ASesYusuf1's picture
Update app.py
a870444 verified
raw
history blame
51.1 kB
from typing import Optional, Any
import os
import sys
import torch
import logging
import yt_dlp
from yt_dlp import YoutubeDL
import gradio as gr
import argparse
from audio_separator.separator import Separator
import numpy as np
import librosa
import soundfile as sf
from ensemble import ensemble_files
import shutil
import gradio_client.utils as client_utils
import matchering as mg
import gdown
from pydub import AudioSegment
import gc
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
from threading import Lock
import scipy.io.wavfile
import subprocess
import spaces
# Logging setup
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Gradio JSON schema patch
original_json_schema_to_python_type = client_utils._json_schema_to_python_type
def patched_json_schema_to_python_type(schema: Any, defs: Optional[dict] = None) -> str:
logger.debug(f"Parsing schema: {schema}")
if isinstance(schema, bool):
logger.info("Found boolean schema, returning 'boolean'")
return "boolean"
if not isinstance(schema, dict):
logger.warning(f"Unexpected schema type: {type(schema)}, returning 'Any'")
return "Any"
if "enum" in schema and schema.get("type") == "string":
logger.info(f"Handling enum schema: {schema['enum']}")
return f"Literal[{', '.join(repr(e) for e in schema['enum'])}]"
try:
return original_json_schema_to_python_type(schema, defs)
except client_utils.APIInfoParseError as e:
logger.error(f"Failed to parse schema {schema}: {e}")
return "str"
client_utils._json_schema_to_python_type = patched_json_schema_to_python_type
# Device setup
device = "cuda" if torch.cuda.is_available() else "cpu"
use_autocast = device == "cuda"
logger.info(f"Using device: {device}")
# Constants
max_models = 6
max_retries = 2
time_budget = 300 # ZeroGPU için işlem sınırı
gpu_lock = Lock()
# ROFORMER_MODELS and OUTPUT_FORMATS
ROFORMER_MODELS = {
"Vocals": {
'MelBand Roformer | Big Beta 6X by unwa': 'melband_roformer_big_beta6x.ckpt',
'MelBand Roformer Kim | Big Beta 4 FT by unwa': 'melband_roformer_big_beta4.ckpt',
'MelBand Roformer Kim | Big Beta 5e FT by unwa': 'melband_roformer_big_beta5e.ckpt',
'MelBand Roformer | Big Beta 6 by unwa': 'melband_roformer_big_beta6.ckpt',
'MelBand Roformer | Vocals by Kimberley Jensen': 'vocals_mel_band_roformer.ckpt',
'MelBand Roformer Kim | FT 3 by unwa': 'mel_band_roformer_kim_ft3_unwa.ckpt',
'MelBand Roformer Kim | FT by unwa': 'mel_band_roformer_kim_ft_unwa.ckpt',
'MelBand Roformer Kim | FT 2 by unwa': 'mel_band_roformer_kim_ft2_unwa.ckpt',
'MelBand Roformer Kim | FT 2 Bleedless by unwa': 'mel_band_roformer_kim_ft2_bleedless_unwa.ckpt',
'MelBand Roformer | Vocals by becruily': 'mel_band_roformer_vocals_becruily.ckpt',
'MelBand Roformer | Vocals Fullness by Aname': 'mel_band_roformer_vocal_fullness_aname.ckpt',
'BS Roformer | Vocals by Gabox': 'bs_roformer_vocals_gabox.ckpt',
'MelBand Roformer | Vocals by Gabox': 'mel_band_roformer_vocals_gabox.ckpt',
'MelBand Roformer | Vocals FV1 by Gabox': 'mel_band_roformer_vocals_fv1_gabox.ckpt',
'MelBand Roformer | Vocals FV2 by Gabox': 'mel_band_roformer_vocals_fv2_gabox.ckpt',
'MelBand Roformer | Vocals FV3 by Gabox': 'mel_band_roformer_vocals_fv3_gabox.ckpt',
'MelBand Roformer | Vocals FV4 by Gabox': 'mel_band_roformer_vocals_fv4_gabox.ckpt',
'BS Roformer | Chorus Male-Female by Sucial': 'model_chorus_bs_roformer_ep_267_sdr_24.1275.ckpt',
'BS Roformer | Male-Female by aufr33': 'bs_roformer_male_female_by_aufr33_sdr_7.2889.ckpt',
},
"Instrumentals": {
'MelBand Roformer | FVX by Gabox': 'mel_band_roformer_instrumental_fvx_gabox.ckpt',
'MelBand Roformer | INSTV8N by Gabox': 'mel_band_roformer_instrumental_instv8n_gabox.ckpt',
'MelBand Roformer | INSTV8 by Gabox': 'mel_band_roformer_instrumental_instv8_gabox.ckpt',
'MelBand Roformer | INSTV7N by Gabox': 'mel_band_roformer_instrumental_instv7n_gabox.ckpt',
'MelBand Roformer | Instrumental Bleedless V3 by Gabox': 'mel_band_roformer_instrumental_bleedless_v3_gabox.ckpt',
'MelBand Roformer Kim | Inst V1 (E) Plus by Unwa': 'melband_roformer_inst_v1e_plus.ckpt',
'MelBand Roformer Kim | Inst V1 Plus by Unwa': 'melband_roformer_inst_v1_plus.ckpt',
'MelBand Roformer Kim | Inst V1 by Unwa': 'melband_roformer_inst_v1.ckpt',
'MelBand Roformer Kim | Inst V1 (E) by Unwa': 'melband_roformer_inst_v1e.ckpt',
'MelBand Roformer Kim | Inst V2 by Unwa': 'melband_roformer_inst_v2.ckpt',
