Spaces:
Running
on
Zero
Running
on
Zero
File size: 39,504 Bytes
01f8b5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 |
#!/usr/bin/env python
import os
import time
import museval
import numpy as np
import soundfile as sf
from audio_separator.separator import Separator
import json
from json import JSONEncoder
import logging
import musdb
from decimal import Decimal
import tempfile
import argparse
# Setup logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
# Custom JSON Encoder to handle Decimal types
class DecimalEncoder(JSONEncoder):
def default(self, obj):
if isinstance(obj, Decimal):
return float(obj)
return super().default(obj)
MUSDB_PATH = "/Volumes/Nomad4TBOne/python-audio-separator/tests/model-metrics/datasets/musdb18hq"
RESULTS_PATH = "/Volumes/Nomad4TBOne/python-audio-separator/tests/model-metrics/results"
COMBINED_RESULTS_PATH = "/Users/andrew/Projects/python-audio-separator/audio_separator/models-scores.json"
COMBINED_MUSEVAL_RESULTS_PATH = "/Volumes/Nomad4TBOne/python-audio-separator/tests/model-metrics/results/combined-museval-results.json"
STOP_SIGNAL_PATH = "/Volumes/Nomad4TBOne/python-audio-separator/tests/model-metrics/stop-signal"
def load_combined_results():
"""Load the combined museval results file"""
if os.path.exists(COMBINED_MUSEVAL_RESULTS_PATH):
logger.info("Loading combined museval results...")
try:
with open(COMBINED_MUSEVAL_RESULTS_PATH, "r") as f:
# Use a custom parser to handle Decimal values
def decimal_parser(dct):
for k, v in dct.items():
if isinstance(v, str) and v.replace(".", "").isdigit():
try:
dct[k] = float(v)
except (ValueError, TypeError):
pass
return dct
return json.load(f, object_hook=decimal_parser)
except Exception as e:
logger.error(f"Error loading combined results: {str(e)}")
# Try to load a backup file if it exists
backup_path = COMBINED_MUSEVAL_RESULTS_PATH + ".backup"
if os.path.exists(backup_path):
logger.info("Attempting to load backup file...")
try:
with open(backup_path, "r") as f:
return json.load(f, object_hook=decimal_parser)
except Exception as backup_e:
logger.error(f"Error loading backup file: {str(backup_e)}")
return {}
else:
logger.info("No combined results file found, creating new one")
return {}
def save_combined_results(combined_results):
"""Save the combined museval results file"""
logger.info("Saving combined museval results...")
try:
# Create a backup of the existing file if it exists
if os.path.exists(COMBINED_MUSEVAL_RESULTS_PATH):
backup_path = COMBINED_MUSEVAL_RESULTS_PATH + ".backup"
try:
with open(COMBINED_MUSEVAL_RESULTS_PATH, "r") as src, open(backup_path, "w") as dst:
dst.write(src.read())
except Exception as e:
logger.error(f"Error creating backup file: {str(e)}")
# Save the new results using the custom encoder
with open(COMBINED_MUSEVAL_RESULTS_PATH, "w") as f:
json.dump(combined_results, f, cls=DecimalEncoder, indent=2)
logger.info("Combined results saved successfully")
return True
except Exception as e:
logger.error(f"Error saving combined results: {str(e)}")
return False
def update_combined_results(model_name, track_name, track_data):
"""Update the combined results file with new track data"""
try:
# Load existing combined results
combined_results = load_combined_results()
# Initialize model entry if it doesn't exist
if model_name not in combined_results:
combined_results[model_name] = {}
# Add or update track data
combined_results[model_name][track_name] = track_data
# Write updated results back to file
save_combined_results(combined_results)
return True
except Exception as e:
logger.error(f"Error updating combined results: {str(e)}")
return False
def check_track_evaluated(model_name, track_name):
"""Check if a track has already been evaluated for a specific model"""
combined_results = load_combined_results()
return model_name in combined_results and track_name in combined_results[model_name]
def get_track_results(model_name, track_name):
"""Get the evaluation results for a specific track and model"""
combined_results = load_combined_results()
if model_name in combined_results and track_name in combined_results[model_name]:
return combined_results[model_name][track_name]
return None
def get_track_duration(track_path):
"""Get the duration of a track in minutes"""
try:
mixture_path = os.path.join(track_path, "mixture.wav")
info = sf.info(mixture_path)
return info.duration / 60.0 # Convert seconds to minutes
except Exception as e:
logger.error(f"Error getting track duration: {str(e)}")
return 0.0
def evaluate_track(track_name, track_path, test_model, mus_db):
"""Evaluate a single track using a specific model"""
logger.info(f"Evaluating track: {track_name} with model: {test_model}")
# Get track duration in minutes
track_duration_minutes = get_track_duration(track_path)
logger.info(f"Track duration: {track_duration_minutes:.2f} minutes")
# Initialize variables to track processing time
processing_time = 0
seconds_per_minute = 0
# Create a basic result structure that will be returned even if evaluation fails
basic_model_results = {"track_name": track_name, "scores": {}}
# Check if evaluation results already exist in combined file
museval_results = load_combined_results()
if test_model in museval_results and track_name in museval_results[test_model]:
logger.info("Found existing evaluation results in combined file...")
