Spaces:
Running
on
Zero
Running
on
Zero
from typing import Optional, Any | |
import os | |
import sys | |
import torch | |
import logging | |
import yt_dlp | |
from yt_dlp import YoutubeDL | |
import gradio as gr | |
import argparse | |
from audio_separator.separator import Separator | |
import numpy as np | |
import librosa | |
import soundfile as sf | |
from ensemble import ensemble_files | |
import shutil | |
import gradio_client.utils as client_utils | |
import matchering as mg | |
import gdown | |
from pydub import AudioSegment | |
import gc | |
import time | |
from concurrent.futures import ThreadPoolExecutor, as_completed | |
from threading import Lock | |
import scipy.io.wavfile | |
import subprocess | |
import spaces | |
# Logging setup | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Gradio JSON schema patch | |
original_json_schema_to_python_type = client_utils._json_schema_to_python_type | |
def patched_json_schema_to_python_type(schema: Any, defs: Optional[dict] = None) -> str: | |
logger.debug(f"Parsing schema: {schema}") | |
if isinstance(schema, bool): | |
logger.info("Found boolean schema, returning 'boolean'") | |
return "boolean" | |
if not isinstance(schema, dict): | |
logger.warning(f"Unexpected schema type: {type(schema)}, returning 'Any'") | |
return "Any" | |
if "enum" in schema and schema.get("type") == "string": | |
logger.info(f"Handling enum schema: {schema['enum']}") | |
return f"Literal[{', '.join(repr(e) for e in schema['enum'])}]" | |
try: | |
return original_json_schema_to_python_type(schema, defs) | |
except client_utils.APIInfoParseError as e: | |
logger.error(f"Failed to parse schema {schema}: {e}") | |
return "str" | |
client_utils._json_schema_to_python_type = patched_json_schema_to_python_type | |
# Device setup | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
use_autocast = device == "cuda" | |
logger.info(f"Using device: {device}") | |
# Constants | |
max_models = 6 | |
max_retries = 2 | |
time_budget = 300 # ZeroGPU iΓ§in iΕlem sΔ±nΔ±rΔ± | |
gpu_lock = Lock() | |
# ROFORMER_MODELS and OUTPUT_FORMATS | |
ROFORMER_MODELS = { | |
"Vocals": { | |
'MelBand Roformer | Big Beta 6X by unwa': 'melband_roformer_big_beta6x.ckpt', | |
'MelBand Roformer Kim | Big Beta 4 FT by unwa': 'melband_roformer_big_beta4.ckpt', | |
'MelBand Roformer Kim | Big Beta 5e FT by unwa': 'melband_roformer_big_beta5e.ckpt', | |
'MelBand Roformer | Big Beta 6 by unwa': 'melband_roformer_big_beta6.ckpt', | |
'MelBand Roformer | Vocals by Kimberley Jensen': 'vocals_mel_band_roformer.ckpt', | |
'MelBand Roformer Kim | FT 3 by unwa': 'mel_band_roformer_kim_ft3_unwa.ckpt', | |
'MelBand Roformer Kim | FT by unwa': 'mel_band_roformer_kim_ft_unwa.ckpt', | |
'MelBand Roformer Kim | FT 2 by unwa': 'mel_band_roformer_kim_ft2_unwa.ckpt', | |
'MelBand Roformer Kim | FT 2 Bleedless by unwa': 'mel_band_roformer_kim_ft2_bleedless_unwa.ckpt', | |
'MelBand Roformer | Vocals by becruily': 'mel_band_roformer_vocals_becruily.ckpt', | |
'MelBand Roformer | Vocals Fullness by Aname': 'mel_band_roformer_vocal_fullness_aname.ckpt', | |
'BS Roformer | Vocals by Gabox': 'bs_roformer_vocals_gabox.ckpt', | |
'MelBand Roformer | Vocals by Gabox': 'mel_band_roformer_vocals_gabox.ckpt', | |
'MelBand Roformer | Vocals FV1 by Gabox': 'mel_band_roformer_vocals_fv1_gabox.ckpt', | |
'MelBand Roformer | Vocals FV2 by Gabox': 'mel_band_roformer_vocals_fv2_gabox.ckpt', | |
'MelBand Roformer | Vocals FV3 by Gabox': 'mel_band_roformer_vocals_fv3_gabox.ckpt', | |
'MelBand Roformer | Vocals FV4 by Gabox': 'mel_band_roformer_vocals_fv4_gabox.ckpt', | |
'BS Roformer | Chorus Male-Female by Sucial': 'model_chorus_bs_roformer_ep_267_sdr_24.1275.ckpt', | |
'BS Roformer | Male-Female by aufr33': 'bs_roformer_male_female_by_aufr33_sdr_7.2889.ckpt', | |
}, | |
"Instrumentals": { | |
'MelBand Roformer | FVX by Gabox': 'mel_band_roformer_instrumental_fvx_gabox.ckpt', | |
'MelBand Roformer | INSTV8N by Gabox': 'mel_band_roformer_instrumental_instv8n_gabox.ckpt', | |
'MelBand Roformer | INSTV8 by Gabox': 'mel_band_roformer_instrumental_instv8_gabox.ckpt', | |
'MelBand Roformer | INSTV7N by Gabox': 'mel_band_roformer_instrumental_instv7n_gabox.ckpt', | |
'MelBand Roformer | Instrumental Bleedless V3 by Gabox': 'mel_band_roformer_instrumental_bleedless_v3_gabox.ckpt', | |
'MelBand Roformer Kim | Inst V1 (E) Plus by Unwa': 'melband_roformer_inst_v1e_plus.ckpt', | |
'MelBand Roformer Kim | Inst V1 Plus by Unwa': 'melband_roformer_inst_v1_plus.ckpt', | |
'MelBand Roformer Kim | Inst V1 by Unwa': 'melband_roformer_inst_v1.ckpt', | |
'MelBand Roformer Kim | Inst V1 (E) by Unwa': 'melband_roformer_inst_v1e.ckpt', | |
'MelBand Roformer Kim | Inst V2 by Unwa': 'melband_roformer_inst_v2.ckpt', | |
'MelBand Roformer | Instrumental by becruily': 'mel_band_roformer_instrumental_becruily.ckpt', | |
'MelBand Roformer | Instrumental by Gabox': 'mel_band_roformer_instrumental_gabox.ckpt', | |
'MelBand Roformer | Instrumental 2 by Gabox': 'mel_band_roformer_instrumental_2_gabox.ckpt', | |
'MelBand Roformer | Instrumental 3 by Gabox': 'mel_band_roformer_instrumental_3_gabox.ckpt', | |
'MelBand Roformer | Instrumental Bleedless V1 by Gabox': 'mel_band_roformer_instrumental_bleedless_v1_gabox.ckpt', | |
'MelBand Roformer | Instrumental Bleedless V2 by Gabox': 'mel_band_roformer_instrumental_bleedless_v2_gabox.ckpt', | |
'MelBand Roformer | Instrumental Fullness V1 by Gabox': 'mel_band_roformer_instrumental_fullness_v1_gabox.ckpt', | |
'MelBand Roformer | Instrumental Fullness V2 by Gabox': 'mel_band_roformer_instrumental_fullness_v2_gabox.ckpt', | |