'MelBand Roformer | Instrumental by becruily': 'mel_band_roformer_instrumental_becruily.ckpt',
'MelBand Roformer | Instrumental by Gabox': 'mel_band_roformer_instrumental_gabox.ckpt',
'MelBand Roformer | Instrumental 2 by Gabox': 'mel_band_roformer_instrumental_2_gabox.ckpt',
'MelBand Roformer | Instrumental 3 by Gabox': 'mel_band_roformer_instrumental_3_gabox.ckpt',
'MelBand Roformer | Instrumental Bleedless V1 by Gabox': 'mel_band_roformer_instrumental_bleedless_v1_gabox.ckpt',
'MelBand Roformer | Instrumental Bleedless V2 by Gabox': 'mel_band_roformer_instrumental_bleedless_v2_gabox.ckpt',
'MelBand Roformer | Instrumental Fullness V1 by Gabox': 'mel_band_roformer_instrumental_fullness_v1_gabox.ckpt',
'MelBand Roformer | Instrumental Fullness V2 by Gabox': 'mel_band_roformer_instrumental_fullness_v2_gabox.ckpt',
'MelBand Roformer | Instrumental Fullness V3 by Gabox': 'mel_band_roformer_instrumental_fullness_v3_gabox.ckpt',
'MelBand Roformer | Instrumental Fullness Noisy V4 by Gabox': 'mel_band_roformer_instrumental_fullness_noise_v4_gabox.ckpt',
'MelBand Roformer | INSTV5 by Gabox': 'mel_band_roformer_instrumental_instv5_gabox.ckpt',
'MelBand Roformer | INSTV5N by Gabox': 'mel_band_roformer_instrumental_instv5n_gabox.ckpt',
'MelBand Roformer | INSTV6 by Gabox': 'mel_band_roformer_instrumental_instv6_gabox.ckpt',
'MelBand Roformer | INSTV6N by Gabox': 'mel_band_roformer_instrumental_instv6n_gabox.ckpt',
'MelBand Roformer | INSTV7 by Gabox': 'mel_band_roformer_instrumental_instv7_gabox.ckpt',
},
"InstVoc Duality": {
'MelBand Roformer Kim | InstVoc Duality V1 by Unwa': 'melband_roformer_instvoc_duality_v1.ckpt',
'MelBand Roformer Kim | InstVoc Duality V2 by Unwa': 'melband_roformer_instvox_duality_v2.ckpt',
},
"De-Reverb": {
'BS-Roformer-De-Reverb': 'deverb_bs_roformer_8_384dim_10depth.ckpt',
'MelBand Roformer | De-Reverb by anvuew': 'dereverb_mel_band_roformer_anvuew_sdr_19.1729.ckpt',
'MelBand Roformer | De-Reverb Less Aggressive by anvuew': 'dereverb_mel_band_roformer_less_aggressive_anvuew_sdr_18.8050.ckpt',
'MelBand Roformer | De-Reverb Mono by anvuew': 'dereverb_mel_band_roformer_mono_anvuew.ckpt',
'MelBand Roformer | De-Reverb Big by Sucial': 'dereverb_big_mbr_ep_362.ckpt',
'MelBand Roformer | De-Reverb Super Big by Sucial': 'dereverb_super_big_mbr_ep_346.ckpt',
'MelBand Roformer | De-Reverb-Echo by Sucial': 'dereverb-echo_mel_band_roformer_sdr_10.0169.ckpt',
'MelBand Roformer | De-Reverb-Echo V2 by Sucial': 'dereverb-echo_mel_band_roformer_sdr_13.4843_v2.ckpt',
'MelBand Roformer | De-Reverb-Echo Fused by Sucial': 'dereverb_echo_mbr_fused.ckpt',
},
"Denoise": {
'Mel-Roformer-Denoise-Aufr33': 'denoise_mel_band_roformer_aufr33_sdr_27.9959.ckpt',
'Mel-Roformer-Denoise-Aufr33-Aggr': 'denoise_mel_band_roformer_aufr33_aggr_sdr_27.9768.ckpt',
'MelBand Roformer | Denoise-Debleed by Gabox': 'mel_band_roformer_denoise_debleed_gabox.ckpt',
'MelBand Roformer | Bleed Suppressor V1 by unwa-97chris': 'mel_band_roformer_bleed_suppressor_v1.ckpt',
},
"Karaoke": {
'Mel-Roformer-Karaoke-Aufr33-Viperx': 'mel_band_roformer_karaoke_aufr33_viperx_sdr_10.1956.ckpt',
'MelBand Roformer | Karaoke by Gabox': 'mel_band_roformer_karaoke_gabox.ckpt',
'MelBand Roformer | Karaoke by becruily': 'mel_band_roformer_karaoke_becruily.ckpt',
},
"General Purpose": {
'BS-Roformer-Viperx-1297': 'model_bs_roformer_ep_317_sdr_12.9755.ckpt',
'BS-Roformer-Viperx-1296': 'model_bs_roformer_ep_368_sdr_12.9628.ckpt',
'BS-Roformer-Viperx-1053': 'model_bs_roformer_ep_937_sdr_10.5309.ckpt',
'Mel-Roformer-Viperx-1143': 'model_mel_band_roformer_ep_3005_sdr_11.4360.ckpt',
'Mel-Roformer-Crowd-Aufr33-Viperx': 'mel_band_roformer_crowd_aufr33_viperx_sdr_8.7144.ckpt',
'MelBand Roformer Kim | SYHFT by SYH99999': 'MelBandRoformerSYHFT.ckpt',
'MelBand Roformer Kim | SYHFT V2 by SYH99999': 'MelBandRoformerSYHFTV2.ckpt',
'MelBand Roformer Kim | SYHFT V2.5 by SYH99999': 'MelBandRoformerSYHFTV2.5.ckpt',
'MelBand Roformer Kim | SYHFT V3 by SYH99999': 'MelBandRoformerSYHFTV3Epsilon.ckpt',
'MelBand Roformer Kim | Big SYHFT V1 by SYH99999': 'MelBandRoformerBigSYHFTV1.ckpt',
'MelBand Roformer | Aspiration by Sucial': 'aspiration_mel_band_roformer_sdr_18.9845.ckpt',
'MelBand Roformer | Aspiration Less Aggressive by Sucial': 'aspiration_mel_band_roformer_less_aggr_sdr_18.1201.ckpt',
}
}
OUTPUT_FORMATS = ['wav', 'flac', 'mp3', 'ogg', 'opus', 'm4a', 'aiff', 'ac3']
# CSS (orijinal CSS korundu)
CSS = """
body {