track_data = museval_results[test_model][track_name]
scores = museval.TrackStore(track_name)
scores.scores = track_data
# Try to extract existing speed metrics if available
try:
if isinstance(track_data, dict) and "targets" in track_data:
for target in track_data["targets"]:
if "metrics" in target and "seconds_per_minute_m3" in target["metrics"]:
basic_model_results["scores"]["seconds_per_minute_m3"] = target["metrics"]["seconds_per_minute_m3"]
break
except Exception:
pass # Ignore errors in extracting existing speed metrics
else:
# Expanded stem mapping to include "no-stem" outputs and custom stem formats
stem_mapping = {
# Standard stems
"Vocals": "vocals",
"Instrumental": "instrumental",
"Drums": "drums",
"Bass": "bass",
"Other": "other",
# No-stem variants
"No Drums": "nodrums",
"No Bass": "nobass",
"No Other": "noother",
# Custom stem formats (with hyphens)
"Drum-Bass": "drumbass",
"No Drum-Bass": "nodrumbass",
"Vocals-Other": "vocalsother",
"No Vocals-Other": "novocalsother",
}
# Create a temporary directory for separation files
with tempfile.TemporaryDirectory() as temp_dir:
logger.info(f"Using temporary directory: {temp_dir}")
# Measure separation time
start_time = time.time()
# Perform separation
logger.info("Performing separation...")
separator = Separator(output_dir=temp_dir)
separator.load_model(model_filename=test_model)
separator.separate(os.path.join(track_path, "mixture.wav"), custom_output_names=stem_mapping)
# Calculate processing time
processing_time = time.time() - start_time
seconds_per_minute = processing_time / track_duration_minutes if track_duration_minutes > 0 else 0
logger.info(f"Separation completed in {processing_time:.2f} seconds")
logger.info(f"Processing speed: {seconds_per_minute:.2f} seconds per minute of audio")
# Always add the speed metric to our basic results
basic_model_results["scores"]["seconds_per_minute_m3"] = round(seconds_per_minute, 1)
# Check which stems were actually created
wav_files = [f for f in os.listdir(temp_dir) if f.endswith(".wav")]
logger.info(f"Found WAV files: {wav_files}")
# Determine if this is a standard vocal/instrumental model that can be evaluated with museval
standard_model = False
if len(wav_files) == 2:
# Check if one of the files is named vocals.wav or instrumental.wav
if "vocals.wav" in wav_files and "instrumental.wav" in wav_files:
standard_model = True
logger.info("Detected standard vocals/instrumental model, will run museval evaluation")
# If not a standard model, skip museval evaluation and just return speed metrics
if not standard_model:
logger.info(f"Non-standard stem configuration detected for model {test_model}, skipping museval evaluation")
# Store the speed metric in the combined results
if test_model not in museval_results:
museval_results[test_model] = {}
# Create a minimal structure for the speed metric
minimal_results = {"targets": [{"name": "speed_metrics_only", "metrics": {"seconds_per_minute_m3": round(seconds_per_minute, 1)}}]}
museval_results[test_model][track_name] = minimal_results
save_combined_results(museval_results)
return None, basic_model_results