'MelBand Roformer | Instrumental Fullness V3 by Gabox': 'mel_band_roformer_instrumental_fullness_v3_gabox.ckpt', | |
'MelBand Roformer | Instrumental Fullness Noisy V4 by Gabox': 'mel_band_roformer_instrumental_fullness_noise_v4_gabox.ckpt', | |
'MelBand Roformer | INSTV5 by Gabox': 'mel_band_roformer_instrumental_instv5_gabox.ckpt', | |
'MelBand Roformer | INSTV5N by Gabox': 'mel_band_roformer_instrumental_instv5n_gabox.ckpt', | |
'MelBand Roformer | INSTV6 by Gabox': 'mel_band_roformer_instrumental_instv6_gabox.ckpt', | |
'MelBand Roformer | INSTV6N by Gabox': 'mel_band_roformer_instrumental_instv6n_gabox.ckpt', | |
'MelBand Roformer | INSTV7 by Gabox': 'mel_band_roformer_instrumental_instv7_gabox.ckpt', | |
}, | |
"InstVoc Duality": { | |
'MelBand Roformer Kim | InstVoc Duality V1 by Unwa': 'melband_roformer_instvoc_duality_v1.ckpt', | |
'MelBand Roformer Kim | InstVoc Duality V2 by Unwa': 'melband_roformer_instvox_duality_v2.ckpt', | |
}, | |
"De-Reverb": { | |
'BS-Roformer-De-Reverb': 'deverb_bs_roformer_8_384dim_10depth.ckpt', | |
'MelBand Roformer | De-Reverb by anvuew': 'dereverb_mel_band_roformer_anvuew_sdr_19.1729.ckpt', | |
'MelBand Roformer | De-Reverb Less Aggressive by anvuew': 'dereverb_mel_band_roformer_less_aggressive_anvuew_sdr_18.8050.ckpt', | |
'MelBand Roformer | De-Reverb Mono by anvuew': 'dereverb_mel_band_roformer_mono_anvuew.ckpt', | |
'MelBand Roformer | De-Reverb Big by Sucial': 'dereverb_big_mbr_ep_362.ckpt', | |
'MelBand Roformer | De-Reverb Super Big by Sucial': 'dereverb_super_big_mbr_ep_346.ckpt', | |
'MelBand Roformer | De-Reverb-Echo by Sucial': 'dereverb-echo_mel_band_roformer_sdr_10.0169.ckpt', | |
'MelBand Roformer | De-Reverb-Echo V2 by Sucial': 'dereverb-echo_mel_band_roformer_sdr_13.4843_v2.ckpt', | |
'MelBand Roformer | De-Reverb-Echo Fused by Sucial': 'dereverb_echo_mbr_fused.ckpt', | |
}, | |
"Denoise": { | |
'Mel-Roformer-Denoise-Aufr33': 'denoise_mel_band_roformer_aufr33_sdr_27.9959.ckpt', | |
'Mel-Roformer-Denoise-Aufr33-Aggr': 'denoise_mel_band_roformer_aufr33_aggr_sdr_27.9768.ckpt', | |
'MelBand Roformer | Denoise-Debleed by Gabox': 'mel_band_roformer_denoise_debleed_gabox.ckpt', | |
'MelBand Roformer | Bleed Suppressor V1 by unwa-97chris': 'mel_band_roformer_bleed_suppressor_v1.ckpt', | |
}, | |
"Karaoke": { | |
'Mel-Roformer-Karaoke-Aufr33-Viperx': 'mel_band_roformer_karaoke_aufr33_viperx_sdr_10.1956.ckpt', | |
'MelBand Roformer | Karaoke by Gabox': 'mel_band_roformer_karaoke_gabox.ckpt', | |
'MelBand Roformer | Karaoke by becruily': 'mel_band_roformer_karaoke_becruily.ckpt', | |
}, | |
"General Purpose": { | |
'BS-Roformer-Viperx-1297': 'model_bs_roformer_ep_317_sdr_12.9755.ckpt', | |
'BS-Roformer-Viperx-1296': 'model_bs_roformer_ep_368_sdr_12.9628.ckpt', | |
'BS-Roformer-Viperx-1053': 'model_bs_roformer_ep_937_sdr_10.5309.ckpt', | |
'Mel-Roformer-Viperx-1143': 'model_mel_band_roformer_ep_3005_sdr_11.4360.ckpt', | |
'Mel-Roformer-Crowd-Aufr33-Viperx': 'mel_band_roformer_crowd_aufr33_viperx_sdr_8.7144.ckpt', | |
'MelBand Roformer Kim | SYHFT by SYH99999': 'MelBandRoformerSYHFT.ckpt', | |
'MelBand Roformer Kim | SYHFT V2 by SYH99999': 'MelBandRoformerSYHFTV2.ckpt', | |
'MelBand Roformer Kim | SYHFT V2.5 by SYH99999': 'MelBandRoformerSYHFTV2.5.ckpt', | |
'MelBand Roformer Kim | SYHFT V3 by SYH99999': 'MelBandRoformerSYHFTV3Epsilon.ckpt', | |
'MelBand Roformer Kim | Big SYHFT V1 by SYH99999': 'MelBandRoformerBigSYHFTV1.ckpt', | |
'MelBand Roformer | Aspiration by Sucial': 'aspiration_mel_band_roformer_sdr_18.9845.ckpt', | |
'MelBand Roformer | Aspiration Less Aggressive by Sucial': 'aspiration_mel_band_roformer_less_aggr_sdr_18.1201.ckpt', | |
} | |
} | |
OUTPUT_FORMATS = ['wav', 'flac', 'mp3', 'ogg', 'opus', 'm4a', 'aiff', 'ac3'] | |
# CSS (orijinal CSS korundu) | |
CSS = """ | |
body { | |
background: linear-gradient(to bottom, rgba(45, 11, 11, 0.9), rgba(0, 0, 0, 0.8)), url('/content/logo.jpg') no-repeat center center fixed; | |
background-size: cover; | |
min-height: 100vh; | |
margin: 0; | |
padding: 1rem; | |
font-family: 'Poppins', sans-serif; | |
color: #C0C0C0; | |
overflow-x: hidden; | |
} | |
.header-text { | |
text-align: center; | |
padding: 100px 20px 20px; | |
color: #ff4040; | |
font-size: 3rem; | |
font-weight: 900; | |
text-shadow: 0 0 10px rgba(255, 64, 64, 0.5); | |
z-index: 1500; | |
animation: text-glow 2s infinite; | |
} | |
.header-subtitle { | |
text-align: center; | |
color: #C0C0C0; | |
font-size: 1.2rem; | |
font-weight: 300; | |
margin-top: -10px; | |
text-shadow: 0 0 5px rgba(255, 64, 64, 0.3); | |
} | |
.gr-tab { | |
background: rgba(128, 0, 0, 0.5) !important; | |
border-radius: 12px 12px 0 0 !important; | |
margin: 0 5px !important; | |
color: #C0C0C0 !important; | |
border: 1px solid #ff4040 !important; | |
z-index: 1500; | |
transition: background 0.3s ease, color 0.3s ease; | |
padding: 10px 20px !important; | |
font-size: 1.1rem !important; | |
} | |
button { | |
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important; | |
background: #800000 !important; | |
border: 1px solid #ff4040 !important; | |
color: #C0C0C0 !important; | |
border-radius: 8px !important; | |
padding: 8px 16px !important; | |
box-shadow: 0 2px 10px rgba(255, 64, 64, 0.3); | |
} | |
button:hover { | |
transform: scale(1.05) !important; | |
box-shadow: 0 10px 40px rgba(255, 64, 64, 0.7) !important; | |
background: #ff4040 !important; | |
} | |
.compact-upload.horizontal { | |
display: inline-flex !important; | |
align-items: center !important; | |
gap: 8px !important; | |
max-width: 400px !important; | |
height: 40px !important; | |
padding: 0 12px !important; | |
border: 1px solid #ff4040 !important; | |