background: linear-gradient(to bottom, rgba(45, 11, 11, 0.9), rgba(0, 0, 0, 0.8)), url('/content/logo.jpg') no-repeat center center fixed;
background-size: cover;
min-height: 100vh;
margin: 0;
padding: 1rem;
font-family: 'Poppins', sans-serif;
color: #C0C0C0;
overflow-x: hidden;
}
.header-text {
text-align: center;
padding: 100px 20px 20px;
color: #ff4040;
font-size: 3rem;
font-weight: 900;
text-shadow: 0 0 10px rgba(255, 64, 64, 0.5);
z-index: 1500;
animation: text-glow 2s infinite;
}
.header-subtitle {
text-align: center;
color: #C0C0C0;
font-size: 1.2rem;
font-weight: 300;
margin-top: -10px;
text-shadow: 0 0 5px rgba(255, 64, 64, 0.3);
}
.gr-tab {
background: rgba(128, 0, 0, 0.5) !important;
border-radius: 12px 12px 0 0 !important;
margin: 0 5px !important;
color: #C0C0C0 !important;
border: 1px solid #ff4040 !important;
z-index: 1500;
transition: background 0.3s ease, color 0.3s ease;
padding: 10px 20px !important;
font-size: 1.1rem !important;
}
button {
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important;
background: #800000 !important;
border: 1px solid #ff4040 !important;
color: #C0C0C0 !important;
border-radius: 8px !important;
padding: 8px 16px !important;
box-shadow: 0 2px 10px rgba(255, 64, 64, 0.3);
}
button:hover {
transform: scale(1.05) !important;
box-shadow: 0 10px 40px rgba(255, 64, 64, 0.7) !important;
background: #ff4040 !important;
}
.compact-upload.horizontal {
display: inline-flex !important;
align-items: center !important;
gap: 8px !important;
max-width: 400px !important;
height: 40px !important;
padding: 0 12px !important;
border: 1px solid #ff4040 !important;
background: rgba(128, 0, 0, 0.5) !important;
border-radius: 8px !important;
}
.compact-dropdown {
padding: 8px 12px !important;
border-radius: 8px !important;
border: 2px solid #ff6b6b !important;
background: rgba(46, 26, 71, 0.7) !important;
color: #e0e0e0 !important;
width: 100%;
font-size: 1rem !important;
transition: border-color 0.3s ease, box-shadow 0.3s ease !important;
position: relative;
z-index: 100;
}
.compact-dropdown:hover {
border-color: #ff8787 !important;
box-shadow: 0 2px 8px rgba(255, 107, 107, 0.4) !important;
}
.compact-dropdown select, .compact-dropdown .gr-dropdown {
background: transparent !important;
color: #e0e0e0 !important;
border: none !important;
width: 100% !important;
padding: 8px !important;
font-size: 1rem !important;
appearance: none !important;
-webkit-appearance: none !important;
-moz-appearance: none !important;
}
.compact-dropdown .gr-dropdown-menu {
background: rgba(46, 26, 71, 0.95) !important;
border: 2px solid #ff6b6b !important;
border-radius: 8px !important;
color: #e0e0e0 !important;
max-height: 300px !important;
overflow-y: auto !important;
z-index: 300 !important;
width: 100% !important;
opacity: 1 !important;
visibility: visible !important;
position: absolute !important;
top: 100% !important;
left: 0 !important;
pointer-events: auto !important;
}
.compact-dropdown:hover .gr-dropdown-menu {
display: block !important;
}
.compact-dropdown .gr-dropdown-menu option {
padding: 8px !important;
color: #e0e0e0 !important;
background: transparent !important;
}
.compact-dropdown .gr-dropdown-menu option:hover {
background: rgba(255, 107, 107, 0.3) !important;
}
#custom-progress {
margin-top: 10px;
padding: 10px;
background: rgba(128, 0, 0, 0.3);
border-radius: 8px;
border: 1px solid #ff4040;
}
#progress-bar {
height: 20px;
background: linear-gradient(to right, #6e8efb, #ff4040);
border-radius: 5px;
transition: width 0.5s ease-in-out;
max-width: 100% !important;
}
.gr-accordion {
background: rgba(128, 0, 0, 0.5) !important;
border-radius: 10px !important;
border: 1px solid #ff4040 !important;
}
.footer {
text-align: center;
padding: 20px;
color: #ff4040;
font-size: 14px;
margin-top: 40px;
background: rgba(128, 0, 0, 0.3);
border-top: 1px solid #ff4040;
}
#log-accordion {
max-height: 400px;
overflow-y: auto;
background: rgba(0, 0, 0, 0.7) !important;
padding: 10px;
border-radius: 8px;
}
@keyframes text-glow {
0% { text-shadow: 0 0 5px rgba(192, 192, 192, 0); }
50% { text-shadow: 0 0 15px rgba(192, 192, 192, 1); }
100% { text-shadow: 0 0 5px rgba(192, 192, 192, 0); }
}
"""
def download_audio(url, cookie_file=None):
"""
Downloads audio from YouTube or Google Drive and converts it to WAV format.
Args:
url (str): URL of the YouTube video or Google Drive file.
cookie_file (file object): File object containing YouTube cookies in Netscape format.
