2, 3),keepdim=True).half()
else:
tmp_se_mean = torch.mean(tmp_x3, dim=(2, 3),keepdim=True)
se_mean2+=tmp_se_mean
se_mean2/=n_patch
#########stage1+state2+state3+stage4
if (if_half):se_mean3=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float16)
else:se_mean3=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float32)
for i in range(0,h-28,crop_size[0]):
for j in range(0,w-28,crop_size[1]):
tmp0,x_crop = self.unet1.forward_a(x[:,:,i:i+crop_size[0]+28,j:j+crop_size[1]+28])
x_crop=self.unet1.conv2.seblock.forward_mean(x_crop,se_mean0)
opt_unet1=self.unet1.forward_b(tmp0,x_crop)
tmp_x1,tmp_x2 = self.unet2.forward_a(opt_unet1)
tmp_x2=self.unet2.conv2.seblock.forward_mean(tmp_x2,se_mean1)
tmp_x2,tmp_x3=self.unet2.forward_b(tmp_x2)
tmp_x3=self.unet2.conv3.seblock.forward_mean(tmp_x3,se_mean2)
tmp_x4=self.unet2.forward_c(tmp_x2,tmp_x3)
if(if_half): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(tmp_x4.float(), dim=(2, 3),keepdim=True).half()
else:
tmp_se_mean = torch.mean(tmp_x4, dim=(2, 3),keepdim=True)
se_mean3+=tmp_se_mean
se_mean3/=n_patch
###########stage1+state2+state3+stage4+stage_tail
res = torch.zeros((n, c, h * 3 - 84, w * 3 - 84),dtype=torch.uint8,device=x.device)
for i in range(0,h-28,crop_size[0]):
for j in range(0,w-28,crop_size[1]):
tmp0,x_crop = self.unet1.forward_a(x[:,:,i:i+crop_size[0]+28,j:j+crop_size[1]+28])
x_crop=self.unet1.conv2.seblock.forward_mean(x_crop,se_mean0)
x_crop=self.unet1.forward_b(tmp0,x_crop)
tmp_x1,tmp_x2 = self.unet2.forward_a(x_crop)
x_crop = F.pad(x_crop,(-20,-20,-20,-20))
tmp_x2=self.unet2.conv2.seblock.forward_mean(tmp_x2,se_mean1)
tmp_x2, tmp_x3 = self.unet2.forward_b(tmp_x2)
tmp_x3=self.unet2.conv3.seblock.forward_mean(tmp_x3,se_mean2)
tmp_x4=self.unet2.forward_c(tmp_x2,tmp_x3)*alpha
tmp_x4=self.unet2.conv4.seblock.forward_mean(tmp_x4,se_mean3)
x0=self.unet2.forward_d(tmp_x1,tmp_x4)
x_crop = torch.add(x0, x_crop)
if(pro):
res[:, :, i * 3:i * 3 + h1 * 3 - 84, j * 3:j * 3 + w1 * 3 - 84] = ((x_crop-0.15) * (255/0.7)).round().clamp_(0, 255).byte()
else:
res[:, :, i * 3:i * 3 + h1 * 3 - 84, j * 3:j * 3 + w1 * 3 - 84] = (x_crop* 255.0).round().clamp_(0, 255).byte()
#torch.cuda.empty_cache()
if(w0!=pw or h0!=ph):res=res[:,:,:h0*3,:w0*3]
return res
def forward_fast_rough(self, x,tile_mode,alpha,pro):#1.7G
n, c, h0, w0 = x.shape
if("Half" in x.type()):if_half=True
else:if_half=False
if(tile_mode<3):return self.forward(x,tile_mode,1,alpha,pro)#至少切成3x3
elif(tile_mode>=3):
tile_mode=min(min(h0,w0)//128,int(tile_mode))#最小短边为128*128
if (tile_mode < 3): return self.forward(x, tile_mode, 1, alpha, pro)
t4 = tile_mode * 4
crop_size = (((h0 - 1) // t4 * t4 + t4) // tile_mode, ((w0 - 1) // t4 * t4 + t4) // tile_mode) # 5.6G
ph = ((h0 - 1) // crop_size[0] + 1) * crop_size[0]
pw = ((w0 - 1) // crop_size[1] + 1) * crop_size[1]
x=F.pad(x,(14,14+pw-w0,14,14+ph-h0),'reflect')
n,c,h,w=x.shape
h1,w1=crop_size[0]+28,crop_size[1]+28
n_patch=0
###########stage1+state2+state3+stage4
if (if_half):se_mean0=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float16)
else:se_mean0=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float32)