background: rgba(128, 0, 0, 0.5) !important; | |
border-radius: 8px !important; | |
} | |
.compact-dropdown { | |
padding: 8px 12px !important; | |
border-radius: 8px !important; | |
border: 2px solid #ff6b6b !important; | |
background: rgba(46, 26, 71, 0.7) !important; | |
color: #e0e0e0 !important; | |
width: 100%; | |
font-size: 1rem !important; | |
transition: border-color 0.3s ease, box-shadow 0.3s ease !important; | |
position: relative; | |
z-index: 100; | |
} | |
.compact-dropdown:hover { | |
border-color: #ff8787 !important; | |
box-shadow: 0 2px 8px rgba(255, 107, 107, 0.4) !important; | |
} | |
.compact-dropdown select, .compact-dropdown .gr-dropdown { | |
background: transparent !important; | |
color: #e0e0e0 !important; | |
border: none !important; | |
width: 100% !important; | |
padding: 8px !important; | |
font-size: 1rem !important; | |
appearance: none !important; | |
-webkit-appearance: none !important; | |
-moz-appearance: none !important; | |
} | |
.compact-dropdown .gr-dropdown-menu { | |
background: rgba(46, 26, 71, 0.95) !important; | |
border: 2px solid #ff6b6b !important; | |
border-radius: 8px !important; | |
color: #e0e0e0 !important; | |
max-height: 300px !important; | |
overflow-y: auto !important; | |
z-index: 300 !important; | |
width: 100% !important; | |
opacity: 1 !important; | |
visibility: visible !important; | |
position: absolute !important; | |
top: 100% !important; | |
left: 0 !important; | |
pointer-events: auto !important; | |
} | |
.compact-dropdown:hover .gr-dropdown-menu { | |
display: block !important; | |
} | |
.compact-dropdown .gr-dropdown-menu option { | |
padding: 8px !important; | |
color: #e0e0e0 !important; | |
background: transparent !important; | |
} | |
.compact-dropdown .gr-dropdown-menu option:hover { | |
background: rgba(255, 107, 107, 0.3) !important; | |
} | |
#custom-progress { | |
margin-top: 10px; | |
padding: 10px; | |
background: rgba(128, 0, 0, 0.3); | |
border-radius: 8px; | |
border: 1px solid #ff4040; | |
} | |
#progress-bar { | |
height: 20px; | |
background: linear-gradient(to right, #6e8efb, #ff4040); | |
border-radius: 5px; | |
transition: width 0.5s ease-in-out; | |
max-width: 100% !important; | |
} | |
.gr-accordion { | |
background: rgba(128, 0, 0, 0.5) !important; | |
border-radius: 10px !important; | |
border: 1px solid #ff4040 !important; | |
} | |
.footer { | |
text-align: center; | |
padding: 20px; | |
color: #ff4040; | |
font-size: 14px; | |
margin-top: 40px; | |
background: rgba(128, 0, 0, 0.3); | |
border-top: 1px solid #ff4040; | |
} | |
#log-accordion { | |
max-height: 400px; | |
overflow-y: auto; | |
background: rgba(0, 0, 0, 0.7) !important; | |
padding: 10px; | |
border-radius: 8px; | |
} | |
@keyframes text-glow { | |
0% { text-shadow: 0 0 5px rgba(192, 192, 192, 0); } | |
50% { text-shadow: 0 0 15px rgba(192, 192, 192, 1); } | |
100% { text-shadow: 0 0 5px rgba(192, 192, 192, 0); } | |
} | |
""" | |
def download_audio(url, cookie_file=None): | |
""" | |
Downloads audio from YouTube or Google Drive and converts it to WAV format. | |
Args: | |
url (str): URL of the YouTube video or Google Drive file. | |
cookie_file (file object): File object containing YouTube cookies in Netscape format. | |
Returns: | |
tuple: (file_path, message, (sample_rate, data)) or (None, error_message, None) | |
""" | |
# Common output directory | |
os.makedirs('ytdl', exist_ok=True) | |
# Validate cookie file | |
cookie_path = None | |
if cookie_file: | |
if not hasattr(cookie_file, 'name') or not os.path.exists(cookie_file.name): | |
return None, "Invalid or missing cookie file. Ensure it's a valid Netscape format .txt file.", None | |
cookie_path = cookie_file.name | |
# Check if cookie file is in Netscape format | |
with open(cookie_path, 'r') as f: | |
content = f.read() | |
if not content.startswith('# Netscape HTTP Cookie File'): | |
return None, "Cookie file is not in Netscape format. See https://github.com/yt-dlp/yt-dlp/wiki/Extractors#exporting-youtube-cookies", None | |
logger.info(f"Using cookie file: {cookie_path}") | |
if 'drive.google.com' in url: | |
return download_from_google_drive(url) | |
else: | |
return download_from_youtube(url, cookie_path) | |
def download_from_youtube(url, cookie_path): | |
# Common options | |
base_opts = { | |
'outtmpl': 'ytdl/%(title)s.%(ext)s', | |
'user_agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.54 Safari/537.36', | |
'geo_bypass': True, | |
'force_ipv4': True, | |
'referer': 'https://www.youtube.com/', | |
'noplaylist': True, | |
'cookiefile': cookie_path, | |
'extractor_retries': 5, | |
'ignoreerrors': False, | |
'no_check_certificate': True, | |
'verbose': True, | |
} | |
# Strategy 1: Video+audio (best quality) | |
try: | |
logger.info("Attempting video+audio download") | |
ydl_opts = base_opts.copy() | |
ydl_opts.update({ | |
'format': 'bestvideo+bestaudio/best', | |
'postprocessors': [{ | |
'key': 'FFmpegExtractAudio', | |
'preferredcodec': 'wav', | |
}], | |
'merge_output_format': 'mp4', | |
}) | |
with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
info_dict = ydl.extract_info(url, download=True) | |
file_path = ydl.prepare_filename(info_dict).rsplit('.', 1)[0] + '.wav' | |
if os.path.exists(file_path): | |
sample_rate, data = scipy.io.wavfile.read(file_path) | |
return file_path, "YouTube video+audio download successful", (sample_rate, data) | |
else: | |
logger.warning("Video+audio download succeeded but output file missing") | |
except Exception as e: | |
logger.warning(f"Video+audio download failed: {str(e)}") | |
# Strategy 2: Audio-only (best quality) | |
try: | |
logger.info("Attempting audio-only download") | |
