from typing import Optional, Any import os import sys import torch import logging import yt_dlp from yt_dlp import YoutubeDL import gradio as gr import argparse from audio_separator.separator import Separator import numpy as np import librosa import soundfile as sf from ensemble import ensemble_files import shutil import gradio_client.utils as client_utils import matchering as mg import gdown from pydub import AudioSegment import gc import time from concurrent.futures import ThreadPoolExecutor, as_completed from threading import Lock import scipy.io.wavfile import subprocess import spaces # Logging setup logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Gradio JSON schema patch original_json_schema_to_python_type = client_utils._json_schema_to_python_type def patched_json_schema_to_python_type(schema: Any, defs: Optional[dict] = None) -> str: logger.debug(f"Parsing schema: {schema}") if isinstance(schema, bool): logger.info("Found boolean schema, returning 'boolean'") return "boolean" if not isinstance(schema, dict): logger.warning(f"Unexpected schema type: {type(schema)}, returning 'Any'") return "Any" if "enum" in schema and schema.get("type") == "string": logger.info(f"Handling enum schema: {schema['enum']}") return f"Literal[{', '.join(repr(e) for e in schema['enum'])}]" try: return original_json_schema_to_python_type(schema, defs) except client_utils.APIInfoParseError as e: logger.error(f"Failed to parse schema {schema}: {e}") return "str" client_utils._json_schema_to_python_type = patched_json_schema_to_python_type # Device setup device = "cuda" if torch.cuda.is_available() else "cpu" use_autocast = device == "cuda" logger.info(f"Using device: {device}") # Constants max_models = 6 max_retries = 2 time_budget = 300 # ZeroGPU için işlem sınırı gpu_lock = Lock() # ROFORMER_MODELS and OUTPUT_FORMATS ROFORMER_MODELS = { "Vocals": { 'MelBand Roformer | Big Beta 6X by unwa': 'melband_roformer_big_beta6x.ckpt', 'MelBand Roformer Kim | Big Beta 4 FT by unwa': 'melband_roformer_big_beta4.ckpt', 'MelBand Roformer Kim | Big Beta 5e FT by unwa': 'melband_roformer_big_beta5e.ckpt', 'MelBand Roformer | Big Beta 6 by unwa': 'melband_roformer_big_beta6.ckpt', 'MelBand Roformer | Vocals by Kimberley Jensen': 'vocals_mel_band_roformer.ckpt', 'MelBand Roformer Kim | FT 3 by unwa': 'mel_band_roformer_kim_ft3_unwa.ckpt', 'MelBand Roformer Kim | FT by unwa': 'mel_band_roformer_kim_ft_unwa.ckpt', 'MelBand Roformer Kim | FT 2 by unwa': 'mel_band_roformer_kim_ft2_unwa.ckpt', 'MelBand Roformer Kim | FT 2 Bleedless by unwa': 'mel_band_roformer_kim_ft2_bleedless_unwa.ckpt', 'MelBand Roformer | Vocals by becruily': 'mel_band_roformer_vocals_becruily.ckpt', 'MelBand Roformer | Vocals Fullness by Aname': 'mel_band_roformer_vocal_fullness_aname.ckpt', 'BS Roformer | Vocals by Gabox': 'bs_roformer_vocals_gabox.ckpt', 'MelBand Roformer | Vocals by Gabox': 'mel_band_roformer_vocals_gabox.ckpt', 'MelBand Roformer | Vocals FV1 by Gabox': 'mel_band_roformer_vocals_fv1_gabox.ckpt', 'MelBand Roformer | Vocals FV2 by Gabox': 'mel_band_roformer_vocals_fv2_gabox.ckpt', 'MelBand Roformer | Vocals FV3 by Gabox': 'mel_band_roformer_vocals_fv3_gabox.ckpt', 'MelBand Roformer | Vocals FV4 by Gabox': 'mel_band_roformer_vocals_fv4_gabox.ckpt', 'BS Roformer | Chorus Male-Female by Sucial': 'model_chorus_bs_roformer_ep_267_sdr_24.1275.ckpt', 'BS Roformer | Male-Female by aufr33': 'bs_roformer_male_female_by_aufr33_sdr_7.2889.ckpt', }, "Instrumentals": { 'MelBand Roformer | FVX by Gabox': 'mel_band_roformer_instrumental_fvx_gabox.ckpt', 'MelBand Roformer | INSTV8N by Gabox': 'mel_band_roformer_instrumental_instv8n_gabox.ckpt', 'MelBand Roformer | INSTV8 by Gabox': 'mel_band_roformer_instrumental_instv8_gabox.ckpt', 'MelBand Roformer | INSTV7N by Gabox': 'mel_band_roformer_instrumental_instv7n_gabox.ckpt', 'MelBand Roformer | Instrumental Bleedless V3 by Gabox': 'mel_band_roformer_instrumental_bleedless_v3_gabox.ckpt', 'MelBand Roformer Kim | Inst V1 (E) Plus by Unwa': 'melband_roformer_inst_v1e_plus.ckpt', 'MelBand Roformer Kim | Inst V1 Plus by Unwa': 'melband_roformer_inst_v1_plus.ckpt', 'MelBand Roformer Kim | Inst V1 by Unwa': 'melband_roformer_inst_v1.ckpt', 'MelBand Roformer Kim | Inst V1 (E) by Unwa': 'melband_roformer_inst_v1e.ckpt', 'MelBand Roformer Kim | Inst V2 by Unwa': 'melband_roformer_inst_v2.ckpt', 'MelBand Roformer | Instrumental by becruily': 'mel_band_roformer_instrumental_becruily.ckpt', 'MelBand Roformer | Instrumental by Gabox': 'mel_band_roformer_instrumental_gabox.ckpt', 'MelBand Roformer | Instrumental 2 by Gabox': 'mel_band_roformer_instrumental_2_gabox.ckpt', 'MelBand Roformer | Instrumental 3 by Gabox': 'mel_band_roformer_instrumental_3_gabox.ckpt', 'MelBand Roformer | Instrumental Bleedless V1 by Gabox': 'mel_band_roformer_instrumental_bleedless_v1_gabox.ckpt', 'MelBand Roformer | Instrumental Bleedless V2 by Gabox': 'mel_band_roformer_instrumental_bleedless_v2_gabox.ckpt', 'MelBand Roformer | Instrumental Fullness V1 by Gabox': 'mel_band_roformer_instrumental_fullness_v1_gabox.ckpt', 'MelBand Roformer | Instrumental Fullness V2 by Gabox': 