if (if_half):se_mean1=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float16)
else:se_mean1=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float32)
if (if_half):se_mean2=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float16)
else:se_mean2=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float32)
if (if_half):se_mean3=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float16)
else:se_mean3=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float32)
for i in range(0,h-28,crop_size[0]):
if((i//crop_size[0])%2==0):continue
for j in range(0,w-28,crop_size[1]):
if ((j//crop_size[1]) % 2 == 0): continue
n_patch+=1
tmp0,x_crop = self.unet1.forward_a(x[:,:,i:i+crop_size[0]+28,j:j+crop_size[1]+28])
if(if_half):se_mean0 += torch.mean(x_crop.float(), dim=(2, 3),keepdim=True).half()
else:se_mean0 += torch.mean(x_crop, dim=(2, 3),keepdim=True)
x_crop=self.unet1.conv2.seblock.forward_mean(x_crop,se_mean0/n_patch)
opt_unet1=self.unet1.forward_b(tmp0,x_crop)
tmp_x1,tmp_x2 = self.unet2.forward_a(opt_unet1)
if(if_half):se_mean1 += torch.mean(tmp_x2.float(), dim=(2, 3),keepdim=True).half()
else:se_mean1 += torch.mean(tmp_x2, dim=(2, 3),keepdim=True)
tmp_x2=self.unet2.conv2.seblock.forward_mean(tmp_x2,se_mean1/n_patch)
tmp_x2,tmp_x3=self.unet2.forward_b(tmp_x2)
if(if_half):se_mean2 += torch.mean(tmp_x3.float(), dim=(2, 3),keepdim=True).half()
else:se_mean2 += torch.mean(tmp_x3, dim=(2, 3),keepdim=True)
tmp_x3=self.unet2.conv3.seblock.forward_mean(tmp_x3,se_mean2/n_patch)
tmp_x4=self.unet2.forward_c(tmp_x2,tmp_x3)
if(if_half):se_mean3 += torch.mean(tmp_x4.float(), dim=(2, 3),keepdim=True).half()
else:se_mean3 += torch.mean(tmp_x4, dim=(2, 3),keepdim=True)
# print("3x-n_patch=%s,tile_mode=%s" % (n_patch,tile_mode))
###########stage1+state2+state3+stage4+stage_tail
res = torch.zeros((n, c, h * 3 - 84, w * 3 - 84),dtype=torch.uint8,device=x.device)
for i in range(0,h-28,crop_size[0]):
for j in range(0,w-28,crop_size[1]):
tmp0,x_crop = self.unet1.forward_a(x[:,:,i:i+crop_size[0]+28,j:j+crop_size[1]+28])
x_crop=self.unet1.conv2.seblock.forward_mean(x_crop,se_mean0/n_patch)
x_crop=self.unet1.forward_b(tmp0,x_crop)
tmp_x1,tmp_x2 = self.unet2.forward_a(x_crop)
x_crop = F.pad(x_crop,(-20,-20,-20,-20))
tmp_x2=self.unet2.conv2.seblock.forward_mean(tmp_x2,se_mean1/n_patch)
tmp_x2, tmp_x3 = self.unet2.forward_b(tmp_x2)
tmp_x3=self.unet2.conv3.seblock.forward_mean(tmp_x3,se_mean2/n_patch)
tmp_x4=self.unet2.forward_c(tmp_x2,tmp_x3)*alpha
tmp_x4=self.unet2.conv4.seblock.forward_mean(tmp_x4,se_mean3/n_patch)
x0=self.unet2.forward_d(tmp_x1,tmp_x4)
x_crop = torch.add(x0, x_crop)
if(pro):
res[:, :, i * 3:i * 3 + h1 * 3 - 84, j * 3:j * 3 + w1 * 3 - 84] = ((x_crop-0.15) * (255/0.7)).round().clamp_(0, 255).byte()
else:
res[:, :, i * 3:i * 3 + h1 * 3 - 84, j * 3:j * 3 + w1 * 3 - 84] = (x_crop* 255.0).round().clamp_(0, 255).byte()
#torch.cuda.empty_cache()
if(w0!=pw or h0!=ph):res=res[:,:,:h0*3,:w0*3]
return res
class UpCunet4x(nn.Module):
def __init__(self, in_channels=3, out_channels=3):
super(UpCunet4x, self).__init__()
self.unet1 = UNet1(in_channels, 64, deconv=True)
self.unet2 = UNet2(64, 64, deconv=False)
self.ps=nn.PixelShuffle(2)