# For standard models, proceed with museval evaluation
available_stems = {}
available_stems["vocals"] = os.path.join(temp_dir, "vocals.wav")
available_stems["accompaniment"] = os.path.join(temp_dir, "instrumental.wav")
# Get track from MUSDB
track = next((t for t in mus_db if t.name == track_name), None)
if track is None:
raise ValueError(f"Track {track_name} not found in MUSDB18")
# Load available stems
estimates = {}
for stem_name, stem_path in available_stems.items():
audio, _ = sf.read(stem_path)
if len(audio.shape) == 1:
audio = np.expand_dims(audio, axis=1)
estimates[stem_name] = audio
# Evaluate using museval
logger.info(f"Evaluating stems: {list(estimates.keys())}")
try:
scores = museval.eval_mus_track(track, estimates, output_dir=temp_dir, mode="v4")
# Add the speed metric to the scores
if not hasattr(scores, "speed_metric_added"):
for target in scores.scores["targets"]:
if "metrics" not in target:
target["metrics"] = {}
target["metrics"]["seconds_per_minute_m3"] = round(seconds_per_minute, 1)
scores.speed_metric_added = True
# Update the combined results file with the new evaluation
if test_model not in museval_results:
museval_results[test_model] = {}
museval_results[test_model][track_name] = scores.scores
save_combined_results(museval_results)
except Exception as e:
logger.error(f"Error during museval evaluation: {str(e)}")
logger.exception("Evaluation exception details:")
# Return basic results with just the speed metric
return None, basic_model_results
try:
# Only process museval results if we have them
if "scores" in locals() and scores is not None:
# Calculate aggregate scores for available stems
results_store = museval.EvalStore()
results_store.add_track(scores.df)
methods = museval.MethodStore()
methods.add_evalstore(results_store, name=test_model)
agg_scores = methods.agg_frames_tracks_scores()
# Return the aggregate scores in a structured format with 6 significant figures
model_results = {"track_name": track_name, "scores": {}}
for stem in ["vocals", "drums", "bass", "other", "accompaniment"]:
try:
stem_scores = {metric: float(f"{agg_scores.loc[(test_model, stem, metric)]:.6g}") for metric in ["SDR", "SIR", "SAR", "ISR"]}
# Rename 'accompaniment' to 'instrumental' in the output
output_stem = "instrumental" if stem == "accompaniment" else stem
model_results["scores"][output_stem] = stem_scores
except KeyError:
continue
# Add the seconds_per_minute_m3 metric if it was calculated
if processing_time > 0 and track_duration_minutes > 0:
model_results["scores"]["seconds_per_minute_m3"] = round(seconds_per_minute, 1)
return scores, model_results if model_results["scores"] else basic_model_results
else:
# If we don't have scores, just return the basic results with speed metrics
return None, basic_model_results
except Exception as e:
logger.error(f"Error processing evaluation results: {str(e)}")
logger.exception("Results processing exception details:")
# Return basic results with just the speed metric
return None, basic_model_results
def convert_decimal_to_float(obj):
"""Recursively converts Decimal objects to floats in a nested structure."""