'mel_band_roformer_instrumental_fullness_v2_gabox.ckpt', 'MelBand Roformer | Instrumental Fullness V3 by Gabox': 'mel_band_roformer_instrumental_fullness_v3_gabox.ckpt', 'MelBand Roformer | Instrumental Fullness Noisy V4 by Gabox': 'mel_band_roformer_instrumental_fullness_noise_v4_gabox.ckpt', 'MelBand Roformer | INSTV5 by Gabox': 'mel_band_roformer_instrumental_instv5_gabox.ckpt', 'MelBand Roformer | INSTV5N by Gabox': 'mel_band_roformer_instrumental_instv5n_gabox.ckpt', 'MelBand Roformer | INSTV6 by Gabox': 'mel_band_roformer_instrumental_instv6_gabox.ckpt', 'MelBand Roformer | INSTV6N by Gabox': 'mel_band_roformer_instrumental_instv6n_gabox.ckpt', 'MelBand Roformer | INSTV7 by Gabox': 'mel_band_roformer_instrumental_instv7_gabox.ckpt', }, "InstVoc Duality": { 'MelBand Roformer Kim | InstVoc Duality V1 by Unwa': 'melband_roformer_instvoc_duality_v1.ckpt', 'MelBand Roformer Kim | InstVoc Duality V2 by Unwa': 'melband_roformer_instvox_duality_v2.ckpt', }, "De-Reverb": { 'BS-Roformer-De-Reverb': 'deverb_bs_roformer_8_384dim_10depth.ckpt', 'MelBand Roformer | De-Reverb by anvuew': 'dereverb_mel_band_roformer_anvuew_sdr_19.1729.ckpt', 'MelBand Roformer | De-Reverb Less Aggressive by anvuew': 'dereverb_mel_band_roformer_less_aggressive_anvuew_sdr_18.8050.ckpt', 'MelBand Roformer | De-Reverb Mono by anvuew': 'dereverb_mel_band_roformer_mono_anvuew.ckpt', 'MelBand Roformer | De-Reverb Big by Sucial': 'dereverb_big_mbr_ep_362.ckpt', 'MelBand Roformer | De-Reverb Super Big by Sucial': 'dereverb_super_big_mbr_ep_346.ckpt', 'MelBand Roformer | De-Reverb-Echo by Sucial': 'dereverb-echo_mel_band_roformer_sdr_10.0169.ckpt', 'MelBand Roformer | De-Reverb-Echo V2 by Sucial': 'dereverb-echo_mel_band_roformer_sdr_13.4843_v2.ckpt', 'MelBand Roformer | De-Reverb-Echo Fused by Sucial': 'dereverb_echo_mbr_fused.ckpt', }, "Denoise": { 'Mel-Roformer-Denoise-Aufr33': 'denoise_mel_band_roformer_aufr33_sdr_27.9959.ckpt', 'Mel-Roformer-Denoise-Aufr33-Aggr': 'denoise_mel_band_roformer_aufr33_aggr_sdr_27.9768.ckpt', 'MelBand Roformer | Denoise-Debleed by Gabox': 'mel_band_roformer_denoise_debleed_gabox.ckpt', 'MelBand Roformer | Bleed Suppressor V1 by unwa-97chris': 'mel_band_roformer_bleed_suppressor_v1.ckpt', }, "Karaoke": { 'Mel-Roformer-Karaoke-Aufr33-Viperx': 'mel_band_roformer_karaoke_aufr33_viperx_sdr_10.1956.ckpt', 'MelBand Roformer | Karaoke by Gabox': 'mel_band_roformer_karaoke_gabox.ckpt', 'MelBand Roformer | Karaoke by becruily': 'mel_band_roformer_karaoke_becruily.ckpt', }, "General Purpose": { 'BS-Roformer-Viperx-1297': 'model_bs_roformer_ep_317_sdr_12.9755.ckpt', 'BS-Roformer-Viperx-1296': 'model_bs_roformer_ep_368_sdr_12.9628.ckpt', 'BS-Roformer-Viperx-1053': 'model_bs_roformer_ep_937_sdr_10.5309.ckpt', 'Mel-Roformer-Viperx-1143': 'model_mel_band_roformer_ep_3005_sdr_11.4360.ckpt', 'Mel-Roformer-Crowd-Aufr33-Viperx': 'mel_band_roformer_crowd_aufr33_viperx_sdr_8.7144.ckpt', 'MelBand Roformer Kim | SYHFT by SYH99999': 'MelBandRoformerSYHFT.ckpt', 'MelBand Roformer Kim | SYHFT V2 by SYH99999': 'MelBandRoformerSYHFTV2.ckpt', 'MelBand Roformer Kim | SYHFT V2.5 by SYH99999': 'MelBandRoformerSYHFTV2.5.ckpt', 'MelBand Roformer Kim | SYHFT V3 by SYH99999': 'MelBandRoformerSYHFTV3Epsilon.ckpt', 'MelBand Roformer Kim | Big SYHFT V1 by SYH99999': 'MelBandRoformerBigSYHFTV1.ckpt', 'MelBand Roformer | Aspiration by Sucial': 'aspiration_mel_band_roformer_sdr_18.9845.ckpt', 'MelBand Roformer | Aspiration Less Aggressive by Sucial': 'aspiration_mel_band_roformer_less_aggr_sdr_18.1201.ckpt', } } OUTPUT_FORMATS = ['wav', 'flac', 'mp3', 'ogg', 'opus', 'm4a', 'aiff', 'ac3'] # CSS (orijinal CSS korundu) CSS = """ body { background: linear-gradient(to bottom, rgba(45, 11, 11, 0.9), rgba(0, 0, 0, 0.8)), url('/content/logo.jpg') no-repeat center center fixed; background-size: cover; min-height: 100vh; margin: 0; padding: 1rem; font-family: 'Poppins', sans-serif; color: #C0C0C0; overflow-x: hidden; } .header-text { text-align: center; padding: 100px 20px 20px; color: #ff4040; font-size: 3rem; font-weight: 900; text-shadow: 0 0 10px rgba(255, 64, 64, 0.5); z-index: 1500; animation: text-glow 2s infinite; } .header-subtitle { text-align: center; color: #C0C0C0; font-size: 1.2rem; font-weight: 300; margin-top: -10px; text-shadow: 0 0 5px rgba(255, 64, 64, 0.3); } .gr-tab { background: rgba(128, 0, 0, 0.5) !important; border-radius: 12px 12px 0 0 !important; margin: 0 5px !important; color: #C0C0C0 !important; border: 1px solid #ff4040 !important; z-index: 1500; transition: background 0.3s ease, color 0.3s ease; padding: 10px 20px !important; font-size: 1.1rem !important; } button { transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important; background: #800000 !important; border: 1px solid #ff4040 !important; color: #C0C0C0 !important; border-radius: 8px !important; padding: 8px 16px !important; box-shadow: 0 2px 10px rgba(255, 64, 64, 0.3); } button:hover { transform: scale(1.05) !important; box-shadow: 0 10px 40px rgba(255, 64, 64, 0.7) !important; background: #ff4040 !important; } .compact-upload.horizontal { display: inline-flex !important; align-items: center !important; gap: 8px !important; max-width: 