self.conv_final=nn.Conv2d(64,12,3,1,padding=0,bias=True)
def forward(self, x,tile_mode,cache_mode,alpha,pro):
n, c, h0, w0 = x.shape
if("Half" in x.type()):if_half=True
else:if_half=False
x00 = x
if(tile_mode==0):#不tile
ph = ((h0 - 1) // 2 + 1) * 2
pw = ((w0 - 1) // 2 + 1) * 2
x = F.pad(x, (19, 19 + pw - w0, 19, 19 + ph - h0), 'reflect') # 需要保证被2整除
x = self.unet1.forward(x)
x0 = self.unet2.forward(x,alpha)
x1 = F.pad(x, (-20, -20, -20, -20))
x = torch.add(x0, x1)
x=self.conv_final(x)
x=F.pad(x,(-1,-1,-1,-1))
x=self.ps(x)
if (w0 != pw or h0 != ph): x = x[:, :, :h0 * 4, :w0 * 4]
x+=F.interpolate(x00, scale_factor=4, mode='nearest')
if(pro):
return ((x-0.15) * (255/0.7)).round().clamp_(0, 255).byte()
else:
return (x * 255).round().clamp_(0, 255).byte()
elif(tile_mode==1):# 对长边减半
if(w0>=h0):
crop_size_w=((w0-1)//4*4+4)//2#减半后能被2整除,所以要先被4整除
crop_size_h=(h0-1)//2*2+2#能被2整除
else:
crop_size_h=((h0-1)//4*4+4)//2#减半后能被2整除,所以要先被4整除
crop_size_w=(w0-1)//2*2+2#能被2整除
crop_size=(crop_size_h,crop_size_w)
elif (tile_mode >= 2):
tile_mode=min(min(h0,w0)//128,int(tile_mode))#最小短边为128*128
t2 = tile_mode * 2
crop_size = (((h0 - 1) // t2 * t2 + t2) // tile_mode, ((w0 - 1) // t2 * t2 + t2) // tile_mode)
else:
print("tile_mode config error")
os._exit(233)
ph = ((h0 - 1) // crop_size[0] + 1) * crop_size[0]
pw = ((w0 - 1) // crop_size[1] + 1) * crop_size[1]
x=F.pad(x,(19,19+pw-w0,19,19+ph-h0),'reflect')
n,c,h,w=x.shape
if (if_half):se_mean0=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float16)
else:se_mean0=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float32)
n_patch=0
tmp_dict={}
for i in range(0,h-38,crop_size[0]):
tmp_dict[i]={}
for j in range(0,w-38,crop_size[1]):
x_crop=x[:,:,i:i+crop_size[0]+38,j:j+crop_size[1]+38]
n,c1,h1,w1=x_crop.shape
tmp0,x_crop = self.unet1.forward_a(x_crop)
if(if_half): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(x_crop.float(), dim=(2, 3),keepdim=True).half()
else:
tmp_se_mean = torch.mean(x_crop, dim=(2, 3),keepdim=True)
se_mean0+=tmp_se_mean
n_patch+=1
tmp_dict[i][j]=(tmp0,x_crop)
se_mean0/=n_patch
if (if_half):se_mean1=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float16)
else:se_mean1=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float32)
for i in range(0,h-38,crop_size[0]):
for j in range(0,w-38,crop_size[1]):
tmp0, x_crop=tmp_dict[i][j]
x_crop=self.unet1.conv2.seblock.forward_mean(x_crop,se_mean0)
opt_unet1=self.unet1.forward_b(tmp0,x_crop)
tmp_x1,tmp_x2 = self.unet2.forward_a(opt_unet1)
opt_unet1 = F.pad(opt_unet1,(-20,-20,-20,-20))
if(cache_mode):opt_unet1,tmp_x1=q(opt_unet1,cache_mode), q(tmp_x1,cache_mode)
if(if_half): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(tmp_x2.float(), dim=(2, 3),keepdim=True).half()
else:
tmp_se_mean = torch.mean(tmp_x2, dim=(2, 3),keepdim=True)
if(cache_mode):tmp_x2=q(tmp_x2,cache_mode)
se_mean1+=tmp_se_mean
tmp_dict[i][j]=(opt_unet1,tmp_x1,tmp_x2)
se_mean1/=n_patch
if (if_half):se_mean0=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float16)
else:se_mean0=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float32)
for i in range(0,h-38,crop_size[0]):
for j in range(0,w-38,crop_size[1]):
opt_unet1,tmp_x1, tmp_x2=tmp_dict[i][j]