Returns:
tuple: (file_path, message, (sample_rate, data)) or (None, error_message, None)
"""
# Common output directory
os.makedirs('ytdl', exist_ok=True)
# Validate cookie file
cookie_path = None
if cookie_file:
if not hasattr(cookie_file, 'name') or not os.path.exists(cookie_file.name):
return None, "Invalid or missing cookie file. Ensure it's a valid Netscape format .txt file.", None
cookie_path = cookie_file.name
# Check if cookie file is in Netscape format
with open(cookie_path, 'r') as f:
content = f.read()
if not content.startswith('# Netscape HTTP Cookie File'):
return None, "Cookie file is not in Netscape format. See https://github.com/yt-dlp/yt-dlp/wiki/Extractors#exporting-youtube-cookies", None
logger.info(f"Using cookie file: {cookie_path}")
if 'drive.google.com' in url:
return download_from_google_drive(url)
else:
return download_from_youtube(url, cookie_path)
def download_from_youtube(url, cookie_path):
# Common options
base_opts = {
'outtmpl': 'ytdl/%(title)s.%(ext)s',
'user_agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.54 Safari/537.36',
'geo_bypass': True,
'force_ipv4': True,
'referer': 'https://www.youtube.com/',
'noplaylist': True,
'cookiefile': cookie_path,
'extractor_retries': 5,
'ignoreerrors': False,
'no_check_certificate': True,
'verbose': True,
}
# Strategy 1: Video+audio (best quality)
try:
logger.info("Attempting video+audio download")
ydl_opts = base_opts.copy()
ydl_opts.update({
'format': 'bestvideo+bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
}],
'merge_output_format': 'mp4',
})
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(url, download=True)
file_path = ydl.prepare_filename(info_dict).rsplit('.', 1)[0] + '.wav'
if os.path.exists(file_path):
sample_rate, data = scipy.io.wavfile.read(file_path)
return file_path, "YouTube video+audio download successful", (sample_rate, data)
else:
logger.warning("Video+audio download succeeded but output file missing")
except Exception as e:
logger.warning(f"Video+audio download failed: {str(e)}")
# Strategy 2: Audio-only (best quality)
try:
logger.info("Attempting audio-only download")
ydl_opts = base_opts.copy()
ydl_opts.update({
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
}],
})
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(url, download=True)
file_path = ydl.prepare_filename(info_dict).rsplit('.', 1)[0] + '.wav'
if os.path.exists(file_path):
sample_rate, data = scipy.io.wavfile.read(file_path)
return file_path, "YouTube audio-only download successful", (sample_rate, data)
else:
logger.warning("Audio-only download succeeded but output file missing")
except Exception as e:
logger.warning(f"Audio-only download failed: {str(e)}")
# Strategy 3: Specific format IDs (common audio formats)
format_ids = [
'140', # m4a 128k
'139', # m4a 48k
'251', # webm 160k (opus)
'250', # webm 70k (opus)
'249', # webm 50k (opus)
]
for fid in format_ids:
try:
logger.info(f"Attempting download with format ID: {fid}")
ydl_opts = base_opts.copy()
ydl_opts.update({
'format': fid,
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
}],
})
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(url, download=True)
file_path = ydl.prepare_filename(info_dict).rsplit('.', 1)[0] + '.wav'
if os.path.exists(file_path):
sample_rate, data = scipy.io.wavfile.read(file_path)
return file_path, f"Download successful with format {fid}", (sample_rate, data)
except Exception as e:
logger.warning(f"Download with format {fid} failed: {str(e)}")
# Strategy 4: Direct URL extraction
try:
logger.info("Attempting direct URL extraction")
ydl_opts = base_opts.copy()
ydl_opts.update({
'format': 'best',
'forceurl': True,
'quiet': True,
})
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(url, download=False)
direct_url = info_dict.get('url')
if direct_url:
temp_path = 'ytdl/direct_audio.wav'
ffmpeg_command = [
"ffmpeg", "-i", direct_url, "-c", "copy", temp_path
]
subprocess.run(ffmpeg_command, check=True, capture_output=True, text=True)
if os.path.exists(temp_path):
sample_rate, data = scipy.io.wavfile.read(temp_path)
return temp_path, "Direct URL download successful", (sample_rate, data)
except Exception as e:
logger.warning(f"Direct URL extraction failed: {str(e)}")
return None, "All download strategies failed. This video may not be available in your region or requires authentication.", None
def download_from_google_drive(url):
temp_output_path = 'ytdl/gdrive_temp_audio'
output_path = 'ytdl/gdrive_audio.wav'
try:
# Extract file ID from URL
file_id = url.split('/d/')[1].split('/')[0]
download_url = f'https://drive.google.com/uc?id={file_id}'
# Download file
gdown.download(download_url, temp_output_path, quiet=False)
if not os.path.exists(temp_output_path):
return None, "Google Drive downloaded file not found", None
# Convert to WAV
audio = AudioSegment.from_file(temp_output_path)
audio.export(output_path, format="wav")
sample_rate, data = scipy.io.wavfile.read(output_path)
return output_path, "Google Drive audio download and conversion successful", (sample_rate, data)
except Exception as e:
return None, f"Failed to process Google Drive file: {str(e)}. Ensure the file contains audio (e.g., MP3, WAV, or video with audio track).", None
finally:
if os.path.exists(temp_output_path):
try:
os.remove(temp_output_path)
logger.info(f"Temporary file deleted: {temp_output_path}")
except Exception as e:
logger.warning(f"Failed to delete temporary file {temp_output_path}: {str(e)}")
@spaces.GPU(duration=60)
def roformer_separator(audio, model_key, seg_size, override_seg_size, overlap, pitch_shift, model_dir, output_dir, out_format, norm_thresh, amp_thresh, batch_size, exclude_stems="", progress=gr.Progress(track_tqdm=True)):
if not audio:
raise ValueError("No audio or video file provided.")
temp_audio_path = None
extracted_audio_path = None
try:
file_extension = os.path.splitext(audio)[1].lower().lstrip('.')
supported_formats = ['wav', 'mp3', 'flac', 'ogg', 'opus', 'm4a', 'aiff', 'ac3', 'mp4', 'mov', 'avi', 'mkv', 'flv', 'wmv', 'webm', 'mpeg', 'mpg', 'ts', 'vob']
if file_extension not in supported_formats:
raise ValueError(f"Unsupported file format: {file_extension}. Supported formats: {', '.join(supported_formats)}")
audio_to_process = audio
if file_extension in ['mp4', 'mov', 'avi', 'mkv', 'flv', 'wmv', 'webm', 'mpeg', 'mpg', 'ts', 'vob']:
extracted_audio_path = os.path.join("/tmp", f"extracted_audio_{os.path.basename(audio)}.wav")
logger.info(f"Extracting audio from video file: {audio}")
ffmpeg_command = [
"ffmpeg", "-i", audio, "-vn", "-acodec", "pcm_s16le", "-ar", "44100", "-ac", "2",
extracted_audio_path, "-y"
]
try:
subprocess.run(ffmpeg_command, check=True, capture_output=True, text=True)
logger.info(f"Audio extracted to: {extracted_audio_path}")
audio_to_process = extracted_audio_path
except subprocess.CalledProcessError as e:
error_message = e.stderr.decode() if e.stderr else str(e)
if "No audio stream" in error_message:
raise RuntimeError("The provided video file does not contain an audio track.")