if isinstance(obj, Decimal):
return float(obj)
elif isinstance(obj, dict):
return {k: convert_decimal_to_float(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [convert_decimal_to_float(x) for x in obj]
return obj
def calculate_median_scores(track_scores):
"""Calculate median scores across all tracks for each stem and metric"""
# Initialize containers for each stem's metrics
stem_metrics = {
"vocals": {"SDR": [], "SIR": [], "SAR": [], "ISR": []},
"drums": {"SDR": [], "SIR": [], "SAR": [], "ISR": []},
"bass": {"SDR": [], "SIR": [], "SAR": [], "ISR": []},
"instrumental": {"SDR": [], "SIR": [], "SAR": [], "ISR": []},
"seconds_per_minute_m3": [],
}
# Collect all scores for each stem and metric
for track_score in track_scores:
if track_score is not None and "scores" in track_score:
# Process audio quality metrics
for stem, metrics in track_score["scores"].items():
if stem in stem_metrics and stem != "seconds_per_minute_m3":
for metric, value in metrics.items():
stem_metrics[stem][metric].append(value)
# Process speed metric separately
if "seconds_per_minute_m3" in track_score["scores"]:
stem_metrics["seconds_per_minute_m3"].append(track_score["scores"]["seconds_per_minute_m3"])
# Calculate medians for each stem and metric
median_scores = {}
for stem, metrics in stem_metrics.items():
if stem != "seconds_per_minute_m3" and any(metrics.values()): # Only include stems that have scores
median_scores[stem] = {metric: float(f"{np.median(values):.6g}") for metric, values in metrics.items() if values} # Only include metrics that have values
# Add median speed metric if available
if stem_metrics["seconds_per_minute_m3"]:
median_scores["seconds_per_minute_m3"] = round(np.median(stem_metrics["seconds_per_minute_m3"]), 1)
return median_scores
def check_disk_usage(path):
"""Check inode usage and disk space on the filesystem containing path"""
import subprocess
import sys
# Check disk space first
result = subprocess.run(["df", "-h", path], capture_output=True, text=True)
output = result.stdout
logger.info(f"Current disk usage:\n{output}")
# Parse the output to get disk usage percentage
lines = output.strip().split("\n")
if len(lines) >= 2:
parts = lines[1].split()
if len(parts) >= 5:
try:
# Extract disk usage percentage
disk_usage_str = parts[4].rstrip("%")
disk_usage_pct = int(disk_usage_str)
logger.info(f"Disk usage: {disk_usage_pct}%")
if disk_usage_pct >= 99:
logger.critical("CRITICAL: Disk is almost full (>99%)! Cannot continue processing.")
logger.critical("Please free up disk space before continuing.")
sys.exit(1)
elif disk_usage_pct > 95:
logger.warning(f"WARNING: High disk usage ({disk_usage_pct}%)!")
except (ValueError, IndexError) as e:
logger.error(f"Error parsing disk usage: {str(e)}")
# Now check inode usage
result = subprocess.run(["df", "-i", path], capture_output=True, text=True)
output = result.stdout
logger.info(f"Current inode usage:\n{output}")
# Parse the output to get inode usage percentage
lines = output.strip().split("\n")
if len(lines) >= 2:
# The second line contains the actual data
parts = lines[1].split()
if len(parts) >= 8: # macOS df -i format has 8 columns
try:
# On macOS, inode usage is in the 8th column as a percentage
inode_usage_str = parts[7].rstrip("%")
inode_usage_pct = int(inode_usage_str)
# Also extract the actual inode numbers for better reporting
iused = int(parts[5])
ifree = int(parts[6])
total_inodes = iused + ifree
# Skip inode check for exFAT or similar filesystems
if total_inodes <= 1:
logger.info("Filesystem appears to be exFAT or similar (no real inode tracking). Skipping inode check.")
return None
logger.info(f"Inode usage: {iused:,}/{total_inodes:,} ({inode_usage_pct}%)")
if inode_usage_pct >= 100:
logger.critical("CRITICAL: Inode usage is at 100%! Cannot continue processing.")
logger.critical("Please free up inodes before continuing.")
sys.exit(1)
elif inode_usage_pct > 90:
logger.warning(f"WARNING: High inode usage ({inode_usage_pct}%)!")