if(cache_mode):tmp_x2=dq(tmp_x2[0],if_half,cache_mode,tmp_x2[1],tmp_x2[2],tmp_x2[3])
tmp_x2=self.unet2.conv2.seblock.forward_mean(tmp_x2,se_mean1)
tmp_x2, tmp_x3 = self.unet2.forward_b(tmp_x2)
if(cache_mode):tmp_x2=q(tmp_x2,cache_mode)
if(if_half): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(tmp_x3.float(), dim=(2, 3),keepdim=True).half()
else:
tmp_se_mean = torch.mean(tmp_x3, dim=(2, 3),keepdim=True)
if(cache_mode):tmp_x3=q(tmp_x3,cache_mode)
se_mean0+=tmp_se_mean
tmp_dict[i][j]=(opt_unet1,tmp_x1,tmp_x2,tmp_x3)
se_mean0/=n_patch
if (if_half):se_mean1=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float16)
else:se_mean1=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float32)
for i in range(0,h-38,crop_size[0]):
for j in range(0,w-38,crop_size[1]):
opt_unet1,tmp_x1, tmp_x2,tmp_x3=tmp_dict[i][j]
if(cache_mode):tmp_x3=dq(tmp_x3[0],if_half,cache_mode,tmp_x3[1],tmp_x3[2],tmp_x3[3])
tmp_x3=self.unet2.conv3.seblock.forward_mean(tmp_x3,se_mean0)
if(cache_mode):tmp_x2=dq(tmp_x2[0],if_half,cache_mode,tmp_x2[1],tmp_x2[2],tmp_x2[3])
tmp_x4=self.unet2.forward_c(tmp_x2,tmp_x3)*alpha
if(if_half): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(tmp_x4.float(), dim=(2, 3),keepdim=True).half()
else:
tmp_se_mean = torch.mean(tmp_x4, dim=(2, 3),keepdim=True)
if(cache_mode):tmp_x4=q(tmp_x4,cache_mode)
se_mean1+=tmp_se_mean
tmp_dict[i][j]=(opt_unet1,tmp_x1,tmp_x4)
se_mean1/=n_patch
res = torch.zeros((n, c, h * 4 - 152, w * 4 - 152),dtype=torch.uint8,device=x.device)
for i in range(0,h-38,crop_size[0]):
for j in range(0,w-38,crop_size[1]):
x,tmp_x1, tmp_x4=tmp_dict[i][j]
if(cache_mode):tmp_x4=dq(tmp_x4[0],if_half,cache_mode,tmp_x4[1],tmp_x4[2],tmp_x4[3])
tmp_x4=self.unet2.conv4.seblock.forward_mean(tmp_x4,se_mean1)
if(cache_mode):tmp_x1=dq(tmp_x1[0],if_half,cache_mode,tmp_x1[1],tmp_x1[2],tmp_x1[3])
x0=self.unet2.forward_d(tmp_x1,tmp_x4)
del tmp_x1,tmp_x4
if(cache_mode):x = dq(x[0], if_half, cache_mode,x[1], x[2], x[3])
del tmp_dict[i][j]
x = torch.add(x0, x)#x0是unet2的最终输出
x=self.conv_final(x)
x = F.pad(x, (-1, -1, -1, -1))
x=self.ps(x)
x00_crop=x00[:, :, i:i + h1 - 38, j:j + w1 - 38]
_,_,h2,w2=x00_crop.shape
x[:,:,:h2*4,:w2*4]+=F.interpolate(x00_crop, scale_factor=4, mode='nearest')
if(pro):
res[:, :, i * 4:i * 4 + h1 * 4 - 152, j * 4:j * 4 + w1 * 4 - 152] = ((x-0.15) * (255/0.7)).round().clamp_(0, 255).byte()
else:
res[:, :, i * 4:i * 4 + h1 * 4 - 152, j * 4:j * 4 + w1 * 4 - 152] = (x*255).round().clamp_(0, 255).byte()
del tmp_dict
#torch.cuda.empty_cache()
if(w0!=pw or h0!=ph):res=res[:,:,:h0*4,:w0*4]
return res
def forward_gap_sync(self, x,tile_mode,alpha,pro):
n, c, h0, w0 = x.shape
if("Half" in x.type()):if_half=True
else:if_half=False
x00 = x
if(tile_mode==0):#不tile
ph = ((h0 - 1) // 2 + 1) * 2
pw = ((w0 - 1) // 2 + 1) * 2
x = F.pad(x, (19, 19 + pw - w0, 19, 19 + ph - h0), 'reflect') # 需要保证被2整除
x = self.unet1.forward(x)
x0 = self.unet2.forward(x,alpha)
x1 = F.pad(x, (-20, -20, -20, -20))
x = torch.add(x0, x1)
x=self.conv_final(x)
x=F.pad(x,(-1,-1,-1,-1))
x=self.ps(x)
if (w0 != pw or h0 != ph): x = x[:, :, :h0 * 4, :w0 * 4]
x+=F.interpolate(x00, scale_factor=4, mode='nearest')
if(pro):