ydl_opts = base_opts.copy() | |
ydl_opts.update({ | |
'format': 'bestaudio/best', | |
'postprocessors': [{ | |
'key': 'FFmpegExtractAudio', | |
'preferredcodec': 'wav', | |
}], | |
}) | |
with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
info_dict = ydl.extract_info(url, download=True) | |
file_path = ydl.prepare_filename(info_dict).rsplit('.', 1)[0] + '.wav' | |
if os.path.exists(file_path): | |
sample_rate, data = scipy.io.wavfile.read(file_path) | |
return file_path, "YouTube audio-only download successful", (sample_rate, data) | |
else: | |
logger.warning("Audio-only download succeeded but output file missing") | |
except Exception as e: | |
logger.warning(f"Audio-only download failed: {str(e)}") | |
# Strategy 3: Specific format IDs (common audio formats) | |
format_ids = [ | |
'140', # m4a 128k | |
'139', # m4a 48k | |
'251', # webm 160k (opus) | |
'250', # webm 70k (opus) | |
'249', # webm 50k (opus) | |
] | |
for fid in format_ids: | |
try: | |
logger.info(f"Attempting download with format ID: {fid}") | |
ydl_opts = base_opts.copy() | |
ydl_opts.update({ | |
'format': fid, | |
'postprocessors': [{ | |
'key': 'FFmpegExtractAudio', | |
'preferredcodec': 'wav', | |
}], | |
}) | |
with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
info_dict = ydl.extract_info(url, download=True) | |
file_path = ydl.prepare_filename(info_dict).rsplit('.', 1)[0] + '.wav' | |
if os.path.exists(file_path): | |
sample_rate, data = scipy.io.wavfile.read(file_path) | |
return file_path, f"Download successful with format {fid}", (sample_rate, data) | |
except Exception as e: | |
logger.warning(f"Download with format {fid} failed: {str(e)}") | |
# Strategy 4: Direct URL extraction | |
try: | |
logger.info("Attempting direct URL extraction") | |
ydl_opts = base_opts.copy() | |
ydl_opts.update({ | |
'format': 'best', | |
'forceurl': True, | |
'quiet': True, | |
}) | |
with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
info_dict = ydl.extract_info(url, download=False) | |
direct_url = info_dict.get('url') | |
if direct_url: | |
temp_path = 'ytdl/direct_audio.wav' | |
ffmpeg_command = [ | |
"ffmpeg", "-i", direct_url, "-c", "copy", temp_path | |
] | |
subprocess.run(ffmpeg_command, check=True, capture_output=True, text=True) | |
if os.path.exists(temp_path): | |
sample_rate, data = scipy.io.wavfile.read(temp_path) | |
return temp_path, "Direct URL download successful", (sample_rate, data) | |
except Exception as e: | |
logger.warning(f"Direct URL extraction failed: {str(e)}") | |
return None, "All download strategies failed. This video may not be available in your region or requires authentication.", None | |
def download_from_google_drive(url): | |
temp_output_path = 'ytdl/gdrive_temp_audio' | |
output_path = 'ytdl/gdrive_audio.wav' | |
try: | |
# Extract file ID from URL | |
file_id = url.split('/d/')[1].split('/')[0] | |
download_url = f'https://drive.google.com/uc?id={file_id}' | |
# Download file | |
gdown.download(download_url, temp_output_path, quiet=False) | |
if not os.path.exists(temp_output_path): | |
return None, "Google Drive downloaded file not found", None | |
# Convert to WAV | |
audio = AudioSegment.from_file(temp_output_path) | |
audio.export(output_path, format="wav") | |
sample_rate, data = scipy.io.wavfile.read(output_path) | |
return output_path, "Google Drive audio download and conversion successful", (sample_rate, data) | |
except Exception as e: | |
return None, f"Failed to process Google Drive file: {str(e)}. Ensure the file contains audio (e.g., MP3, WAV, or video with audio track).", None | |
finally: | |
if os.path.exists(temp_output_path): | |
try: | |
os.remove(temp_output_path) | |
logger.info(f"Temporary file deleted: {temp_output_path}") | |
except Exception as e: | |
logger.warning(f"Failed to delete temporary file {temp_output_path}: {str(e)}") | |
def roformer_separator(audio, model_key, seg_size, override_seg_size, overlap, pitch_shift, model_dir, output_dir, out_format, norm_thresh, amp_thresh, batch_size, exclude_stems="", progress=gr.Progress(track_tqdm=True)): | |
if not audio: | |
raise ValueError("No audio or video file provided.") | |
temp_audio_path = None | |
extracted_audio_path = None | |
try: | |
file_extension = os.path.splitext(audio)[1].lower().lstrip('.') | |
supported_formats = ['wav', 'mp3', 'flac', 'ogg', 'opus', 'm4a', 'aiff', 'ac3', 'mp4', 'mov', 'avi', 'mkv', 'flv', 'wmv', 'webm', 'mpeg', 'mpg', 'ts', 'vob'] | |
if file_extension not in supported_formats: | |
raise ValueError(f"Unsupported file format: {file_extension}. Supported formats: {', '.join(supported_formats)}") | |
audio_to_process = audio | |
if file_extension in ['mp4', 'mov', 'avi', 'mkv', 'flv', 'wmv', 'webm', 'mpeg', 'mpg', 'ts', 'vob']: | |
extracted_audio_path = os.path.join("/tmp", f"extracted_audio_{os.path.basename(audio)}.wav") | |
logger.info(f"Extracting audio from video file: {audio}") | |
ffmpeg_command = [ | |
"ffmpeg", "-i", audio, "-vn", "-acodec", "pcm_s16le", "-ar", "44100", "-ac", "2", | |
extracted_audio_path, "-y" | |
] | |
try: | |
subprocess.run(ffmpeg_command, check=True, capture_output=True, text=True) | |
logger.info(f"Audio extracted to: {extracted_audio_path}") | |
audio_to_process = extracted_audio_path | |
except subprocess.CalledProcessError as e: | |
error_message = e.stderr.decode() if e.stderr else str(e) | |
if "No audio stream" in error_message: | |
raise RuntimeError("The provided video file does not contain an audio track.") | |
elif "Invalid data" in error_message: | |
raise RuntimeError("The video file is corrupted or not supported.") | |
else: | |
raise RuntimeError(f"Failed to extract audio from video: {error_message}") | |