elif "Invalid data" in error_message:
raise RuntimeError("The video file is corrupted or not supported.")
else:
raise RuntimeError(f"Failed to extract audio from video: {error_message}")
if isinstance(audio_to_process, tuple):
sample_rate, data = audio_to_process
temp_audio_path = os.path.join("/tmp", "temp_audio.wav")
scipy.io.wavfile.write(temp_audio_path, sample_rate, data)
audio_to_process = temp_audio_path
if seg_size > 512:
logger.warning(f"Segment size {seg_size} is large, this may cause issues.")
override_seg_size = override_seg_size == "True"
if os.path.exists(output_dir):
shutil.rmtree(output_dir)
os.makedirs(output_dir, exist_ok=True)
base_name = os.path.splitext(os.path.basename(audio))[0].replace(' ', '_') # Boşlukları alt çizgi ile değiştir
for category, models in ROFORMER_MODELS.items():
if model_key in models:
model = models[model_key]
break
else:
raise ValueError(f"Model '{model_key}' not found.")
logger.info(f"Separating {base_name} with {model_key} on {device}")
separator = Separator(
log_level=logging.INFO,
model_file_dir=model_dir,
output_dir=output_dir,
output_format=out_format,
normalization_threshold=norm_thresh,
amplification_threshold=amp_thresh,
use_autocast=use_autocast,
mdxc_params={"segment_size": seg_size, "override_model_segment_size": override_seg_size, "batch_size": batch_size, "overlap": overlap, "pitch_shift": pitch_shift}
)
progress(0.2, desc="Loading model...")
separator.load_model(model_filename=model)
progress(0.7, desc="Separating audio...")
separation = separator.separate(audio_to_process)
stems = [os.path.join(output_dir, file_name) for file_name in separation]
file_list = []
if exclude_stems.strip():
excluded = [s.strip().lower() for s in exclude_stems.split(',')]
filtered_stems = [stem for stem in stems if not any(ex in os.path.basename(stem).lower() for ex in excluded)]
file_list = filtered_stems
stem1 = filtered_stems[0] if filtered_stems else None
stem2 = filtered_stems[1] if len(filtered_stems) > 1 else None
else:
file_list = stems
stem1 = stems[0]
stem2 = stems[1] if len(stems) > 1 else None
return stem1, stem2, file_list
except Exception as e:
logger.error(f"Separation error: {e}")
raise RuntimeError(f"Separation error: {e}")
finally:
if temp_audio_path and os.path.exists(temp_audio_path):
try:
os.remove(temp_audio_path)
logger.info(f"Temporary file deleted: {temp_audio_path}")
except Exception as e:
logger.warning(f"Failed to delete temporary file {temp_audio_path}: {e}")
if extracted_audio_path and os.path.exists(extracted_audio_path):
try:
os.remove(extracted_audio_path)
logger.info(f"Extracted audio file deleted: {extracted_audio_path}")
except Exception as e:
logger.warning(f"Failed to delete extracted audio file {extracted_audio_path}: {e}")
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.info("GPU memory cleared")
@spaces.GPU(duration=60)
def auto_ensemble_process(audio, model_keys, state, seg_size=64, overlap=0.1, out_format="wav", use_tta="False", model_dir="/tmp/audio-separator-models/", output_dir="output", norm_thresh=0.9, amp_thresh=0.9, batch_size=1, ensemble_method="avg_wave", exclude_stems="", weights_str="", progress=gr.Progress(track_tqdm=True)):
temp_audio_path = None
extracted_audio_path = None
resampled_audio_path = None
start_time = time.time()
try:
if not audio:
raise ValueError("No audio or video file provided.")
if not model_keys:
raise ValueError("No models selected.")
if len(model_keys) > max_models:
logger.warning(f"Selected {len(model_keys)} models, limiting to {max_models}.")
model_keys = model_keys[:max_models]
file_extension = os.path.splitext(audio)[1].lower().lstrip('.')
supported_formats = ['wav', 'mp3', 'flac', 'ogg', 'opus', 'm4a', 'aiff', 'ac3', 'mp4', 'mov', 'avi', 'mkv', 'flv', 'wmv', 'webm', 'mpeg', 'mpg', 'ts', 'vob']
if file_extension not in supported_formats:
raise ValueError(f"Unsupported file format: {file_extension}. Supported formats: {', '.join(supported_formats)}")
audio_to_process = audio
if file_extension in ['mp4', 'mov', 'avi', 'mkv', 'flv', 'wmv', 'webm', 'mpeg', 'mpg', 'ts', 'vob']:
extracted_audio_path = os.path.join("/tmp", f"extracted_audio_{os.path.basename(audio)}.wav")
logger.info(f"Extracting audio from video file: {audio}")
ffmpeg_command = [
"ffmpeg", "-i", audio, "-vn", "-acodec", "pcm_s16le", "-ar", "48000", "-ac", "2",
extracted_audio_path, "-y"
]
try:
subprocess.run(ffmpeg_command, check=True, capture_output=True, text=True)
logger.info(f"Audio extracted to: {extracted_audio_path}")
audio_to_process = extracted_audio_path
except subprocess.CalledProcessError as e:
error_message = e.stderr.decode() if e.stderr else str(e)
if "No audio stream" in error_message:
raise RuntimeError("The provided video file does not contain an audio track.")
elif "Invalid data" in error_message:
raise RuntimeError("The video file is corrupted or not supported.")