return inode_usage_pct
except (ValueError, IndexError) as e:
logger.error(f"Error parsing inode usage: {str(e)}")
return None
def get_evaluated_track_count(model_name, museval_results):
"""Get the number of tracks evaluated for a specific model"""
if model_name in museval_results:
return len(museval_results[model_name])
return 0
def get_most_evaluated_tracks(museval_results, min_count=10):
"""Get tracks that have been evaluated for the most models"""
track_counts = {}
# Count how many models have evaluated each track
for model_name, tracks in museval_results.items():
for track_name in tracks:
if track_name not in track_counts:
track_counts[track_name] = 0
track_counts[track_name] += 1
# Sort tracks by evaluation count (descending)
sorted_tracks = sorted(track_counts.items(), key=lambda x: x[1], reverse=True)
# Return tracks that have been evaluated at least min_count times
return [track for track, count in sorted_tracks if count >= min_count]
def generate_summary_statistics(
start_time, models_processed, tracks_processed, models_with_new_data, tracks_evaluated, total_processing_time, fastest_model=None, slowest_model=None, combined_results_path=None, is_dry_run=False
):
"""Generate a summary of the script's execution"""
end_time = time.time()
total_runtime = end_time - start_time
# Format the runtime
hours, remainder = divmod(total_runtime, 3600)
minutes, seconds = divmod(remainder, 60)
runtime_str = f"{int(hours):02d}:{int(minutes):02d}:{int(seconds):02d}"
# Build the summary
summary = [
"=" * 80,
"DRY RUN SUMMARY - PREVIEW ONLY" if is_dry_run else "EXECUTION SUMMARY",
"=" * 80,
f"Total runtime: {runtime_str}",
f"Models {'that would be' if is_dry_run else ''} processed: {models_processed}",
f"Models {'that would receive' if is_dry_run else 'with'} new data: {len(models_with_new_data)}",
f"Total tracks {'that would be' if is_dry_run else ''} evaluated: {tracks_evaluated}",
f"Average tracks per model: {tracks_evaluated / len(models_with_new_data) if models_with_new_data else 0:.2f}",
]
if fastest_model:
summary.append(f"Fastest model: {fastest_model['name']} ({fastest_model['speed']:.2f} seconds per minute)")
if slowest_model:
summary.append(f"Slowest model: {slowest_model['name']} ({slowest_model['speed']:.2f} seconds per minute)")
if total_processing_time > 0:
summary.append(f"Total audio processing time: {total_processing_time:.2f} seconds")
if combined_results_path and os.path.exists(combined_results_path):
file_size = os.path.getsize(combined_results_path) / (1024 * 1024) # Size in MB
summary.append(f"Results file size: {file_size:.2f} MB")
# Add models with new data
if models_with_new_data:
summary.append(f"\nModels {'that would receive' if is_dry_run else 'with'} new evaluation data:")
for model_name in models_with_new_data:
summary.append(f"- {model_name}")
# Add dry run disclaimer if needed
if is_dry_run:
summary.append("\nNOTE: This is a dry run summary. No actual changes were made.")
summary.append("Run without --dry-run to perform actual evaluations.")
summary.append("=" * 80)
return "\n".join(summary)
def check_stop_signal():
"""Check if the stop signal file exists"""
if os.path.exists(STOP_SIGNAL_PATH):
logger.info("Stop signal detected at: " + STOP_SIGNAL_PATH)
return True
return False
def main():
# Add command line argument parsing for dry run mode
parser = argparse.ArgumentParser(description="Run model evaluation on MUSDB18 dataset")
parser.add_argument("--dry-run", action="store_true", help="Run in dry-run mode (no writes)")
parser.add_argument("--max-tracks", type=int, default=10, help="Maximum number of tracks to evaluate per model")
parser.add_argument("--max-models", type=int, default=None, help="Maximum number of models to evaluate")
args = parser.parse_args()
# Remove any existing stop signal file at start
if os.path.exists(STOP_SIGNAL_PATH):
os.remove(STOP_SIGNAL_PATH)
logger.info("Removed existing stop signal file")
# Track start time for progress reporting
start_time = time.time()
# Statistics tracking
models_processed = 0
tracks_processed = 0
models_with_new_data = set()
total_processing_time = 0
fastest_model = {"name": "", "speed": float("inf")} # Initialize with infinity for comparison
slowest_model = {"name": "", "speed": 0} # Initialize with zero for comparison
# Create a results cache manager
class ResultsCache:
def __init__(self):
self.results = load_combined_results()
self.last_update_time = time.time()
def get_results(self, force=False):
current_time = time.time()
# Only reload from disk every 5 minutes unless forced
if force or (current_time - self.last_update_time) > 300:
self.results = load_combined_results()
self.last_update_time = current_time
return self.results
results_cache = ResultsCache()
# Helper function for logging with elapsed time
def log_with_time(message, level=logging.INFO):
elapsed = time.time() - start_time
hours, remainder = divmod(elapsed, 3600)
minutes, seconds = divmod(remainder, 60)
time_str = f"{int(hours):02d}:{int(minutes):02d}:{int(seconds):02d}"
logger.log(level, f"[{time_str}] {message}")
if args.dry_run:
log_with_time("*** RUNNING IN DRY-RUN MODE - NO DATA WILL BE MODIFIED ***")
log_with_time("Starting model evaluation script...")