if isinstance(audio_to_process, tuple): | |
sample_rate, data = audio_to_process | |
temp_audio_path = os.path.join("/tmp", "temp_audio.wav") | |
scipy.io.wavfile.write(temp_audio_path, sample_rate, data) | |
audio_to_process = temp_audio_path | |
if seg_size > 512: | |
logger.warning(f"Segment size {seg_size} is large, this may cause issues.") | |
override_seg_size = override_seg_size == "True" | |
if os.path.exists(output_dir): | |
shutil.rmtree(output_dir) | |
os.makedirs(output_dir, exist_ok=True) | |
base_name = os.path.splitext(os.path.basename(audio))[0] | |
for category, models in ROFORMER_MODELS.items(): | |
if model_key in models: | |
model = models[model_key] | |
break | |
else: | |
raise ValueError(f"Model '{model_key}' not found.") | |
logger.info(f"Separating {base_name} with {model_key} on {device}") | |
separator = Separator( | |
log_level=logging.INFO, | |
model_file_dir=model_dir, | |
output_dir=output_dir, | |
output_format=out_format, | |
normalization_threshold=norm_thresh, | |
amplification_threshold=amp_thresh, | |
use_autocast=use_autocast, | |
mdxc_params={"segment_size": seg_size, "override_model_segment_size": override_seg_size, "batch_size": batch_size, "overlap": overlap, "pitch_shift": pitch_shift} | |
) | |
progress(0.2, desc="Loading model...") | |
separator.load_model(model_filename=model) | |
progress(0.7, desc="Separating audio...") | |
separation = separator.separate(audio_to_process) | |
stems = [os.path.join(output_dir, file_name) for file_name in separation] | |
file_list = [] | |
if exclude_stems.strip(): | |
excluded = [s.strip().lower() for s in exclude_stems.split(',')] | |
filtered_stems = [stem for stem in stems if not any(ex in os.path.basename(stem).lower() for ex in excluded)] | |
file_list = filtered_stems | |
stem1 = filtered_stems[0] if filtered_stems else None | |
stem2 = filtered_stems[1] if len(filtered_stems) > 1 else None | |
else: | |
file_list = stems | |
stem1 = stems[0] | |
stem2 = stems[1] if len(stems) > 1 else None | |
return stem1, stem2, file_list | |
except Exception as e: | |
logger.error(f"Separation error: {e}") | |
raise RuntimeError(f"Separation error: {e}") | |
finally: | |
if temp_audio_path and os.path.exists(temp_audio_path): | |
try: | |
os.remove(temp_audio_path) | |
logger.info(f"Temporary file deleted: {temp_audio_path}") | |
except Exception as e: | |
logger.warning(f"Failed to delete temporary file {temp_audio_path}: {e}") | |
if extracted_audio_path and os.path.exists(extracted_audio_path): | |
try: | |
os.remove(extracted_audio_path) | |
logger.info(f"Extracted audio file deleted: {extracted_audio_path}") | |
except Exception as e: | |
logger.warning(f"Failed to delete extracted audio file {extracted_audio_path}: {e}") | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
logger.info("GPU memory cleared") | |
def auto_ensemble_process(audio, model_keys, state, seg_size=64, overlap=0.1, out_format="wav", use_tta="False", model_dir="/tmp/audio-separator-models/", output_dir="output", norm_thresh=0.9, amp_thresh=0.9, batch_size=1, ensemble_method="avg_wave", exclude_stems="", weights_str="", progress=gr.Progress(track_tqdm=True)): | |
temp_audio_path = None | |
extracted_audio_path = None | |
resampled_audio_path = None | |
start_time = time.time() | |
try: | |
if not audio: | |
raise ValueError("No audio or video file provided.") | |
if not model_keys: | |
raise ValueError("No models selected.") | |
if len(model_keys) > max_models: | |
logger.warning(f"Selected {len(model_keys)} models, limiting to {max_models}.") | |
model_keys = model_keys[:max_models] | |
file_extension = os.path.splitext(audio)[1].lower().lstrip('.') | |
supported_formats = ['wav', 'mp3', 'flac', 'ogg', 'opus', 'm4a', 'aiff', 'ac3', 'mp4', 'mov', 'avi', 'mkv', 'flv', 'wmv', 'webm', 'mpeg', 'mpg', 'ts', 'vob'] | |
if file_extension not in supported_formats: | |
raise ValueError(f"Unsupported file format: {file_extension}. Supported formats: {', '.join(supported_formats)}") | |
audio_to_process = audio | |
if file_extension in ['mp4', 'mov', 'avi', 'mkv', 'flv', 'wmv', 'webm', 'mpeg', 'mpg', 'ts', 'vob']: | |
extracted_audio_path = os.path.join("/tmp", f"extracted_audio_{os.path.basename(audio)}.wav") | |
logger.info(f"Extracting audio from video file: {audio}") | |
ffmpeg_command = [ | |
"ffmpeg", "-i", audio, "-vn", "-acodec", "pcm_s16le", "-ar", "48000", "-ac", "2", | |
extracted_audio_path, "-y" | |
] | |
try: | |
subprocess.run(ffmpeg_command, check=True, capture_output=True, text=True) | |
logger.info(f"Audio extracted to: {extracted_audio_path}") | |
audio_to_process = extracted_audio_path | |
except subprocess.CalledProcessError as e: | |
error_message = e.stderr.decode() if e.stderr else str(e) | |
if "No audio stream" in error_message: | |
raise RuntimeError("The provided video file does not contain an audio track.") | |
elif "Invalid data" in error_message: | |
raise RuntimeError("The video file is corrupted or not supported.") | |
else: | |
raise RuntimeError(f"Failed to extract audio from video: {error_message}") | |
# Load audio and resample to 48 kHz | |
audio_data, sr = librosa.load(audio_to_process, sr=None, mono=False) | |
logger.info(f"Original sample rate: {sr} Hz, Audio duration: {librosa.get_duration(y=audio_data, sr=sr):.2f} seconds") | |
if sr != 48000: | |
logger.info(f"Resampling audio from {sr} Hz to 48000 Hz") | |
resampled_audio_path = os.path.join("/tmp", f"resampled_audio_{os.path.basename(audio)}.wav") | |
waveform, _ = torchaudio.load(audio_to_process) | |
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=48000) | |