else:
raise RuntimeError(f"Failed to extract audio from video: {error_message}")
# Load audio and resample to 48 kHz
audio_data, sr = librosa.load(audio_to_process, sr=None, mono=False)
logger.info(f"Original sample rate: {sr} Hz, Audio duration: {librosa.get_duration(y=audio_data, sr=sr):.2f} seconds")
if sr != 48000:
logger.info(f"Resampling audio from {sr} Hz to 48000 Hz")
resampled_audio_path = os.path.join("/tmp", f"resampled_audio_{os.path.basename(audio)}.wav")
waveform, _ = torchaudio.load(audio_to_process)
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=48000)
resampled_waveform = resampler(waveform)
torchaudio.save(resampled_audio_path, resampled_waveform, 48000)
audio_to_process = resampled_audio_path
audio_data, sr = librosa.load(audio_to_process, sr=None, mono=False)
logger.info(f"Resampled audio saved to: {resampled_audio_path}, new sample rate: {sr} Hz")
duration = librosa.get_duration(y=audio_data, sr=sr)
dynamic_batch_size = max(1, min(4, 1 + int(900 / (duration + 1)) - len(model_keys) // 2))
logger.info(f"Using batch size: {dynamic_batch_size} for {len(model_keys)} models, duration {duration:.2f}s")
if isinstance(audio_to_process, tuple):
sample_rate, data = audio_to_process
temp_audio_path = os.path.join("/tmp", "temp_audio.wav")
scipy.io.wavfile.write(temp_audio_path, sample_rate, data)
audio_to_process = temp_audio_path
if not state:
state = {
"current_audio": None,
"current_model_idx": 0,
"processed_stems": [],
"model_outputs": {}
}
if state["current_audio"] != audio:
state["current_audio"] = audio
state["current_model_idx"] = 0
state["processed_stems"] = []
state["model_outputs"] = {model_key: {"vocals": [], "other": []} for model_key in model_keys}
logger.info("New audio detected, resetting ensemble state.")
use_tta = use_tta == "True"
base_name = os.path.splitext(os.path.basename(audio))[0].replace(' ', '_') # Boşlukları alt çizgi ile değiştir
logger.info(f"Ensemble for {base_name} with {model_keys} on {device}")
permanent_output_dir = os.path.join(output_dir, "permanent_stems")
os.makedirs(permanent_output_dir, exist_ok=True)
model_cache = {}
all_stems = []
total_tasks = len(model_keys)
current_idx = state["current_model_idx"]
logger.info(f"Current model index: {current_idx}, total models: {len(model_keys)}")
if current_idx >= len(model_keys):
logger.info("All models processed, running ensemble...")
progress(0.9, desc="Running ensemble...")
excluded_stems_list = [s.strip().lower() for s in exclude_stems.split(',')] if exclude_stems.strip() else []
for model_key, stems_dict in state["model_outputs"].items():
for stem_type in ["vocals", "other"]:
if stems_dict[stem_type]:
if stem_type.lower() in excluded_stems_list:
logger.info(f"Excluding {stem_type} for {model_key} from ensemble")
continue
all_stems.extend(stems_dict[stem_type])
all_stems = [stem for stem in all_stems if os.path.exists(stem)]
if not all_stems:
raise ValueError("No valid stems found for ensemble after excluding specified stems.")
weights = [float(w.strip()) for w in weights_str.split(',')] if weights_str.strip() else [1.0] * len(all_stems)
if len(weights) != len(all_stems):
weights = [1.0] * len(all_stems)
logger.info("Weights mismatched, defaulting to 1.0")
output_file = os.path.join(output_dir, f"{base_name}_ensemble_{ensemble_method}.{out_format}")
ensemble_args = [
"--files", *all_stems,
"--type", ensemble_method,
"--weights", *[str(w) for w in weights],
"--output", output_file
]
logger.info(f"Running ensemble with args: {ensemble_args}")
result = ensemble_files(ensemble_args)
if result is None or not os.path.exists(output_file):
raise RuntimeError(f"Ensemble failed, output file not created: {output_file}")
state["current_model_idx"] = 0
state["current_audio"] = None
state["processed_stems"] = []
state["model_outputs"] = {}
elapsed = time.time() - start_time
logger.info(f"Ensemble completed, output: {output_file}, took {elapsed:.2f}s")
progress(1.0, desc="Ensemble completed")
status = f"Ensemble completed with {ensemble_method}, excluded: {exclude_stems if exclude_stems else 'None'}, {len(model_keys)} models in {elapsed:.2f}s<br>Download files:<ul>"
file_list = [output_file] + all_stems
for file in file_list:
file_name = os.path.basename(file)
status += f"<li><a href='file={file}' download>{file_name}</a></li>"
status += "</ul>"
return output_file, status, file_list, state
model_key = model_keys[current_idx]
logger.info(f"Processing model {current_idx + 1}/{len(model_keys)}: {model_key}")
progress(0.1, desc=f"Processing model {model_key}...")
with torch.no_grad():
for attempt in range(max_retries + 1):
try:
for category, models in ROFORMER_MODELS.items():
if model_key in models:
model = models[model_key]
break
else:
logger.warning(f"Model {model_key} not found, skipping")
state["current_model_idx"] += 1
return None, f"Model {model_key} not found, proceeding to next model.", [], state
elapsed = time.time() - start_time
if elapsed > time_budget:
logger.error(f"Time budget ({time_budget}s) exceeded")
raise TimeoutError("Processing took too long")
if model_key not in model_cache:
logger.info(f"Loading {model_key} into cache")
separator = Separator(
log_level=logging.INFO,
model_file_dir=model_dir,
output_dir=output_dir,
output_format=out_format,
normalization_threshold=norm_thresh,
amplification_threshold=amp_thresh,
use_autocast=use_autocast,
mdxc_params={
"segment_size": seg_size,
"overlap": overlap,
"use_tta": use_tta,
"batch_size": dynamic_batch_size
}
)
separator.load_model(model_filename=model)
model_cache[model_key] = separator
else:
separator = model_cache[model_key]
with gpu_lock:
progress(0.3, desc=f"Separating with {model_key}")
logger.info(f"Separating with {model_key}")
separation = separator.separate(audio_to_process)
stems = [os.path.join(output_dir, file_name) for file_name in separation]
result = []
for stem in stems:
stem_type = "vocals" if "vocals" in os.path.basename(stem).lower() else "other"
permanent_stem_path = os.path.join(permanent_output_dir, f"{base_name}_{stem_type}_{model_key.replace(' | ', '_').replace(' ', '_')}.{out_format}")
shutil.copy(stem, permanent_stem_path)
state["model_outputs"][model_key][stem_type].append(permanent_stem_path)
if stem_type not in exclude_stems.lower():
result.append(permanent_stem_path)
state["processed_stems"].extend(result)
break
except Exception as e:
logger.error(f"Error processing {model_key}, attempt {attempt + 1}/{max_retries + 1}: {e}")
if attempt == max_retries:
logger.error(f"Max retries reached for {model_key}, skipping")
state["current_model_idx"] += 1
return None, f"Failed to process {model_key} after {max_retries} attempts.", [], state
time.sleep(1)
finally:
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.info(f"Cleared CUDA cache after {model_key}")
model_cache.clear()
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.info("Cleared model cache and GPU memory")
state["current_model_idx"] += 1
elapsed = time.time() - start_time
logger.info(f"Model {model_key} completed in {elapsed:.2f}s")
if state["current_model_idx"] >= len(model_keys):
logger.info("Last model processed, running ensemble immediately...")