os.makedirs(RESULTS_PATH, exist_ok=True)
# Check disk space and inode usage at start
check_disk_usage(RESULTS_PATH)
# Load existing results if available
combined_results = {}
if os.path.exists(COMBINED_RESULTS_PATH):
log_with_time("Loading existing combined results...")
with open(COMBINED_RESULTS_PATH) as f:
combined_results = json.load(f)
# Get initial museval results
museval_results = results_cache.get_results()
log_with_time(f"Loaded combined museval results with {len(museval_results)} models")
# Get the most commonly evaluated tracks
common_tracks = get_most_evaluated_tracks(museval_results)
log_with_time(f"Found {len(common_tracks)} commonly evaluated tracks")
# Initialize MUSDB
log_with_time("Initializing MUSDB database...")
mus = musdb.DB(root=MUSDB_PATH, is_wav=True)
# Create a prioritized list of tracks
all_tracks = []
for track in mus.tracks:
# Check if this is a commonly evaluated track
is_common = track.name in common_tracks
all_tracks.append({"name": track.name, "path": os.path.dirname(track.path), "is_common": is_common})
# Sort tracks by whether they're commonly evaluated
all_tracks.sort(key=lambda t: 0 if t["is_common"] else 1)
# Get list of all available models
log_with_time("Getting list of available models...")
separator = Separator()
models_by_type = separator.list_supported_model_files()
# Flatten the models list and prioritize them
all_models = []
for model_type, models in models_by_type.items():
for model_name, model_info in models.items():
filename = model_info.get("filename")
if filename:
# Count how many tracks have been evaluated for this model
evaluated_count = get_evaluated_track_count(filename, museval_results)
# Determine if this is a roformer model
is_roformer = "roformer" in model_name.lower()
# Add to the list with priority information
all_models.append({"name": model_name, "filename": filename, "type": model_type, "info": model_info, "evaluated_count": evaluated_count, "is_roformer": is_roformer})
# Sort models by priority:
# 1. Roformer models with fewer than max_tracks evaluations
# 2. Other models with fewer than max_tracks evaluations
# 3. Roformer models with more evaluations
# 4. Other models with more evaluations
all_models.sort(
key=lambda m: (
0 if m["is_roformer"] and m["evaluated_count"] < args.max_tracks else 1 if not m["is_roformer"] and m["evaluated_count"] < args.max_tracks else 2 if m["is_roformer"] else 3,
m["evaluated_count"], # Secondary sort by number of evaluations (ascending)
)
)
# Log the prioritized models
log_with_time(f"Prioritized {len(all_models)} models for evaluation:")
for i, model in enumerate(all_models[:10]): # Show top 10
log_with_time(f"{i+1}. {model['name']} ({model['filename']}) - {model['evaluated_count']} tracks evaluated, roformer: {model['is_roformer']}")
if len(all_models) > 10:
log_with_time(f"... and {len(all_models) - 10} more models")
# Limit the number of models if specified
if args.max_models:
all_models = all_models[: args.max_models]
log_with_time(f"Limited to {args.max_models} models for this run")
# Process models according to priority
model_idx = 0
stop_requested = False
while model_idx < len(all_models):
# Check for stop signal before processing each model
if check_stop_signal():
log_with_time("Stop signal detected. Will finish current model's tracks and then exit.")
