# coding: utf-8 __author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/' import os import librosa import soundfile as sf import numpy as np import argparse # Add this line import gc def stft(wave, nfft, hl): wave_left = np.asfortranarray(wave[0]) wave_right = np.asfortranarray(wave[1]) spec_left = librosa.stft(wave_left, n_fft=nfft, hop_length=hl, window='hann') spec_right = librosa.stft(wave_right, n_fft=nfft, hop_length=hl, window='hann') spec = np.asfortranarray([spec_left, spec_right]) return spec def istft(spec, hl, length): spec_left = np.asfortranarray(spec[0]) spec_right = np.asfortranarray(spec[1]) wave_left = librosa.istft(spec_left, hop_length=hl, length=length, window='hann') wave_right = librosa.istft(spec_right, hop_length=hl, length=length, window='hann') wave = np.asfortranarray([wave_left, wave_right]) return wave def absmax(a, *, axis): dims = list(a.shape) dims.pop(axis) indices = list(np.ogrid[tuple(slice(0, d) for d in dims)]) argmax = np.abs(a).argmax(axis=axis) insert_pos = (len(a.shape) + axis) % len(a.shape) indices.insert(insert_pos, argmax) return a[tuple(indices)] def absmin(a, *, axis): dims = list(a.shape) dims.pop(axis) indices = list(np.ogrid[tuple(slice(0, d) for d in dims)]) argmax = np.abs(a).argmin(axis=axis) insert_pos = (len(a.shape) + axis) % len(a.shape) indices.insert(insert_pos, argmax) return a[tuple(indices)] def lambda_max(arr, axis=None, key=None, keepdims=False): idxs = np.argmax(key(arr), axis) if axis is not None: idxs = np.expand_dims(idxs, axis) result = np.take_along_axis(arr, idxs, axis) if not keepdims: result = np.squeeze(result, axis=axis) return result else: return arr.flatten()[idxs] def lambda_min(arr, axis=None, key=None, keepdims=False): idxs = np.argmin(key(arr), axis) if axis is not None: idxs = np.expand_dims(idxs, axis) result = np.take_along_axis(arr, idxs, axis) if not keepdims: result = np.squeeze(result, axis=axis) return result else: return arr.flatten()[idxs] def average_waveforms(pred_track, weights, algorithm, chunk_length): pred_track = np.array(pred_track) pred_track = np.array([p[:, :chunk_length] if p.shape[1] > chunk_length else np.pad(p, ((0, 0), (0, chunk_length - p.shape[1])), 'constant') for p in pred_track]) mod_track = [] for i in range(pred_track.shape[0]): if algorithm == 'avg_wave': mod_track.append(pred_track[i] * weights[i]) elif algorithm in ['median_wave', 'min_wave', 'max_wave']: mod_track.append(pred_track[i]) elif algorithm in ['avg_fft', 'min_fft', 'max_fft', 'median_fft']: spec = stft(pred_track[i], nfft=2048, hl=1024) if algorithm == 'avg_fft': mod_track.append(spec * weights[i]) else: mod_track.append(spec) pred_track = np.array(mod_track) if algorithm == 'avg_wave': pred_track = pred_track.sum(axis=0) pred_track /= np.array(weights).sum() elif algorithm == 'median_wave': pred_track = np.median(pred_track, axis=0) elif algorithm == 'min_wave': pred_track = lambda_min(pred_track, axis=0, key=np.abs) elif algorithm == 'max_wave': pred_track = lambda_max(pred_track, axis=0, key=np.abs) elif algorithm == 'avg_fft': pred_track = pred_track.sum(axis=0) pred_track /= np.array(weights).sum() pred_track = istft(pred_track, 1024, chunk_length) elif algorithm == 'min_fft': pred_track = lambda_min(pred_track, axis=0, key=np.abs) pred_track = istft(pred_track, 1024, chunk_length) elif algorithm == 'max_fft': pred_track = absmax(pred_track, axis=0) pred_track = istft(pred_track, 1024, chunk_length) elif algorithm == 'median_fft': pred_track = np.median(pred_track, axis=0) pred_track = istft(pred_track, 1024, chunk_length) return pred_track def ensemble_files(args): parser = argparse.ArgumentParser() parser.add_argument("--files", type=str, required=True, nargs='+', help="Path to all audio-files to ensemble") parser.add_argument("--type", type=str, default='avg_wave', help="One of avg_wave, median_wave, min_wave, max_wave, avg_fft, median_fft, min_fft, max_fft") parser.add_argument("--weights", type=float, nargs='+', help="Weights to create ensemble. Number of weights must be equal to number of files") parser.add_argument("--output", default="res.wav", type=str, help="Path to wav file where ensemble result will be stored") if args is None: args = parser.parse_args() else: args = parser.parse_args(args) print('Ensemble type: {}'.format(args.type)) print('Number of input files: {}'.format(len(args.files))) if args.weights is not None: weights = np.array(args.weights) else: weights = np.ones(len(args.files)) print('Weights: {}'.format(weights)) print('Output file: {}'.format(args.output)) durations = [librosa.get_duration(filename=f) for f in args.files] if not all(d == durations[0] for d in durations): raise ValueError("All files must have the same duration") total_duration = durations[0] sr = librosa.get_samplerate(args.files[0]) chunk_duration = 30 # 30-second chunks overlap_duration = 0.1 # 100 ms overlap chunk_samples = int(chunk_duration * sr) overlap_samples = int(overlap_duration * sr) step_samples = chunk_samples - overlap_samples # Step size reduced by overlap total_samples = int(total_duration * sr) # Align chunk length with hop_length hop_length = 1024 chunk_samples = ((chunk_samples + hop_length - 1) // hop_length) * hop_length step_samples = chunk_samples - overlap_samples prev_chunk_tail = None # To store the tail of the previous chunk for crossfading with sf.SoundFile(args.output, 'w', sr, channels=2, subtype='FLOAT') as outfile: for start in range(0, total_samples, step_samples): end = min(start + chunk_samples, total_samples) chunk_length = end - start data = [] for f in args.files: if not os.path.isfile(f): print('Error. Can\'t find file: {}. Check paths.'.format(f)) exit() # print(f'Reading chunk from file: {f} (start: {start/sr}s, duration: {(end-start)/sr}s)') wav, _ = librosa.load(f, sr=sr, mono=False, offset=start/sr, duration=(end-start)/sr) data.append(wav) res = average_waveforms(data, weights, args.type, chunk_length) res = res.astype(np.float32) #print(f'Chunk result shape: {res.shape}') # Crossfade with the previous chunk's tail if start > 0 and prev_chunk_tail is not None: new_data = res[:, :overlap_samples] fade_out = np.linspace(1, 0, overlap_samples) fade_in = np.linspace(0, 1, overlap_samples) blended = prev_chunk_tail * fade_out + new_data * fade_in outfile.write(blended.T) outfile.write(res[:, overlap_samples:].T) else: outfile.write(res.T) # Store the tail of the current chunk for the next iteration if chunk_length > overlap_samples: prev_chunk_tail = res[:, -overlap_samples:] else: prev_chunk_tail = res[:, :] del data del res gc.collect() print(f'Ensemble completed. Output saved to: {args.output}') if __name__ == "__main__": ensemble_files(None)