400px !important; height: 40px !important; padding: 0 12px !important; border: 1px solid #ff4040 !important; background: rgba(128, 0, 0, 0.5) !important; border-radius: 8px !important; } .compact-dropdown { padding: 8px 12px !important; border-radius: 8px !important; border: 2px solid #ff6b6b !important; background: rgba(46, 26, 71, 0.7) !important; color: #e0e0e0 !important; width: 100%; font-size: 1rem !important; transition: border-color 0.3s ease, box-shadow 0.3s ease !important; position: relative; z-index: 100; } .compact-dropdown:hover { border-color: #ff8787 !important; box-shadow: 0 2px 8px rgba(255, 107, 107, 0.4) !important; } .compact-dropdown select, .compact-dropdown .gr-dropdown { background: transparent !important; color: #e0e0e0 !important; border: none !important; width: 100% !important; padding: 8px !important; font-size: 1rem !important; appearance: none !important; -webkit-appearance: none !important; -moz-appearance: none !important; } .compact-dropdown .gr-dropdown-menu { background: rgba(46, 26, 71, 0.95) !important; border: 2px solid #ff6b6b !important; border-radius: 8px !important; color: #e0e0e0 !important; max-height: 300px !important; overflow-y: auto !important; z-index: 300 !important; width: 100% !important; opacity: 1 !important; visibility: visible !important; position: absolute !important; top: 100% !important; left: 0 !important; pointer-events: auto !important; } .compact-dropdown:hover .gr-dropdown-menu { display: block !important; } .compact-dropdown .gr-dropdown-menu option { padding: 8px !important; color: #e0e0e0 !important; background: transparent !important; } .compact-dropdown .gr-dropdown-menu option:hover { background: rgba(255, 107, 107, 0.3) !important; } #custom-progress { margin-top: 10px; padding: 10px; background: rgba(128, 0, 0, 0.3); border-radius: 8px; border: 1px solid #ff4040; } #progress-bar { height: 20px; background: linear-gradient(to right, #6e8efb, #ff4040); border-radius: 5px; transition: width 0.5s ease-in-out; max-width: 100% !important; } .gr-accordion { background: rgba(128, 0, 0, 0.5) !important; border-radius: 10px !important; border: 1px solid #ff4040 !important; } .footer { text-align: center; padding: 20px; color: #ff4040; font-size: 14px; margin-top: 40px; background: rgba(128, 0, 0, 0.3); border-top: 1px solid #ff4040; } #log-accordion { max-height: 400px; overflow-y: auto; background: rgba(0, 0, 0, 0.7) !important; padding: 10px; border-radius: 8px; } @keyframes text-glow { 0% { text-shadow: 0 0 5px rgba(192, 192, 192, 0); } 50% { text-shadow: 0 0 15px rgba(192, 192, 192, 1); } 100% { text-shadow: 0 0 5px rgba(192, 192, 192, 0); } } """ def download_audio(url, cookie_file=None): """ Downloads audio from YouTube or Google Drive and converts it to WAV format. Args: url (str): URL of the YouTube video or Google Drive file. cookie_file (file object): File object containing YouTube cookies in Netscape format. Returns: tuple: (file_path, message, (sample_rate, data)) or (None, error_message, None) """ # Common output directory os.makedirs('ytdl', exist_ok=True) # Validate cookie file cookie_path = None if cookie_file: if not hasattr(cookie_file, 'name') or not os.path.exists(cookie_file.name): return None, "Invalid or missing cookie file. Ensure it's a valid Netscape format .txt file.", None cookie_path = cookie_file.name # Check if cookie file is in Netscape format with open(cookie_path, 'r') as f: content = f.read() if not content.startswith('# Netscape HTTP Cookie File'): return None, "Cookie file is not in Netscape format. See https://github.com/yt-dlp/yt-dlp/wiki/Extractors#exporting-youtube-cookies", None logger.info(f"Using cookie file: {cookie_path}") if 'drive.google.com' in url: return download_from_google_drive(url) else: return download_from_youtube(url, cookie_path) def download_from_youtube(url, cookie_path): # Common options base_opts = { 'outtmpl': 'ytdl/%(title)s.%(ext)s', 'user_agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.54 Safari/537.36', 'geo_bypass': True, 'force_ipv4': True, 'referer': 'https://www.youtube.com/', 'noplaylist': True, 'cookiefile': cookie_path, 'extractor_retries': 5, 'ignoreerrors': False, 'no_check_certificate': True, 'verbose': True, } # Strategy 1: Video+audio (best quality) try: logger.info("Attempting video+audio download") ydl_opts = base_opts.copy() ydl_opts.update({ 'format': 'bestvideo+bestaudio/best', 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'wav', }], 'merge_output_format': 'mp4', }) with yt_dlp.YoutubeDL(ydl_opts) as ydl: info_dict = ydl.extract_info(url, download=True) file_path = ydl.prepare_filename(info_dict).rsplit('.', 1)[0] + '.wav' if os.path.exists(file_path): sample_rate, data = scipy.io.wavfile.read(file_path) return file_path, "YouTube video+audio download successful", (sample_rate, data) else: logger.warning("Video+audio download succeeded but output file missing") except Exception as e: logger.warning(f"Video+audio download failed: {str(e)}") # Strategy 2: Audio-only (best quality) try: logger.info("Attempting audio-only download") ydl_opts = base_opts.copy() ydl_opts.update({ 