return ((x-0.15) * (255/0.7)).round().clamp_(0, 255).byte()
else:
return (x * 255).round().clamp_(0, 255).byte()
elif(tile_mode==1):# 对长边减半
if(w0>=h0):
crop_size_w=((w0-1)//4*4+4)//2#减半后能被2整除,所以要先被4整除
crop_size_h=(h0-1)//2*2+2#能被2整除
else:
crop_size_h=((h0-1)//4*4+4)//2#减半后能被2整除,所以要先被4整除
crop_size_w=(w0-1)//2*2+2#能被2整除
crop_size=(crop_size_h,crop_size_w)
elif(tile_mode>=2):#hw都减半
tile_mode=min(min(h0,w0)//128,int(tile_mode))#最小短边为128*128
t2=tile_mode*2
crop_size=(((h0-1)//t2*t2+t2)//tile_mode,((w0-1)//t2*t2+t2)//tile_mode)#5.6G
else:
print("tile_mode config error")
os._exit(233)
ph = ((h0 - 1) // crop_size[0] + 1) * crop_size[0]
pw = ((w0 - 1) // crop_size[1] + 1) * crop_size[1]
x=F.pad(x,(19,19+pw-w0,19,19+ph-h0),'reflect')
n,c,h,w=x.shape
if (if_half):se_mean0=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float16)
else:se_mean0=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float32)
n_patch=0
h1,w1=crop_size[0]+38,crop_size[1]+38
######stage1
for i in range(0,h-38,crop_size[0]):
for j in range(0,w-38,crop_size[1]):
tmp0,x_crop = self.unet1.forward_a(x[:,:,i:i+crop_size[0]+38,j:j+crop_size[1]+38])
if(if_half): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(x_crop.float(), dim=(2, 3),keepdim=True).half()
else:
tmp_se_mean = torch.mean(x_crop, dim=(2, 3),keepdim=True)
se_mean0+=tmp_se_mean
n_patch+=1
se_mean0/=n_patch
######stage1+state2
if (if_half):se_mean1=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float16)
else:se_mean1=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float32)
for i in range(0,h-38,crop_size[0]):
for j in range(0,w-38,crop_size[1]):
tmp0,x_crop = self.unet1.forward_a(x[:,:,i:i+crop_size[0]+38,j:j+crop_size[1]+38])
x_crop=self.unet1.conv2.seblock.forward_mean(x_crop,se_mean0)
opt_unet1=self.unet1.forward_b(tmp0,x_crop)
tmp_x1,tmp_x2 = self.unet2.forward_a(opt_unet1)
if(if_half): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(tmp_x2.float(), dim=(2, 3),keepdim=True).half()
else:
tmp_se_mean = torch.mean(tmp_x2, dim=(2, 3),keepdim=True)
se_mean1+=tmp_se_mean
se_mean1/=n_patch
######stage1+state2+state3
if (if_half):se_mean2=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float16)
else:se_mean2=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float32)
for i in range(0,h-38,crop_size[0]):
for j in range(0,w-38,crop_size[1]):
tmp0,x_crop = self.unet1.forward_a(x[:,:,i:i+crop_size[0]+38,j:j+crop_size[1]+38])
x_crop=self.unet1.conv2.seblock.forward_mean(x_crop,se_mean0)
opt_unet1=self.unet1.forward_b(tmp0,x_crop)
tmp_x1,tmp_x2 = self.unet2.forward_a(opt_unet1)
tmp_x2=self.unet2.conv2.seblock.forward_mean(tmp_x2,se_mean1)
tmp_x2,tmp_x3=self.unet2.forward_b(tmp_x2)
if(if_half): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(tmp_x3.float(), dim=(2, 3),keepdim=True).half()
else:
tmp_se_mean = torch.mean(tmp_x3, dim=(2, 3),keepdim=True)
se_mean2+=tmp_se_mean
se_mean2/=n_patch
#########stage1+state2+state3+stage4
if (if_half):se_mean3=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float16)
else:se_mean3=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float32)
for i in range(0,h-38,crop_size[0]):
for j in range(0,w-38,crop_size[1]):