stop_requested = True
model = all_models[model_idx]
model_name = model["name"]
model_filename = model["filename"]
model_type = model["type"]
progress_pct = (model_idx + 1) / len(all_models) * 100
log_with_time(f"\n=== Processing model {model_idx+1}/{len(all_models)} ({progress_pct:.1f}%): {model_name} ({model_filename}) ===")
# Initialize model entry if it doesn't exist
if model_filename not in combined_results:
log_with_time(f"Initializing new entry for {model_filename}")
combined_results[model_filename] = {"model_name": model_name, "track_scores": [], "median_scores": {}, "stems": [], "target_stem": None}
# Try to load the model to get stem information
try:
separator.load_model(model_filename=model_filename)
model_data = separator.model_instance.model_data
# Extract stem information (similar to your existing code)
# ... (keep your existing stem extraction logic here)
except Exception as e:
log_with_time(f"Error loading model {model_filename}: {str(e)}", logging.ERROR)
logger.exception("Full exception details:")
model_idx += 1
continue
# Count how many tracks have been evaluated for this model
# Use the cached results
evaluated_count = get_evaluated_track_count(model_filename, results_cache.get_results())
# Determine how many more tracks to evaluate
tracks_to_evaluate = max(0, args.max_tracks - evaluated_count)
if tracks_to_evaluate == 0:
log_with_time(f"Model {model_name} already has {evaluated_count} tracks evaluated (>= {args.max_tracks}). Skipping.")
model_idx += 1
continue
log_with_time(f"Will evaluate up to {tracks_to_evaluate} tracks for model {model_name}")
# Process tracks for this model
tracks_processed = 0
for track in all_tracks:
# Check for stop signal before each track if we haven't already detected it
if not stop_requested and check_stop_signal():
log_with_time("Stop signal detected. Will finish current track and then exit.")
stop_requested = True
# Skip if we've processed enough tracks for this model
if tracks_processed >= tracks_to_evaluate:
break
track_name = track["name"]
track_path = track["path"]
# Skip if track already evaluated for this model
# Use the cached results
if model_filename in results_cache.get_results() and track_name in results_cache.get_results()[model_filename]:
log_with_time(f"Skipping already evaluated track {track_name} for model: {model_filename}")
continue
log_with_time(f"Processing track: {track_name} for model: {model_filename}")
if args.dry_run:
log_with_time(f"[DRY RUN] Would evaluate track {track_name} with model {model_filename}")
tracks_processed += 1
models_with_new_data.add(model_filename)
# Estimate processing time based on model type for dry run
# This is a rough estimate - roformer models are typically slower
estimated_speed = 30.0 # Default estimate: 30 seconds per minute
if "roformer" in model_name.lower():
estimated_speed = 45.0 # Roformer models are typically slower
elif "umx" in model_name.lower():
estimated_speed = 20.0 # UMX models are typically faster
# Update statistics with estimated values
total_processing_time += estimated_speed
# Track fastest and slowest models based on estimates
if estimated_speed < fastest_model["speed"]:
fastest_model = {"name": model_name, "speed": estimated_speed}
if estimated_speed > slowest_model["speed"]:
slowest_model = {"name": model_name, "speed": estimated_speed}
continue
try:
result = evaluate_track(track_name, track_path, model_filename, mus)
# Unpack the result safely
if result and isinstance(result, tuple) and len(result) == 2:
_, model_results = result
else:
model_results = None
# Process the results if they exist and are valid
if model_results is not None and isinstance(model_results, dict):
combined_results[model_filename]["track_scores"].append(model_results)
tracks_processed += 1
models_with_new_data.add(model_filename)
# Track processing time statistics - safely access nested dictionaries
scores = model_results.get("scores", {})
if isinstance(scores, dict):
speed = scores.get("seconds_per_minute_m3")
if speed is not None:
total_processing_time += speed # Accumulate total processing time
# Track fastest and slowest models
if speed < fastest_model["speed"]:
fastest_model = {"name": model_name, "speed": speed}
if speed > slowest_model["speed"]:
slowest_model = {"name": model_name, "speed": speed}
else:
log_with_time(f"Skipping model {model_filename} for track {track_name} due to no evaluatable stems or invalid results")
except Exception as e:
log_with_time(f"Error evaluating model {model_filename} with track {track_name}: {str(e)}", logging.ERROR)
logger.exception(f"Exception details: ", exc_info=e)
continue
# Update and save results
if combined_results[model_filename]["track_scores"]:
median_scores = calculate_median_scores(combined_results[model_filename]["track_scores"])
combined_results[model_filename]["median_scores"] = median_scores
# Save results after each track
if not args.dry_run:
os.makedirs(os.path.dirname(COMBINED_RESULTS_PATH), exist_ok=True)
with open(COMBINED_RESULTS_PATH, "w", encoding="utf-8") as f:
json.dump(combined_results, f, indent=2)
log_with_time(f"Updated combined results file with {model_filename} - {track_name}")
# Force update the cache after saving
results_cache.get_results(force=True)
else:
log_with_time(f"[DRY RUN] Would have updated combined results for {model_filename} - {track_name}")
# Check disk space periodically
check_disk_usage(RESULTS_PATH)
log_with_time(f"Completed processing {tracks_processed} tracks for model {model_name}")
# If stop was requested, exit after completing the current model
if stop_requested:
log_with_time("Stop signal processed. Generating final summary before exit.")
break
# If we're processing a non-roformer model, check if there are roformer models that need evaluation
if not model["is_roformer"]:
# Find roformer models that still need more evaluations
# Use the cached results
roformer_models_needing_eval = []
for i, m in enumerate(all_models[model_idx + 1 :], start=model_idx + 1):
if m["is_roformer"]:
eval_count = get_evaluated_track_count(m["filename"], results_cache.get_results())
if eval_count < args.max_tracks:
roformer_models_needing_eval.append((i, m))
if roformer_models_needing_eval:
log_with_time(f"Found {len(roformer_models_needing_eval)} roformer models that still need evaluation. Reprioritizing...")
# Move these models to the front of the remaining queue
for offset, (i, m) in enumerate(roformer_models_needing_eval):
# Adjust index for models we've already moved
adjusted_idx = i - offset
# Move this model right after the current one
all_models.insert(model_idx + 1, all_models.pop(adjusted_idx))
log_with_time("Reprioritization complete. Continuing with highest priority model.")
# Move to the next model
model_idx += 1
models_processed += 1
log_with_time("Evaluation complete")
# Final disk space check
check_disk_usage(RESULTS_PATH)
# Generate and display summary statistics
# Reset fastest/slowest models if they weren't updated
if fastest_model["speed"] == float("inf"):
fastest_model = None
if slowest_model["speed"] == 0:
slowest_model = None
summary = generate_summary_statistics(
start_time=start_time,
models_processed=models_processed,
tracks_processed=tracks_processed,
models_with_new_data=models_with_new_data,
tracks_evaluated=tracks_processed,
total_processing_time=total_processing_time,
fastest_model=fastest_model,
slowest_model=slowest_model,
combined_results_path=COMBINED_RESULTS_PATH,
is_dry_run=args.dry_run,
)
log_with_time("\n" + summary)
# Also write summary to a log file
summary_filename = "dry_run_summary.log" if args.dry_run else "evaluation_summary.log"
if stop_requested:
summary_filename = "stopped_" + summary_filename
summary_log_path = os.path.join(os.path.dirname(COMBINED_RESULTS_PATH), summary_filename)
with open(summary_log_path, "w") as f:
f.write(f"{'Dry run' if args.dry_run else 'Evaluation'} {'(stopped early)' if stop_requested else ''} completed at: {time.strftime('%Y-%m-%d %H:%M:%S')}\n")
f.write(summary)
log_with_time(f"Summary written to {summary_log_path}")
# Clean up stop signal file if it exists
if os.path.exists(STOP_SIGNAL_PATH):
os.remove(STOP_SIGNAL_PATH)
log_with_time("Removed stop signal file")
return 0 if not stop_requested else 2 # Return different exit code if stopped early
if __name__ == "__main__":
exit(main())
|