'format': 'bestaudio/best', 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'wav', }], }) with yt_dlp.YoutubeDL(ydl_opts) as ydl: info_dict = ydl.extract_info(url, download=True) file_path = ydl.prepare_filename(info_dict).rsplit('.', 1)[0] + '.wav' if os.path.exists(file_path): sample_rate, data = scipy.io.wavfile.read(file_path) return file_path, "YouTube audio-only download successful", (sample_rate, data) else: logger.warning("Audio-only download succeeded but output file missing") except Exception as e: logger.warning(f"Audio-only download failed: {str(e)}") # Strategy 3: Specific format IDs (common audio formats) format_ids = [ '140', # m4a 128k '139', # m4a 48k '251', # webm 160k (opus) '250', # webm 70k (opus) '249', # webm 50k (opus) ] for fid in format_ids: try: logger.info(f"Attempting download with format ID: {fid}") ydl_opts = base_opts.copy() ydl_opts.update({ 'format': fid, 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'wav', }], }) with yt_dlp.YoutubeDL(ydl_opts) as ydl: info_dict = ydl.extract_info(url, download=True) file_path = ydl.prepare_filename(info_dict).rsplit('.', 1)[0] + '.wav' if os.path.exists(file_path): sample_rate, data = scipy.io.wavfile.read(file_path) return file_path, f"Download successful with format {fid}", (sample_rate, data) except Exception as e: logger.warning(f"Download with format {fid} failed: {str(e)}") # Strategy 4: Direct URL extraction try: logger.info("Attempting direct URL extraction") ydl_opts = base_opts.copy() ydl_opts.update({ 'format': 'best', 'forceurl': True, 'quiet': True, }) with yt_dlp.YoutubeDL(ydl_opts) as ydl: info_dict = ydl.extract_info(url, download=False) direct_url = info_dict.get('url') if direct_url: temp_path = 'ytdl/direct_audio.wav' ffmpeg_command = [ "ffmpeg", "-i", direct_url, "-c", "copy", temp_path ] subprocess.run(ffmpeg_command, check=True, capture_output=True, text=True) if os.path.exists(temp_path): sample_rate, data = scipy.io.wavfile.read(temp_path) return temp_path, "Direct URL download successful", (sample_rate, data) except Exception as e: logger.warning(f"Direct URL extraction failed: {str(e)}") return None, "All download strategies failed. This video may not be available in your region or requires authentication.", None def download_from_google_drive(url): temp_output_path = 'ytdl/gdrive_temp_audio' output_path = 'ytdl/gdrive_audio.wav' try: # Extract file ID from URL file_id = url.split('/d/')[1].split('/')[0] download_url = f'https://drive.google.com/uc?id={file_id}' # Download file gdown.download(download_url, temp_output_path, quiet=False) if not os.path.exists(temp_output_path): return None, "Google Drive downloaded file not found", None # Convert to WAV audio = AudioSegment.from_file(temp_output_path) audio.export(output_path, format="wav") sample_rate, data = scipy.io.wavfile.read(output_path) return output_path, "Google Drive audio download and conversion successful", (sample_rate, data) except Exception as e: return None, f"Failed to process Google Drive file: {str(e)}. Ensure the file contains audio (e.g., MP3, WAV, or video with audio track).", None finally: if os.path.exists(temp_output_path): try: os.remove(temp_output_path) logger.info(f"Temporary file deleted: {temp_output_path}") except Exception as e: logger.warning(f"Failed to delete temporary file {temp_output_path}: {str(e)}") @spaces.GPU(duration=60) def roformer_separator(audio, model_key, seg_size, override_seg_size, overlap, pitch_shift, model_dir, output_dir, out_format, norm_thresh, amp_thresh, batch_size, exclude_stems="", progress=gr.Progress(track_tqdm=True)): if not audio: raise ValueError("No audio or video file provided.") temp_audio_path = None extracted_audio_path = None try: file_extension = os.path.splitext(audio)[1].lower().lstrip('.') supported_formats = ['wav', 'mp3', 'flac', 'ogg', 'opus', 'm4a', 'aiff', 'ac3', 'mp4', 'mov', 'avi', 'mkv', 'flv', 'wmv', 'webm', 'mpeg', 'mpg', 'ts', 'vob'] if file_extension not in supported_formats: raise ValueError(f"Unsupported file format: {file_extension}. Supported formats: {', '.join(supported_formats)}") audio_to_process = audio if file_extension in ['mp4', 'mov', 'avi', 'mkv', 'flv', 'wmv', 'webm', 'mpeg', 'mpg', 'ts', 'vob']: extracted_audio_path = os.path.join("/tmp", f"extracted_audio_{os.path.basename(audio)}.wav") logger.info(f"Extracting audio from video file: {audio}") ffmpeg_command = [ "ffmpeg", "-i", audio, "-vn", "-acodec", "pcm_s16le", "-ar", "44100", "-ac", "2", extracted_audio_path, "-y" ] try: subprocess.run(ffmpeg_command, check=True, capture_output=True, text=True) logger.info(f"Audio extracted to: {extracted_audio_path}") audio_to_process = extracted_audio_path except subprocess.CalledProcessError as e: error_message = e.stderr.decode() if e.stderr else str(e) if "No audio stream" in error_message: raise RuntimeError("The provided video file does not contain an audio track.") elif "Invalid data" in error_message: raise RuntimeError("The video file is corrupted or not supported.") else: raise RuntimeError(f"Failed to extract audio from video: {error_message}") if isinstance(audio_to_process, tuple): sample_rate, data = audio_to_process temp_audio_path = os.path.join("/tmp", "temp_audio.wav") scipy.io.wavfile.write(temp_audio_path, sample_rate, data) audio_to_process = temp_audio_path if seg_size > 512: logger.warning(f"Segment size {seg_size} is large, this may cause issues.") override_seg_size = override_seg_size == "True" if os.path.exists(output_dir): shutil.rmtree(output_dir) os.makedirs(output_dir, exist_ok=True) base_name = os.path.splitext(os.path.basename(audio))[0].replace(' ', '_') # Boşlukları alt çizgi ile değiştir for category, models in ROFORMER_MODELS.items(): if model_key in models: model = models[model_key] break else: raise ValueError(f"Model '{model_key}' not found.") logger.info(f"Separating {base_name} with {model_key} on {device}") separator = Separator( log_level=logging.INFO, model_file_dir=model_dir, output_dir=output_dir, output_format=out_format, normalization_threshold=norm_thresh, amplification_threshold=amp_thresh, use_autocast=use_autocast, mdxc_params={"segment_size": seg_size, "override_model_segment_size": override_seg_size, "batch_size": batch_size, "overlap": overlap, "pitch_shift": pitch_shift} ) progress(0.2, desc="Loading model...") separator.load_model(model_filename=model) progress(0.7, desc="Separating audio...") separation = separator.separate(audio_to_process) stems = [os.path.join(output_dir, file_name) for file_name in separation] file_list = [] if exclude_stems.strip(): excluded = [s.strip().lower() for s in exclude_stems.split(',')] filtered_stems = [stem for stem in stems if not any(ex in os.path.basename(stem).lower() for ex in excluded)] file_list = filtered_stems stem1 = filtered_stems[0] if filtered_stems else None stem2 = filtered_stems[1] if len(filtered_stems) > 1 else None else: file_list = stems stem1 = stems[0] stem2 = stems[1] if len(stems) > 1 else None return stem1, stem2, file_list except Exception as e: logger.error(f"Separation error: {e}") raise RuntimeError(f"Separation error: {e}") finally: if temp_audio_path and os.path.exists(temp_audio_path): try: os.remove(temp_audio_path) logger.info(f"Temporary file deleted: {temp_audio_path}") except Exception as e: logger.warning(f"Failed to delete temporary file {temp_audio_path}: {e}") if extracted_audio_path and os.path.exists(extracted_audio_path): try: os.remove(extracted_audio_path) logger.info(f"Extracted audio file deleted: {extracted_audio_path}") except Exception as e: logger.warning(f"Failed to delete extracted audio file {extracted_audio_path}: {e}") if torch.cuda.is_available(): torch.cuda.empty_cache() logger.info("GPU memory cleared") @spaces.GPU(duration=60) def auto_ensemble_process(audio, model_keys, state, seg_size=64, overlap=0.1, out_format="wav", use_tta="False", model_dir="/tmp/audio-separator-models/", output_dir="output", norm_thresh=0.9, amp_thresh=0.9, batch_size=1, ensemble_method="avg_wave", exclude_stems="", weights_str="", progress=gr.Progress(track_tqdm=True)): temp_audio_path = None extracted_audio_path = None resampled_audio_path = None start_time = time.time() try: if not audio: raise ValueError("No audio or video file provided.") if not model_keys: raise ValueError("No models selected.") if len(model_keys) > max_models: logger.warning(f"Selected {len(model_keys)} models, limiting to {max_models}.") model_keys = model_keys[:max_models] file_extension = os.path.splitext(audio)[1].lower().lstrip('.') supported_formats = ['wav', 'mp3', 'flac', 'ogg', 'opus', 'm4a', 'aiff', 'ac3', 'mp4', 'mov', 'avi', 'mkv', 'flv', 'wmv', 'webm', 'mpeg', 'mpg', 'ts', 'vob'] if file_extension not in supported_formats: raise ValueError(f"Unsupported file format: {file_extension}. Supported formats: {', '.join(supported_formats)}") audio_to_process = audio if file_extension in ['mp4', 'mov', 'avi', 'mkv', 'flv', 'wmv', 'webm', 'mpeg', 'mpg', 'ts', 'vob']: extracted_audio_path = os.path.join("/tmp", f"extracted_audio_{os.path.basename(audio)}.wav") logger.info(f"Extracting audio from video file: {audio}") ffmpeg_command = [ "ffmpeg", "-i", audio, "-vn", "-acodec", "pcm_s16le", "-ar", "48000", "-ac", "2", extracted_audio_path, "-y" ] try: subprocess.run(ffmpeg_command, check=True, capture_output=True, text=True) logger.info(f"Audio extracted to: {extracted_audio_path}") audio_to_process = extracted_audio_path except subprocess.CalledProcessError as e: error_message = e.stderr.decode() if e.stderr else str(e) if "No audio stream" in error_message: raise RuntimeError("The provided video file does not contain an audio track.") elif "Invalid data" in error_message: raise RuntimeError("The video file is corrupted or not supported.") else: raise RuntimeError(f"Failed to extract audio from video: {error_message}") # Load audio and resample to 48 kHz audio_data, sr = librosa.load(audio_to_process, sr=None, mono=False) logger.info(f"Original sample rate: {sr} Hz, Audio duration: {librosa.get_duration(y=audio_data, sr=sr):.2f} seconds") if sr != 48000: logger.info(f"Resampling audio from {sr} Hz to 48000 Hz") resampled_audio_path = os.path.join("/tmp", f"resampled_audio_{os.path.basename(audio)}.wav") waveform, _ = torchaudio.load(audio_to_process) resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=48000) resampled_waveform = resampler(waveform) torchaudio.save(resampled_audio_path, resampled_waveform, 48000) audio_to_process = resampled_audio_path audio_data, sr = librosa.load(audio_to_process, sr=None, mono=False) logger.info(f"Resampled audio saved to: {resampled_audio_path}, new sample rate: {sr} Hz") duration = librosa.get_duration(y=audio_data, sr=sr) dynamic_batch_size = max(1, min(4, 1 + int(900 / (duration + 1)) - len(model_keys) // 2)) logger.info(f"Using batch size: {dynamic_batch_size} for {len(model_keys)} models, duration {duration:.2f}s") if isinstance(audio_to_process, tuple): sample_rate, data = audio_to_process temp_audio_path = os.path.join("/tmp", "temp_audio.wav") scipy.io.wavfile.write(temp_audio_path, sample_rate, data) audio_to_process = temp_audio_path if not state: state = { "current_audio": None, "current_model_idx": 0, "processed_stems": [], "model_outputs": {} } if state["current_audio"] != audio: state["current_audio"] = audio state["current_model_idx"] = 0 state["processed_stems"] = [] state["model_outputs"] = {model_key: {"vocals": [], "other": []} for model_key in model_keys} logger.info("New audio detected, resetting ensemble state.") use_tta = use_tta == "True" base_name = os.path.splitext(os.path.basename(audio))[0].replace(' ', '_') # Boşlukları alt çizgi ile değiştir logger.info(f"Ensemble for {base_name} with {model_keys} on {device}") permanent_output_dir = os.path.join(output_dir, "permanent_stems") os.makedirs(permanent_output_dir, exist_ok=True) model_cache = {} all_stems = [] total_tasks = len(model_keys) current_idx = state["current_model_idx"] logger.info(f"Current model index: {current_idx}, total models: {len(model_keys)}") if current_idx >= len(model_keys): logger.info("All models processed, running ensemble...") progress(0.9, desc="Running ensemble...") excluded_stems_list = [s.strip().lower() for s in exclude_stems.split(',')] if exclude_stems.strip() else [] for model_key, stems_dict in state["model_outputs"].items(): for stem_type in ["vocals", "other"]: if stems_dict[stem_type]: if stem_type.lower() in excluded_stems_list: logger.info(f"Excluding {stem_type} for {model_key} from ensemble") continue all_stems.extend(stems_dict[stem_type]) all_stems = [stem for stem in all_stems if os.path.exists(stem)] if not all_stems: raise ValueError("No valid stems found for ensemble after excluding specified stems.") weights = [float(w.strip()) for w in weights_str.split(',')] if weights_str.strip() else [1.0] * len(all_stems) if len(weights) != len(all_stems): weights = [1.0] * len(all_stems) logger.info("Weights mismatched, defaulting to 1.0") output_file = os.path.join(output_dir, f"{base_name}_ensemble_{ensemble_method}.{out_format}") ensemble_args = [ "--files", *all_stems, "--type", ensemble_method, "--weights", *[str(w) for w in weights], "--output", output_file ] logger.info(f"Running ensemble with args: {ensemble_args}") result = ensemble_files(ensemble_args) if result is None or not os.path.exists(output_file): raise RuntimeError(f"Ensemble failed, output file not created: {output_file}") state["current_model_idx"] = 0 state["current_audio"] = None state["processed_stems"] = [] state["model_outputs"] = {} elapsed = time.time() - start_time logger.info(f"Ensemble completed, output: {output_file}, took {elapsed:.2f}s") progress(1.0, desc="Ensemble completed") status = f"Ensemble completed with {ensemble_method}, excluded: {exclude_stems if exclude_stems else 'None'}, {len(model_keys)} models in {elapsed:.2f}s
Download files:" return output_file, status, file_list, state model_key = model_keys[current_idx] logger.info(f"Processing model {current_idx + 1}/{len(model_keys)}: {model_key}") progress(0.1, desc=f"Processing model {model_key}...") with torch.no_grad(): for attempt in range(max_retries + 1): try: for category, models in ROFORMER_MODELS.items(): if model_key in models: model = models[model_key] break else: logger.warning(f"Model {model_key} not found, skipping") state["current_model_idx"] += 1 return None, f"Model {model_key} not found, proceeding to next model.", [], state elapsed = time.time() - start_time if elapsed > time_budget: logger.error(f"Time budget ({time_budget}s) exceeded") raise TimeoutError("Processing took too long") if model_key not in model_cache: logger.info(f"Loading {model_key} into cache") separator = Separator( log_level=logging.INFO, model_file_dir=model_dir, output_dir=output_dir, output_format=out_format, normalization_threshold=norm_thresh, amplification_threshold=amp_thresh, use_autocast=use_autocast, mdxc_params={ "segment_size": seg_size, "overlap": overlap, "use_tta": use_tta, "batch_size": dynamic_batch_size } ) separator.load_model(model_filename=model) model_cache[model_key] = separator else: separator = model_cache[model_key] with gpu_lock: progress(0.3, desc=f"Separating with {model_key}") logger.info(f"Separating with {model_key}") separation = separator.separate(audio_to_process) stems = [os.path.join(output_dir, file_name) for file_name in separation] result = [] for stem in stems: stem_type = "vocals" if "vocals" in os.path.basename(stem).lower() else "other" permanent_stem_path = os.path.join(permanent_output_dir, f"{base_name}_{stem_type}_{model_key.replace(' | ', '_').replace(' ', '_')}.