tmp0,x_crop = self.unet1.forward_a(x[:,:,i:i+crop_size[0]+38,j:j+crop_size[1]+38])
x_crop=self.unet1.conv2.seblock.forward_mean(x_crop,se_mean0)
opt_unet1=self.unet1.forward_b(tmp0,x_crop)
tmp_x1,tmp_x2 = self.unet2.forward_a(opt_unet1)
tmp_x2=self.unet2.conv2.seblock.forward_mean(tmp_x2,se_mean1)
tmp_x2,tmp_x3=self.unet2.forward_b(tmp_x2)
tmp_x3=self.unet2.conv3.seblock.forward_mean(tmp_x3,se_mean2)
tmp_x4=self.unet2.forward_c(tmp_x2,tmp_x3)
if(if_half): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(tmp_x4.float(), dim=(2, 3),keepdim=True).half()
else:
tmp_se_mean = torch.mean(tmp_x4, dim=(2, 3),keepdim=True)
se_mean3+=tmp_se_mean
se_mean3/=n_patch
###########stage1+state2+state3+stage4+stage_tail
res = torch.zeros((n, c, h * 4 - 152, w * 4 - 152),dtype=torch.uint8,device=x.device)
for i in range(0,h-38,crop_size[0]):
for j in range(0,w-38,crop_size[1]):
tmp0,x_crop = self.unet1.forward_a(x[:,:,i:i+crop_size[0]+38,j:j+crop_size[1]+38])
x_crop=self.unet1.conv2.seblock.forward_mean(x_crop,se_mean0)
x_crop=self.unet1.forward_b(tmp0,x_crop)
tmp_x1,tmp_x2 = self.unet2.forward_a(x_crop)
x_crop = F.pad(x_crop,(-20,-20,-20,-20))
tmp_x2=self.unet2.conv2.seblock.forward_mean(tmp_x2,se_mean1)
tmp_x2, tmp_x3 = self.unet2.forward_b(tmp_x2)
tmp_x3=self.unet2.conv3.seblock.forward_mean(tmp_x3,se_mean2)
tmp_x4=self.unet2.forward_c(tmp_x2,tmp_x3)*alpha
tmp_x4=self.unet2.conv4.seblock.forward_mean(tmp_x4,se_mean3)
x0=self.unet2.forward_d(tmp_x1,tmp_x4)
x_crop = torch.add(x0, x_crop)
x_crop=self.conv_final(x_crop)
x_crop = F.pad(x_crop, (-1, -1, -1, -1))
x_crop=self.ps(x_crop)
x00_crop=x00[:, :, i:i + h1 - 38, j:j + w1 - 38]
_,_,h2,w2=x00_crop.shape
x_crop[:,:,:h2*4,:w2*4]+=F.interpolate(x00_crop, scale_factor=4, mode='nearest')
if(pro):
res[:, :, i * 4:i * 4 + h1 * 4 - 152, j * 4:j * 4 + w1 * 4 - 152] = ((x_crop-0.15) * (255/0.7)).round().clamp_(0, 255).byte()
else:
res[:, :, i * 4:i * 4 + h1 * 4 - 152, j * 4:j * 4 + w1 * 4 - 152] = (x_crop*255).round().clamp_(0, 255).byte()
#torch.cuda.empty_cache()
if(w0!=pw or h0!=ph):res=res[:,:,:h0*4,:w0*4]
return res
def forward_fast_rough(self, x,tile_mode,alpha,pro):#1.7G
n, c, h0, w0 = x.shape
if("Half" in x.type()):if_half=True
else:if_half=False
x00 = x
if(tile_mode<3):return self.forward(x,tile_mode,1,alpha,pro)#至少切成3x3
elif(tile_mode>=3):
tile_mode=min(min(h0,w0)//128,int(tile_mode))#最小短边为128*128
if (tile_mode < 3): return self.forward(x, tile_mode, 1, alpha, pro)
t2=tile_mode*2
crop_size=(((h0-1)//t2*t2+t2)//tile_mode,((w0-1)//t2*t2+t2)//tile_mode)#5.6G
ph = ((h0 - 1) // crop_size[0] + 1) * crop_size[0]
pw = ((w0 - 1) // crop_size[1] + 1) * crop_size[1]
x=F.pad(x,(19,19+pw-w0,19,19+ph-h0),'reflect')
n,c,h,w=x.shape
h1,w1=crop_size[0]+38,crop_size[1]+38
n_patch=0
###########stage1+state2+state3+stage4
if (if_half):se_mean0=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float16)
else:se_mean0=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float32)
if (if_half):se_mean1=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float16)
else:se_mean1=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float32)
if (if_half):se_mean2=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float16)