return auto_ensemble_process(audio, model_keys, state, seg_size, overlap, out_format, use_tta, model_dir, output_dir, norm_thresh, amp_thresh, batch_size, ensemble_method, exclude_stems, weights_str, progress)
file_list = state["processed_stems"]
status = f"Model {model_key} (Model {current_idx + 1}/{len(model_keys)}) completed in {elapsed:.2f}s<br>Click 'Run Ensemble!' to process the next model.<br>Processed stems:<ul>"
for file in file_list:
file_name = os.path.basename(file)
status += f"<li><a href='file={file}' download>{file_name}</a></li>"
status += "</ul>"
return file_list[0] if file_list else None, status, file_list, state
except Exception as e:
logger.error(f"Ensemble error: {e}")
error_msg = f"Processing failed: {e}. Try fewer models (max {max_models}) or uploading a local WAV or video file."
raise RuntimeError(error_msg)
finally:
for temp_file in [temp_audio_path, extracted_audio_path, resampled_audio_path]:
if temp_file and os.path.exists(temp_file):
try:
os.remove(temp_file)
logger.info(f"Temporary file deleted: {temp_file}")
except Exception as e:
logger.warning(f"Failed to delete temporary file {temp_file}: {e}")
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.info("GPU memory cleared")
def update_roformer_models(category):
choices = list(ROFORMER_MODELS.get(category, {}).keys()) or []
logger.debug(f"Updating roformer models for category {category}: {choices}")
return gr.update(choices=choices, value=choices[0] if choices else None)
def update_ensemble_models(category):
choices = list(ROFORMER_MODELS.get(category, {}).keys()) or []
logger.debug(f"Updating ensemble models for category {category}: {choices}")
return gr.update(choices=choices, value=[])
def download_audio_wrapper(url, cookie_file):
file_path, status, audio_data = download_audio(url, cookie_file)
return file_path, status # Return file_path instead of audio_data
def create_interface():
with gr.Blocks(title="🎡 SESA Fast Separation 🎡", css=CSS, elem_id="app-container") as app:
gr.Markdown("<h1 class='header-text'>🎡 SESA Fast Separation 🎡</h1>")
gr.Markdown("**Note**: If YouTube downloads fail, upload a valid cookies file or a local WAV/MP4/MOV file. [Cookie Instructions](https://github.com/yt-dlp/yt-dlp/wiki/Extractors#exporting-youtube-cookies)")
gr.Markdown("**Tip**: For best results, use audio/video shorter than 15 minutes or fewer models (up to 6) to ensure smooth processing.")
ensemble_state = gr.State(value={
"current_audio": None,
"current_model_idx": 0,
"processed_stems": [],
"model_outputs": {}
})
with gr.Tabs():
with gr.Tab("βš™οΈ Settings"):
with gr.Group(elem_classes="dubbing-theme"):
gr.Markdown("### General Settings")
model_file_dir = gr.Textbox(value="/tmp/audio-separator-models/", label="πŸ“‚ Model Cache", placeholder="Path to model directory", interactive=True)
output_dir = gr.Textbox(value="output", label="πŸ“€ Output Directory", placeholder="Where to save results", interactive=True)
output_format = gr.Dropdown(value="wav", choices=OUTPUT_FORMATS, label="🎢 Output Format", interactive=True)
norm_threshold = gr.Slider(0.1, 1.0, value=0.9, step=0.1, label="πŸ”Š Normalization Threshold", interactive=True)
amp_threshold = gr.Slider(0.1, 1.0, value=0.3, step=0.1, label="πŸ“ˆ Amplification Threshold", interactive=True)
batch_size = gr.Slider(1, 8, value=1, step=1, label="⚑ Batch Size", interactive=True)
with gr.Tab("🎀 Roformer"):
with gr.Group(elem_classes="dubbing-theme"):
gr.Markdown("### Audio Separation")
with gr.Row():
roformer_audio = gr.File(label="🎧 Upload Audio or Video (WAV, MP3, MP4, MOV, etc.)", file_types=['.wav', '.mp3', '.flac', '.ogg', '.opus', '.m4a', '.aiff', '.ac3', '.mp4', '.mov', '.avi', '.mkv', '.flv', '.wmv', '.webm', '.mpeg', '.mpg', '.ts', '.vob'], interactive=True)
url_ro = gr.Textbox(label="πŸ”— Or Paste URL", placeholder="YouTube or audio/video URL", interactive=True)
cookies_ro = gr.File(label="πŸͺ Cookies File", file_types=[".txt"], interactive=True)
download_roformer = gr.Button("⬇️ Download", variant="secondary")
roformer_download_status = gr.Textbox(label="πŸ“’ Download Status", interactive=False)
roformer_exclude_stems = gr.Textbox(label="🚫 Exclude Stems", placeholder="e.g., vocals, drums (comma-separated)", interactive=True)
with gr.Row():
roformer_category = gr.Dropdown(label="πŸ“š Category", choices=list(ROFORMER_MODELS.keys()), value="General Purpose", interactive=True)
roformer_model = gr.Dropdown(label="πŸ› οΈ Model", choices=list(ROFORMER_MODELS["General Purpose"].keys()), interactive=True, allow_custom_value=True)
with gr.Row():
roformer_seg_size = gr.Slider(32, 512, value=64, step=32, label="πŸ“ Segment Size", interactive=True)
roformer_overlap = gr.Slider(2, 10, value=8, step=1, label="πŸ”„ Overlap", interactive=True)
with gr.Row():
roformer_pitch_shift = gr.Slider(-12, 12, value=0, step=1, label="🎡 Pitch Shift", interactive=True)
roformer_override_seg_size = gr.Dropdown(choices=["True", "False"], value="False", label="πŸ”§ Override Segment Size", interactive=True)
roformer_button = gr.Button("βœ‚οΈ Separate Now!", variant="primary")
with gr.Row():
roformer_stem1 = gr.Audio(label="🎸 Stem 1", type="filepath", interactive=False)
roformer_stem2 = gr.Audio(label="πŸ₯ Stem 2", type="filepath", interactive=False)
roformer_files = gr.File(label="πŸ“₯ Download Stems", interactive=False)
with gr.Tab("🎚️ Auto Ensemble"):
with gr.Group(elem_classes="dubbing-theme"):
gr.Markdown("### Ensemble Processing")
gr.Markdown("Note: If weights are not specified, equal weights (1.0) are applied. Use up to 6 models for best results.")