{out_format}") shutil.copy(stem, permanent_stem_path) state["model_outputs"][model_key][stem_type].append(permanent_stem_path) if stem_type not in exclude_stems.lower(): result.append(permanent_stem_path) state["processed_stems"].extend(result) break except Exception as e: logger.error(f"Error processing {model_key}, attempt {attempt + 1}/{max_retries + 1}: {e}") if attempt == max_retries: logger.error(f"Max retries reached for {model_key}, skipping") state["current_model_idx"] += 1 return None, f"Failed to process {model_key} after {max_retries} attempts.", [], state time.sleep(1) finally: if torch.cuda.is_available(): torch.cuda.empty_cache() logger.info(f"Cleared CUDA cache after {model_key}") model_cache.clear() gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() logger.info("Cleared model cache and GPU memory") state["current_model_idx"] += 1 elapsed = time.time() - start_time logger.info(f"Model {model_key} completed in {elapsed:.2f}s") if state["current_model_idx"] >= len(model_keys): logger.info("Last model processed, running ensemble immediately...") return auto_ensemble_process(audio, model_keys, state, seg_size, overlap, out_format, use_tta, model_dir, output_dir, norm_thresh, amp_thresh, batch_size, ensemble_method, exclude_stems, weights_str, progress) file_list = state["processed_stems"] status = f"Model {model_key} (Model {current_idx + 1}/{len(model_keys)}) completed in {elapsed:.2f}s
Click 'Run Ensemble!' to process the next model.
Processed stems:" return file_list[0] if file_list else None, status, file_list, state except Exception as e: logger.error(f"Ensemble error: {e}") error_msg = f"Processing failed: {e}. Try fewer models (max {max_models}) or uploading a local WAV or video file." raise RuntimeError(error_msg) finally: for temp_file in [temp_audio_path, extracted_audio_path, resampled_audio_path]: if temp_file and os.path.exists(temp_file): try: os.remove(temp_file) logger.info(f"Temporary file deleted: {temp_file}") except Exception as e: logger.warning(f"Failed to delete temporary file {temp_file}: {e}") if torch.cuda.is_available(): torch.cuda.empty_cache() logger.info("GPU memory cleared") def update_roformer_models(category): choices = list(ROFORMER_MODELS.get(category, {}).keys()) or [] logger.debug(f"Updating roformer models for category {category}: {choices}") return gr.update(choices=choices, value=choices[0] if choices else None) def update_ensemble_models(category): choices = list(ROFORMER_MODELS.get(category, {}).keys()) or [] logger.debug(f"Updating ensemble models for category {category}: {choices}") return gr.update(choices=choices, value=[]) def download_audio_wrapper(url, cookie_file): file_path, status, audio_data = download_audio(url, cookie_file) return file_path, status # Return file_path instead of audio_data def create_interface(): with gr.Blocks(title="🎵 SESA Fast Separation 🎵", css=CSS, elem_id="app-container") as app: gr.Markdown("

🎵 SESA Fast Separation 🎵

") gr.Markdown("**Note**: If YouTube downloads fail, upload a valid cookies file or a local WAV/MP4/MOV file. [Cookie Instructions](https://github.com/yt-dlp/yt-dlp/wiki/Extractors#exporting-youtube-cookies)") gr.Markdown("**Tip**: For best results, use audio/video shorter than 15 minutes or fewer models (up to 6) to ensure smooth processing.") ensemble_state = gr.State(value={ "current_audio": None, "current_model_idx": 0, "processed_stems": [], "model_outputs": {} }) with gr.Tabs(): with gr.Tab("⚙️ Settings"): with gr.Group(elem_classes="dubbing-theme"): gr.Markdown("### General Settings") model_file_dir = gr.Textbox(value="/tmp/audio-separator-models/", label="📂 Model Cache", placeholder="Path to model directory", interactive=True) output_dir = gr.Textbox(value="output", label="📤 Output Directory", placeholder="Where to save results", interactive=True) output_format = gr.Dropdown(value="wav", choices=OUTPUT_FORMATS, label="🎶 Output Format", interactive=True) norm_threshold = gr.Slider(0.1, 1.0, value=0.9, step=0.1, label="🔊 Normalization Threshold", interactive=True) amp_threshold = gr.Slider(0.1, 1.0, value=0.3, step=0.1, label="📈 Amplification Threshold", interactive=True) batch_size = gr.Slider(1, 8, value=1, step=1, label="⚡ Batch Size", interactive=True) with gr.Tab("🎤 Roformer"): with gr.Group(elem_classes="dubbing-theme"): gr.Markdown("### Audio Separation") with gr.Row(): roformer_audio = gr.File(label="🎧 Upload Audio or Video (WAV, MP3, MP4, MOV, etc.)", file_types=['.wav', '.mp3', '.flac', '.ogg', '.opus', '.m4a', '.aiff', '.ac3', '.mp4', '.mov', '.avi', '.mkv', '.flv', '.wmv', '.webm', '.mpeg', '.mpg', '.ts', '.vob'], interactive=True) url_ro = gr.Textbox(label="🔗 Or Paste URL", placeholder="YouTube or audio/video URL", interactive=True) cookies_ro = gr.File(label="🍪 Cookies File", file_types=[".txt"], interactive=True) download_roformer = gr.Button("⬇️ Download", variant="secondary") roformer_download_status = gr.Textbox(label="📢 Download Status", interactive=False) roformer_exclude_stems = gr.Textbox(label="🚫 Exclude Stems", placeholder="e.g., vocals, drums (comma-separated)", interactive=True) with gr.Row(): roformer_category = gr.Dropdown(label="📚 Category", choices=list(ROFORMER_MODELS.keys()), value="General Purpose", interactive=True) roformer_model = gr.Dropdown(label="🛠️ Model", choices=list(ROFORMER_MODELS["General Purpose"].keys()), interactive=True, allow_custom_value=True) with gr.Row(): roformer_seg_size = gr.Slider(32, 512, value=64, step=32, label="📏 Segment Size", interactive=True) roformer_overlap = gr.Slider(2, 10, value=8, step=1, label="🔄 Overlap", interactive=True) with gr.Row(): roformer_pitch_shift = gr.Slider(-12, 12, value=0, step=1, label="🎵 Pitch Shift", interactive=True) roformer_override_seg_size = gr.Dropdown(choices=["True", "False"], value="False", label="🔧 Override Segment Size", interactive=True) roformer_button = gr.Button("✂️ Separate Now!", variant="primary") with gr.Row(): roformer_stem1 = gr.Audio(label="🎸 Stem 1", type="filepath", interactive=False) roformer_stem2 = gr.Audio(label="🥁 Stem 2", type="filepath", interactive=False) roformer_files = gr.File(label="📥 Download Stems", interactive=False) with gr.Tab("🎚️ Auto Ensemble"): with gr.Group(elem_classes="dubbing-theme"): gr.Markdown("### Ensemble Processing") gr.Markdown("Note: If weights are not specified, equal weights (1.0) are applied. Use up to 6 models for best results.") with gr.Row(): ensemble_audio = gr.File(label="🎧 Upload Audio or Video (WAV, MP3, MP4, MOV, etc.)", file_types=['.wav', '.mp3', '.flac', '.ogg', '.opus', '.m4a', '.aiff', '.ac3', '.mp4', '.mov', '.avi', '.mkv', '.flv', '.wmv', '.webm', '.mpeg', '.mpg', '.ts', '.vob'], interactive=True) url_ensemble = gr.Textbox(label="🔗 Or Paste URL", placeholder="YouTube or audio/video URL", interactive=True) cookies_ensemble = gr.File(label="🍪 Cookies File", file_types=[".txt"], interactive=True) download_ensemble = gr.Button("⬇️ Download", variant="secondary") ensemble_download_status = gr.Textbox(label="📢 Download Status", interactive=False) ensemble_exclude_stems = gr.Textbox(label="🚫 Exclude Stems", placeholder="e.g., vocals, drums (comma-separated)", interactive=True) with gr.Row(): ensemble_category = gr.Dropdown(label="📚 Category", choices=list(ROFORMER_MODELS.keys()), value="Instrumentals", interactive=True) ensemble_models = gr.Dropdown(label="🛠️ Models (Max 6)", choices=list(ROFORMER_MODELS["Instrumentals"].keys()), multiselect=True, interactive=True, allow_custom_value=True) with gr.Row(): ensemble_seg_size = gr.Slider(32, 512, value=64, step=32, label="📏 Segment Size", interactive=True) ensemble_overlap = gr.Slider(2, 10, value=8, step=1, label="🔄 Overlap", interactive=True) ensemble_use_tta = gr.Dropdown(choices=["True", "False"], value="False", label="🔍 Use TTA", interactive=True) ensemble_method = gr.Dropdown(label="⚙️ Ensemble Method", choices=['avg_wave', 'median_wave', 'max_wave', 'min_wave', 'avg_fft', 'median_fft', 'max_fft', 'min_fft'], value='avg_wave', interactive=True) ensemble_weights = gr.Textbox(label="⚖️ Weights", placeholder="e.g., 1.0, 1.0, 1.0 (comma-separated)", interactive=True) ensemble_button = gr.Button("🎛️ Run Ensemble!", variant="primary") ensemble_output = gr.Audio(label="🎶 Ensemble Result", type="filepath", interactive=False) ensemble_status = gr.HTML(label="📢 Status") ensemble_files = gr.File(label="📥 Download Ensemble and Stems", interactive=False) gr.HTML("") roformer_category.change(update_roformer_models, inputs=[roformer_category], outputs=[roformer_model]) download_roformer.click( fn=download_audio_wrapper, inputs=[url_ro, cookies_ro], outputs=[roformer_audio, roformer_download_status] ) roformer_button.click( fn=roformer_separator, inputs=[ roformer_audio, roformer_model, roformer_seg_size, roformer_override_seg_size, roformer_overlap, roformer_pitch_shift, model_file_dir, output_dir, output_format, norm_threshold, amp_threshold, batch_size, roformer_exclude_stems ], outputs=[roformer_stem1, roformer_stem2, roformer_files] ) ensemble_category.change(update_ensemble_models, inputs=[ensemble_category], outputs=[ensemble_models]) download_ensemble.click( fn=download_audio_wrapper, inputs=[url_ensemble, cookies_ensemble], outputs=[ensemble_audio, ensemble_download_status] ) ensemble_button.click( fn=auto_ensemble_process, inputs=[ ensemble_audio, ensemble_models, ensemble_state, ensemble_seg_size, ensemble_overlap, output_format, ensemble_use_tta, model_file_dir, output_dir, norm_threshold, amp_threshold, batch_size, ensemble_method, ensemble_exclude_stems, ensemble_weights ], outputs=[ensemble_output, ensemble_status, ensemble_files, ensemble_state] ) return app if __name__ == "__main__": parser = argparse.ArgumentParser(description="Music Source Separation Web UI") parser.add_argument("--port", type=int, default=7860, help="Port to run the UI on") args = parser.parse_args() app = create_interface() try: app.launch(server_name="0.0.0.0", server_port=args.port, share=True) except Exception as e: logger.error(f"Failed to launch UI: {e}") raise finally: app.close()