resampled_waveform = resampler(waveform) | |
torchaudio.save(resampled_audio_path, resampled_waveform, 48000) | |
audio_to_process = resampled_audio_path | |
audio_data, sr = librosa.load(audio_to_process, sr=None, mono=False) | |
logger.info(f"Resampled audio saved to: {resampled_audio_path}, new sample rate: {sr} Hz") | |
duration = librosa.get_duration(y=audio_data, sr=sr) | |
dynamic_batch_size = max(1, min(4, 1 + int(900 / (duration + 1)) - len(model_keys) // 2)) | |
logger.info(f"Using batch size: {dynamic_batch_size} for {len(model_keys)} models, duration {duration:.2f}s") | |
if isinstance(audio_to_process, tuple): | |
sample_rate, data = audio_to_process | |
temp_audio_path = os.path.join("/tmp", "temp_audio.wav") | |
scipy.io.wavfile.write(temp_audio_path, sample_rate, data) | |
audio_to_process = temp_audio_path | |
if not state: | |
state = { | |
"current_audio": None, | |
"current_model_idx": 0, | |
"processed_stems": [], | |
"model_outputs": {} | |
} | |
if state["current_audio"] != audio: | |
state["current_audio"] = audio | |
state["current_model_idx"] = 0 | |
state["processed_stems"] = [] | |
state["model_outputs"] = {model_key: {"vocals": [], "other": []} for model_key in model_keys} | |
logger.info("New audio detected, resetting ensemble state.") | |
use_tta = use_tta == "True" | |
base_name = os.path.splitext(os.path.basename(audio))[0] | |
logger.info(f"Ensemble for {base_name} with {model_keys} on {device}") | |
permanent_output_dir = os.path.join(output_dir, "permanent_stems") | |
os.makedirs(permanent_output_dir, exist_ok=True) | |
model_cache = {} | |
all_stems = [] | |
total_tasks = len(model_keys) | |
current_idx = state["current_model_idx"] | |
logger.info(f"Current model index: {current_idx}, total models: {len(model_keys)}") | |
if current_idx >= len(model_keys): | |
logger.info("All models processed, running ensemble...") | |
progress(0.9, desc="Running ensemble...") | |
excluded_stems_list = [s.strip().lower() for s in exclude_stems.split(',')] if exclude_stems.strip() else [] | |
for model_key, stems_dict in state["model_outputs"].items(): | |
for stem_type in ["vocals", "other"]: | |
if stems_dict[stem_type]: | |
if stem_type.lower() in excluded_stems_list: | |
logger.info(f"Excluding {stem_type} for {model_key} from ensemble") | |
continue | |
all_stems.extend(stems_dict[stem_type]) | |
all_stems = [stem for stem in all_stems if os.path.exists(stem)] | |
if not all_stems: | |
raise ValueError("No valid stems found for ensemble after excluding specified stems.") | |
weights = [float(w.strip()) for w in weights_str.split(',')] if weights_str.strip() else [1.0] * len(all_stems) | |
if len(weights) != len(all_stems): | |
weights = [1.0] * len(all_stems) | |
logger.info("Weights mismatched, defaulting to 1.0") | |
output_file = os.path.join(output_dir, f"{base_name}_ensemble_{ensemble_method}.{out_format}") | |
ensemble_args = [ | |
"--files", *all_stems, | |
"--type", ensemble_method, | |
"--weights", *[str(w) for w in weights], | |
"--output", output_file | |
] | |
logger.info(f"Running ensemble with args: {ensemble_args}") | |
result = ensemble_files(ensemble_args) | |
if result is None or not os.path.exists(output_file): | |
raise RuntimeError(f"Ensemble failed, output file not created: {output_file}") | |
state["current_model_idx"] = 0 | |
state["current_audio"] = None | |
state["processed_stems"] = [] | |
state["model_outputs"] = {} | |
elapsed = time.time() - start_time | |
logger.info(f"Ensemble completed, output: {output_file}, took {elapsed:.2f}s") | |
progress(1.0, desc="Ensemble completed") | |
status = f"Ensemble completed with {ensemble_method}, excluded: {exclude_stems if exclude_stems else 'None'}, {len(model_keys)} models in {elapsed:.2f}s<br>Download files:<ul>" | |
file_list = [output_file] + all_stems | |
for file in file_list: | |
file_name = os.path.basename(file) | |
status += f"<li><a href='file={file}' download>{file_name}</a></li>" | |
status += "</ul>" | |
return output_file, status, file_list, state | |
model_key = model_keys[current_idx] | |
logger.info(f"Processing model {current_idx + 1}/{len(model_keys)}: {model_key}") | |
progress(0.1, desc=f"Processing model {model_key}...") | |
with torch.no_grad(): | |
for attempt in range(max_retries + 1): | |
try: | |
for category, models in ROFORMER_MODELS.items(): | |
if model_key in models: | |
model = models[model_key] | |
break | |
else: | |
logger.warning(f"Model {model_key} not found, skipping") | |
state["current_model_idx"] += 1 | |
return None, f"Model {model_key} not found, proceeding to next model.", [], state | |
elapsed = time.time() - start_time | |
if elapsed > time_budget: | |
logger.error(f"Time budget ({time_budget}s) exceeded") | |
raise TimeoutError("Processing took too long") | |
if model_key not in model_cache: | |
logger.info(f"Loading {model_key} into cache") | |
separator = Separator( | |
log_level=logging.INFO, | |
model_file_dir=model_dir, | |
output_dir=output_dir, | |
output_format=out_format, | |
normalization_threshold=norm_thresh, | |
amplification_threshold=amp_thresh, | |
use_autocast=use_autocast, | |
mdxc_params={ | |
"segment_size": seg_size, | |
"overlap": overlap, | |
"use_tta": use_tta, | |
"batch_size": dynamic_batch_size | |
} | |
) | |
separator.load_model(model_filename=model) | |
model_cache[model_key] = separator | |
else: | |
separator = model_cache[model_key] | |
with gpu_lock: | |
progress(0.3, desc=f"Separating with {model_key}") | |
logger.info(f"Separating with {model_key}") | |
separation = separator.separate(audio_to_process) | |
stems = [os.path.join(output_dir, file_name) for file_name in separation] | |