else:se_mean2=torch.zeros((n,128,1,1),device=x.device,dtype=torch.float32)
if (if_half):se_mean3=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float16)
else:se_mean3=torch.zeros((n,64,1,1),device=x.device,dtype=torch.float32)
for i in range(0,h-38,crop_size[0]):
if((i//crop_size[0])%2==0):continue
for j in range(0,w-38,crop_size[1]):
if ((j//crop_size[1]) % 2 == 0): continue
n_patch+=1
tmp0,x_crop = self.unet1.forward_a(x[:,:,i:i+crop_size[0]+38,j:j+crop_size[1]+38])
if(if_half):se_mean0 += torch.mean(x_crop.float(), dim=(2, 3),keepdim=True).half()
else:se_mean0 += torch.mean(x_crop, dim=(2, 3),keepdim=True)
x_crop=self.unet1.conv2.seblock.forward_mean(x_crop,se_mean0/n_patch)
opt_unet1=self.unet1.forward_b(tmp0,x_crop)
tmp_x1,tmp_x2 = self.unet2.forward_a(opt_unet1)
if(if_half):se_mean1 += torch.mean(tmp_x2.float(), dim=(2, 3),keepdim=True).half()
else:se_mean1 += torch.mean(tmp_x2, dim=(2, 3),keepdim=True)
tmp_x2=self.unet2.conv2.seblock.forward_mean(tmp_x2,se_mean1/n_patch)
tmp_x2,tmp_x3=self.unet2.forward_b(tmp_x2)
if(if_half):se_mean2 += torch.mean(tmp_x3.float(), dim=(2, 3),keepdim=True).half()
else:se_mean2 += torch.mean(tmp_x3, dim=(2, 3),keepdim=True)
tmp_x3=self.unet2.conv3.seblock.forward_mean(tmp_x3,se_mean2/n_patch)
tmp_x4=self.unet2.forward_c(tmp_x2,tmp_x3)
if(if_half):se_mean3 += torch.mean(tmp_x4.float(), dim=(2, 3),keepdim=True).half()
else:se_mean3 += torch.mean(tmp_x4, dim=(2, 3),keepdim=True)
# print("4x-n_patch=%s,tile_mode=%s" % (n_patch,tile_mode))
###########stage1+state2+state3+stage4+stage_tail
res = torch.zeros((n, c, h * 4 - 152, w * 4 - 152),dtype=torch.uint8,device=x.device)
for i in range(0,h-38,crop_size[0]):
for j in range(0,w-38,crop_size[1]):
tmp0,x_crop = self.unet1.forward_a(x[:,:,i:i+crop_size[0]+38,j:j+crop_size[1]+38])
x_crop=self.unet1.conv2.seblock.forward_mean(x_crop,se_mean0/n_patch)
x_crop=self.unet1.forward_b(tmp0,x_crop)
tmp_x1,tmp_x2 = self.unet2.forward_a(x_crop)
x_crop = F.pad(x_crop,(-20,-20,-20,-20))
tmp_x2=self.unet2.conv2.seblock.forward_mean(tmp_x2,se_mean1/n_patch)
tmp_x2, tmp_x3 = self.unet2.forward_b(tmp_x2)
tmp_x3=self.unet2.conv3.seblock.forward_mean(tmp_x3,se_mean2/n_patch)
tmp_x4=self.unet2.forward_c(tmp_x2,tmp_x3)*alpha
tmp_x4=self.unet2.conv4.seblock.forward_mean(tmp_x4,se_mean3/n_patch)
x0=self.unet2.forward_d(tmp_x1,tmp_x4)
x_crop = torch.add(x0, x_crop)
x_crop=self.conv_final(x_crop)
x_crop = F.pad(x_crop, (-1, -1, -1, -1))
x_crop=self.ps(x_crop)
x00_crop=x00[:, :, i:i + h1 - 38, j:j + w1 - 38]
_,_,h2,w2=x00_crop.shape
x_crop[:,:,:h2*4,:w2*4]+=F.interpolate(x00_crop, scale_factor=4, mode='nearest')
if(pro):
res[:, :, i * 4:i * 4 + h1 * 4 - 152, j * 4:j * 4 + w1 * 4 - 152] = ((x_crop-0.15) * (255/0.7)).round().clamp_(0, 255).byte()
else:
res[:, :, i * 4:i * 4 + h1 * 4 - 152, j * 4:j * 4 + w1 * 4 - 152] = (x_crop*255).round().clamp_(0, 255).byte()
#torch.cuda.empty_cache()
if(w0!=pw or h0!=ph):res=res[:,:,:h0*4,:w0*4]
return res
class RealWaifuUpScaler(object):
def __init__(self,scale,weight_path,half,device):
weight = torch.load(weight_path, map_location="cpu", weights_only=True)