with gr.Row():
ensemble_audio = gr.File(label="🎧 Upload Audio or Video (WAV, MP3, MP4, MOV, etc.)", file_types=['.wav', '.mp3', '.flac', '.ogg', '.opus', '.m4a', '.aiff', '.ac3', '.mp4', '.mov', '.avi', '.mkv', '.flv', '.wmv', '.webm', '.mpeg', '.mpg', '.ts', '.vob'], interactive=True)
url_ensemble = gr.Textbox(label="πŸ”— Or Paste URL", placeholder="YouTube or audio/video URL", interactive=True)
cookies_ensemble = gr.File(label="πŸͺ Cookies File", file_types=[".txt"], interactive=True)
download_ensemble = gr.Button("⬇️ Download", variant="secondary")
ensemble_download_status = gr.Textbox(label="πŸ“’ Download Status", interactive=False)
ensemble_exclude_stems = gr.Textbox(label="🚫 Exclude Stems", placeholder="e.g., vocals, drums (comma-separated)", interactive=True)
with gr.Row():
ensemble_category = gr.Dropdown(label="πŸ“š Category", choices=list(ROFORMER_MODELS.keys()), value="Instrumentals", interactive=True)
ensemble_models = gr.Dropdown(label="πŸ› οΈ Models (Max 6)", choices=list(ROFORMER_MODELS["Instrumentals"].keys()), multiselect=True, interactive=True, allow_custom_value=True)
with gr.Row():
ensemble_seg_size = gr.Slider(32, 512, value=64, step=32, label="πŸ“ Segment Size", interactive=True)
ensemble_overlap = gr.Slider(2, 10, value=8, step=1, label="πŸ”„ Overlap", interactive=True)
ensemble_use_tta = gr.Dropdown(choices=["True", "False"], value="False", label="πŸ” Use TTA", interactive=True)
ensemble_method = gr.Dropdown(label="βš™οΈ Ensemble Method", choices=['avg_wave', 'median_wave', 'max_wave', 'min_wave', 'avg_fft', 'median_fft', 'max_fft', 'min_fft'], value='avg_wave', interactive=True)
ensemble_weights = gr.Textbox(label="βš–οΈ Weights", placeholder="e.g., 1.0, 1.0, 1.0 (comma-separated)", interactive=True)
ensemble_button = gr.Button("πŸŽ›οΈ Run Ensemble!", variant="primary")
ensemble_output = gr.Audio(label="🎢 Ensemble Result", type="filepath", interactive=False)
ensemble_status = gr.HTML(label="πŸ“’ Status")
ensemble_files = gr.File(label="πŸ“₯ Download Ensemble and Stems", interactive=False)
gr.HTML("<div class='footer'>Powered by Audio-Separator 🌟🎢 | Made with ❀️</div>")
roformer_category.change(update_roformer_models, inputs=[roformer_category], outputs=[roformer_model])
download_roformer.click(
fn=download_audio_wrapper,
inputs=[url_ro, cookies_ro],
outputs=[roformer_audio, roformer_download_status]
)
roformer_button.click(
fn=roformer_separator,
inputs=[
roformer_audio, roformer_model, roformer_seg_size, roformer_override_seg_size,
roformer_overlap, roformer_pitch_shift, model_file_dir, output_dir,
output_format, norm_threshold, amp_threshold, batch_size, roformer_exclude_stems
],
outputs=[roformer_stem1, roformer_stem2, roformer_files]
)
ensemble_category.change(update_ensemble_models, inputs=[ensemble_category], outputs=[ensemble_models])
download_ensemble.click(
fn=download_audio_wrapper,
inputs=[url_ensemble, cookies_ensemble],
outputs=[ensemble_audio, ensemble_download_status]
)
ensemble_button.click(
fn=auto_ensemble_process,
inputs=[
ensemble_audio, ensemble_models, ensemble_state, ensemble_seg_size, ensemble_overlap,
output_format, ensemble_use_tta, model_file_dir, output_dir,
norm_threshold, amp_threshold, batch_size, ensemble_method,
ensemble_exclude_stems, ensemble_weights
],
outputs=[ensemble_output, ensemble_status, ensemble_files, ensemble_state]
)
return app
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Music Source Separation Web UI")
parser.add_argument("--port", type=int, default=7860, help="Port to run the UI on")
args = parser.parse_args()
app = create_interface()
try:
app.launch(server_name="0.0.0.0", server_port=args.port, share=True)
except Exception as e:
logger.error(f"Failed to launch UI: {e}")
raise
finally:
app.close()