result = [] | |
for stem in stems: | |
stem_type = "vocals" if "vocals" in os.path.basename(stem).lower() else "other" | |
permanent_stem_path = os.path.join(permanent_output_dir, f"{base_name}_{stem_type}_{model_key.replace(' | ', '_').replace(' ', '_')}.{out_format}") | |
shutil.copy(stem, permanent_stem_path) | |
state["model_outputs"][model_key][stem_type].append(permanent_stem_path) | |
if stem_type not in exclude_stems.lower(): | |
result.append(permanent_stem_path) | |
state["processed_stems"].extend(result) | |
break | |
except Exception as e: | |
logger.error(f"Error processing {model_key}, attempt {attempt + 1}/{max_retries + 1}: {e}") | |
if attempt == max_retries: | |
logger.error(f"Max retries reached for {model_key}, skipping") | |
state["current_model_idx"] += 1 | |
return None, f"Failed to process {model_key} after {max_retries} attempts.", [], state | |
time.sleep(1) | |
finally: | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
logger.info(f"Cleared CUDA cache after {model_key}") | |
model_cache.clear() | |
gc.collect() | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
logger.info("Cleared model cache and GPU memory") | |
state["current_model_idx"] += 1 | |
elapsed = time.time() - start_time | |
logger.info(f"Model {model_key} completed in {elapsed:.2f}s") | |
if state["current_model_idx"] >= len(model_keys): | |
logger.info("Last model processed, running ensemble immediately...") | |
return auto_ensemble_process(audio, model_keys, state, seg_size, overlap, out_format, use_tta, model_dir, output_dir, norm_thresh, amp_thresh, batch_size, ensemble_method, exclude_stems, weights_str, progress) | |
file_list = state["processed_stems"] | |
status = f"Model {model_key} (Model {current_idx + 1}/{len(model_keys)}) completed in {elapsed:.2f}s<br>Click 'Run Ensemble!' to process the next model.<br>Processed stems:<ul>" | |
for file in file_list: | |
file_name = os.path.basename(file) | |
status += f"<li><a href='file={file}' download>{file_name}</a></li>" | |
status += "</ul>" | |
return file_list[0] if file_list else None, status, file_list, state | |
except Exception as e: | |
logger.error(f"Ensemble error: {e}") | |
error_msg = f"Processing failed: {e}. Try fewer models (max {max_models}) or uploading a local WAV or video file." | |
raise RuntimeError(error_msg) | |
finally: | |
for temp_file in [temp_audio_path, extracted_audio_path, resampled_audio_path]: | |
if temp_file and os.path.exists(temp_file): | |
try: | |
os.remove(temp_file) | |
logger.info(f"Temporary file deleted: {temp_file}") | |
except Exception as e: | |
logger.warning(f"Failed to delete temporary file {temp_file}: {e}") | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
logger.info("GPU memory cleared") | |
def update_roformer_models(category): | |
choices = list(ROFORMER_MODELS.get(category, {}).keys()) or [] | |
logger.debug(f"Updating roformer models for category {category}: {choices}") | |
return gr.update(choices=choices, value=choices[0] if choices else None) | |
def update_ensemble_models(category): | |
choices = list(ROFORMER_MODELS.get(category, {}).keys()) or [] | |
logger.debug(f"Updating ensemble models for category {category}: {choices}") | |
return gr.update(choices=choices, value=[]) | |
def download_audio_wrapper(url, cookie_file): | |
file_path, status, audio_data = download_audio(url, cookie_file) | |
return file_path, status # Return file_path instead of audio_data | |
def create_interface(): | |
with gr.Blocks(title="π΅ SESA Fast Separation π΅", css=CSS, elem_id="app-container") as app: | |
gr.Markdown("<h1 class='header-text'>π΅ SESA Fast Separation π΅</h1>") | |
gr.Markdown("**Note**: If YouTube downloads fail, upload a valid cookies file or a local WAV/MP4/MOV file. [Cookie Instructions](https://github.com/yt-dlp/yt-dlp/wiki/Extractors#exporting-youtube-cookies)") | |
gr.Markdown("**Tip**: For best results, use audio/video shorter than 15 minutes or fewer models (up to 6) to ensure smooth processing.") | |
ensemble_state = gr.State(value={ | |
"current_audio": None, | |
"current_model_idx": 0, | |
"processed_stems": [], | |
"model_outputs": {} | |
}) | |
with gr.Tabs(): | |
with gr.Tab("βοΈ Settings"): | |
with gr.Group(elem_classes="dubbing-theme"): | |
gr.Markdown("### General Settings") | |
model_file_dir = gr.Textbox(value="/tmp/audio-separator-models/", label="π Model Cache", placeholder="Path to model directory", interactive=True) | |
output_dir = gr.Textbox(value="output", label="π€ Output Directory", placeholder="Where to save results", interactive=True) | |
output_format = gr.Dropdown(value="wav", choices=OUTPUT_FORMATS, label="πΆ Output Format", interactive=True) | |
norm_threshold = gr.Slider(0.1, 1.0, value=0.9, step=0.1, label="π Normalization Threshold", interactive=True) | |
amp_threshold = gr.Slider(0.1, 1.0, value=0.3, step=0.1, label="π Amplification Threshold", interactive=True) | |
batch_size = gr.Slider(1, 8, value=1, step=1, label="β‘ Batch Size", interactive=True) | |
with gr.Tab("π€ Roformer"): | |
with gr.Group(elem_classes="dubbing-theme"): | |
gr.Markdown("### Audio Separation") | |
with gr.Row(): | |
roformer_audio = gr.File(label="π§ Upload Audio or Video (WAV, MP3, MP4, MOV, etc.)", file_types=['.wav', '.mp3', '.flac', '.ogg', '.opus', '.m4a', '.aiff', '.ac3', '.mp4', '.mov', '.avi', '.mkv', '.flv', '.wmv', '.webm', '.mpeg', '.mpg', '.ts', '.vob'], interactive=True) | |
url_ro = gr.Textbox(label="π Or Paste URL", placeholder="YouTube or audio/video URL", interactive=True) | |
cookies_ro = gr.File(label="πͺ Cookies File", file_types=[".txt"], interactive=True) | |