self.pro="pro"in weight
if(self.pro):del weight["pro"]
self.model=eval("UpCunet%sx"%scale)()
if(half==True):self.model=self.model.half().to(device)
else:self.model=self.model.to(device)
self.model.load_state_dict(weight, strict=True)
self.model.eval()
self.half=half
self.device=device
def np2tensor(self,np_frame):
if(self.pro):
if (self.half == False):return torch.from_numpy(np.transpose(np_frame, (2, 0, 1))).unsqueeze(0).to(self.device).float() / (255/0.7)+0.15
else:return torch.from_numpy(np.transpose(np_frame, (2, 0, 1))).unsqueeze(0).to(self.device).half() / (255/0.7)+0.15
else:
if (self.half == False):return torch.from_numpy(np.transpose(np_frame, (2, 0, 1))).unsqueeze(0).to(self.device).float() / 255
else:return torch.from_numpy(np.transpose(np_frame, (2, 0, 1))).unsqueeze(0).to(self.device).half() / 255
def tensor2np(self,tensor):
return (np.transpose(tensor.squeeze().cpu().numpy(), (1, 2, 0)))
def __call__(self, frame,tile_mode,cache_mode,alpha):
with torch.no_grad():
tensor = self.np2tensor(frame)
if(cache_mode==3):
result = self.tensor2np(self.model.forward_gap_sync(tensor,tile_mode,alpha,self.pro))
elif(cache_mode==2):
result = self.tensor2np(self.model.forward_fast_rough(tensor,tile_mode,alpha,self.pro))
else:
result = self.tensor2np(self.model(tensor,tile_mode,cache_mode,alpha,self.pro))
return result
if __name__ == "__main__":
###########inference_img
import time, cv2,sys,pdb
from time import time as ttime
for weight_path, scale in [("weights_v3/up2x-latest-denoise3x.pth", 2),("weights_v3/up3x-latest-denoise3x.pth", 3),("weights_v3/up4x-latest-denoise3x.pth", 4),("weights_pro/pro-denoise3x-up2x.pth", 2),("weights_pro/pro-denoise3x-up3x.pth", 3),]:
for tile_mode in [0,5]:
for cache_mode in [0,1,2,3]:
for alpha in [1]:
weight_name=weight_path.split("/")[-1].split(".")[0]
upscaler2x = RealWaifuUpScaler(scale, weight_path, half=True, device="cuda:0")
input_dir="%s/inputs"%root_path
output_dir="%s/output-dir-all-test"%root_path
os.makedirs(output_dir,exist_ok=True)
for name in os.listdir(input_dir):
print(name)
tmp = name.split(".")
inp_path = os.path.join(input_dir, name)
suffix = tmp[-1]
prefix = ".".join(tmp[:-1])
tmp_path = os.path.join(root_path, "tmp", "%s.%s" % (int(time.time() * 1000000), suffix))
print(inp_path,tmp_path)
#支持中文路径
#os.link(inp_path, tmp_path)#win用硬链接
os.symlink(inp_path, tmp_path)#linux用软链接
frame = cv2.imread(tmp_path)[:, :, [2, 1, 0]]
t0 = ttime()
result = upscaler2x(frame, tile_mode=tile_mode,cache_mode=cache_mode,alpha=alpha)[:, :, ::-1]
t1 = ttime()
print(prefix, "done", t1 - t0,"tile_mode=%s"%tile_mode,cache_mode)
tmp_opt_path = os.path.join(root_path, "tmp", "%s.%s" % (int(time.time() * 1000000), suffix))
cv2.imwrite(tmp_opt_path, result)
n=0
while (1):
if (n == 0):suffix = "_%sx_tile%s_cache%s_alpha%s_%s.png" % (scale, tile_mode, cache_mode, alpha,weight_name)
else:suffix = "_%sx_tile%s_cache%s_alpha%s_%s_%s.png" % (scale, tile_mode, cache_mode, alpha, weight_name,n)
if (os.path.exists(os.path.join(output_dir, prefix + suffix)) == False):break
else:n += 1
final_opt_path=os.path.join(output_dir, prefix + suffix)
os.rename(tmp_opt_path,final_opt_path)
os.remove(tmp_path)