download_roformer = gr.Button("β¬οΈ Download", variant="secondary") | |
roformer_download_status = gr.Textbox(label="π’ Download Status", interactive=False) | |
roformer_exclude_stems = gr.Textbox(label="π« Exclude Stems", placeholder="e.g., vocals, drums (comma-separated)", interactive=True) | |
with gr.Row(): | |
roformer_category = gr.Dropdown(label="π Category", choices=list(ROFORMER_MODELS.keys()), value="General Purpose", interactive=True) | |
roformer_model = gr.Dropdown(label="π οΈ Model", choices=list(ROFORMER_MODELS["General Purpose"].keys()), interactive=True, allow_custom_value=True) | |
with gr.Row(): | |
roformer_seg_size = gr.Slider(32, 512, value=64, step=32, label="π Segment Size", interactive=True) | |
roformer_overlap = gr.Slider(2, 10, value=8, step=1, label="π Overlap", interactive=True) | |
with gr.Row(): | |
roformer_pitch_shift = gr.Slider(-12, 12, value=0, step=1, label="π΅ Pitch Shift", interactive=True) | |
roformer_override_seg_size = gr.Dropdown(choices=["True", "False"], value="False", label="π§ Override Segment Size", interactive=True) | |
roformer_button = gr.Button("βοΈ Separate Now!", variant="primary") | |
with gr.Row(): | |
roformer_stem1 = gr.Audio(label="πΈ Stem 1", type="filepath", interactive=False) | |
roformer_stem2 = gr.Audio(label="π₯ Stem 2", type="filepath", interactive=False) | |
roformer_files = gr.File(label="π₯ Download Stems", interactive=False) | |
with gr.Tab("ποΈ Auto Ensemble"): | |
with gr.Group(elem_classes="dubbing-theme"): | |
gr.Markdown("### Ensemble Processing") | |
gr.Markdown("Note: If weights are not specified, equal weights (1.0) are applied. Use up to 6 models for best results.") | |
with gr.Row(): | |
ensemble_audio = gr.File(label="π§ Upload Audio or Video (WAV, MP3, MP4, MOV, etc.)", file_types=['.wav', '.mp3', '.flac', '.ogg', '.opus', '.m4a', '.aiff', '.ac3', '.mp4', '.mov', '.avi', '.mkv', '.flv', '.wmv', '.webm', '.mpeg', '.mpg', '.ts', '.vob'], interactive=True) | |
url_ensemble = gr.Textbox(label="π Or Paste URL", placeholder="YouTube or audio/video URL", interactive=True) | |
cookies_ensemble = gr.File(label="πͺ Cookies File", file_types=[".txt"], interactive=True) | |
download_ensemble = gr.Button("β¬οΈ Download", variant="secondary") | |
ensemble_download_status = gr.Textbox(label="π’ Download Status", interactive=False) | |
ensemble_exclude_stems = gr.Textbox(label="π« Exclude Stems", placeholder="e.g., vocals, drums (comma-separated)", interactive=True) | |
with gr.Row(): | |
ensemble_category = gr.Dropdown(label="π Category", choices=list(ROFORMER_MODELS.keys()), value="Instrumentals", interactive=True) | |
ensemble_models = gr.Dropdown(label="π οΈ Models (Max 6)", choices=list(ROFORMER_MODELS["Instrumentals"].keys()), multiselect=True, interactive=True, allow_custom_value=True) | |
with gr.Row(): | |
ensemble_seg_size = gr.Slider(32, 512, value=64, step=32, label="π Segment Size", interactive=True) | |
ensemble_overlap = gr.Slider(2, 10, value=8, step=1, label="π Overlap", interactive=True) | |
ensemble_use_tta = gr.Dropdown(choices=["True", "False"], value="False", label="π Use TTA", interactive=True) | |
ensemble_method = gr.Dropdown(label="βοΈ Ensemble Method", choices=['avg_wave', 'median_wave', 'max_wave', 'min_wave', 'avg_fft', 'median_fft', 'max_fft', 'min_fft'], value='avg_wave', interactive=True) | |
ensemble_weights = gr.Textbox(label="βοΈ Weights", placeholder="e.g., 1.0, 1.0, 1.0 (comma-separated)", interactive=True) | |
ensemble_button = gr.Button("ποΈ Run Ensemble!", variant="primary") | |
ensemble_output = gr.Audio(label="πΆ Ensemble Result", type="filepath", interactive=False) | |
ensemble_status = gr.HTML(label="π’ Status") | |
ensemble_files = gr.File(label="π₯ Download Ensemble and Stems", interactive=False) | |
gr.HTML("<div class='footer'>Powered by Audio-Separator ππΆ | Made with β€οΈ</div>") | |
roformer_category.change(update_roformer_models, inputs=[roformer_category], outputs=[roformer_model]) | |
download_roformer.click( | |
fn=download_audio_wrapper, | |
inputs=[url_ro, cookies_ro], | |
outputs=[roformer_audio, roformer_download_status] | |
) | |
roformer_button.click( | |
fn=roformer_separator, | |
inputs=[ | |
roformer_audio, roformer_model, roformer_seg_size, roformer_override_seg_size, | |
roformer_overlap, roformer_pitch_shift, model_file_dir, output_dir, | |
output_format, norm_threshold, amp_threshold, batch_size, roformer_exclude_stems | |
], | |
outputs=[roformer_stem1, roformer_stem2, roformer_files] | |
) | |
ensemble_category.change(update_ensemble_models, inputs=[ensemble_category], outputs=[ensemble_models]) | |
download_ensemble.click( | |
fn=download_audio_wrapper, | |
inputs=[url_ensemble, cookies_ensemble], | |
outputs=[ensemble_audio, ensemble_download_status] | |
) | |
ensemble_button.click( | |
fn=auto_ensemble_process, | |
inputs=[ | |
ensemble_audio, ensemble_models, ensemble_state, ensemble_seg_size, ensemble_overlap, | |
output_format, ensemble_use_tta, model_file_dir, output_dir, | |
norm_threshold, amp_threshold, batch_size, ensemble_method, | |
ensemble_exclude_stems, ensemble_weights | |
], | |
outputs=[ensemble_output, ensemble_status, ensemble_files, ensemble_state] | |
) | |
return app | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Music Source Separation Web UI") | |
parser.add_argument("--port", type=int, default=7860, help="Port to run the UI on") | |
args = parser.parse_args() | |
app = create_interface() | |
try: | |
app.launch(server_name="0.0.0.0", server_port=args.port, share=True) | |
except Exception as e: | |
logger.error(f"Failed to launch UI: {e}") | |
raise | |
finally: | |
app.close() |