File size: 17,041 Bytes
01f8b5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#!/usr/bin/env python
import argparse
import logging
import json
import sys
import os
from importlib import metadata


def main():
    """Main entry point for the CLI."""
    logger = logging.getLogger(__name__)
    log_handler = logging.StreamHandler()
    log_formatter = logging.Formatter(fmt="%(asctime)s.%(msecs)03d - %(levelname)s - %(module)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
    log_handler.setFormatter(log_formatter)
    logger.addHandler(log_handler)

    parser = argparse.ArgumentParser(description="Separate audio file into different stems.", formatter_class=lambda prog: argparse.RawTextHelpFormatter(prog, max_help_position=60))

    parser.add_argument("audio_files", nargs="*", help="The audio file paths or directory to separate, in any common format.", default=argparse.SUPPRESS)

    package_version = metadata.distribution("audio-separator").version

    version_help = "Show the program's version number and exit."
    debug_help = "Enable debug logging, equivalent to --log_level=debug."
    env_info_help = "Print environment information and exit."
    list_models_help = "List all supported models and exit. Use --list_filter to filter/sort the list and --list_limit to show only top N results."
    log_level_help = "Log level, e.g. info, debug, warning (default: %(default)s)."

    info_params = parser.add_argument_group("Info and Debugging")
    info_params.add_argument("-v", "--version", action="version", version=f"%(prog)s {package_version}", help=version_help)
    info_params.add_argument("-d", "--debug", action="store_true", help=debug_help)
    info_params.add_argument("-e", "--env_info", action="store_true", help=env_info_help)
    info_params.add_argument("-l", "--list_models", action="store_true", help=list_models_help)
    info_params.add_argument("--log_level", default="info", help=log_level_help)
    info_params.add_argument("--list_filter", help="Filter and sort the model list by 'name', 'filename', or any stem e.g. vocals, instrumental, drums")
    info_params.add_argument("--list_limit", type=int, help="Limit the number of models shown")
    info_params.add_argument("--list_format", choices=["pretty", "json"], default="pretty", help="Format for listing models: 'pretty' for formatted output, 'json' for raw JSON dump")

    model_filename_help = "Model to use for separation (default: %(default)s). Example: -m 2_HP-UVR.pth"
    output_format_help = "Output format for separated files, any common format (default: %(default)s). Example: --output_format=MP3"
    output_bitrate_help = "Output bitrate for separated files, any ffmpeg-compatible bitrate (default: %(default)s). Example: --output_bitrate=320k"
    output_dir_help = "Directory to write output files (default: <current dir>). Example: --output_dir=/app/separated"
    model_file_dir_help = "Model files directory (default: %(default)s or AUDIO_SEPARATOR_MODEL_DIR env var if set). Example: --model_file_dir=/app/models"
    download_model_only_help = "Download a single model file only, without performing separation."

    io_params = parser.add_argument_group("Separation I/O Params")
    io_params.add_argument("-m", "--model_filename", default="model_bs_roformer_ep_317_sdr_12.9755.ckpt", help=model_filename_help)
    io_params.add_argument("--output_format", default="FLAC", help=output_format_help)
    io_params.add_argument("--output_bitrate", default=None, help=output_bitrate_help)
    io_params.add_argument("--output_dir", default=None, help=output_dir_help)
    io_params.add_argument("--model_file_dir", default="/tmp/audio-separator-models/", help=model_file_dir_help)
    io_params.add_argument("--download_model_only", action="store_true", help=download_model_only_help)

    invert_spect_help = "Invert secondary stem using spectrogram (default: %(default)s). Example: --invert_spect"
    normalization_help = "Max peak amplitude to normalize input and output audio to (default: %(default)s). Example: --normalization=0.7"
    amplification_help = "Min peak amplitude to amplify input and output audio to (default: %(default)s). Example: --amplification=0.4"
    single_stem_help = "Output only single stem, e.g. Instrumental, Vocals, Drums, Bass, Guitar, Piano, Other. Example: --single_stem=Instrumental"
    sample_rate_help = "Modify the sample rate of the output audio (default: %(default)s). Example: --sample_rate=44100"
    use_soundfile_help = "Use soundfile to write audio output (default: %(default)s). Example: --use_soundfile"
    use_autocast_help = "Use PyTorch autocast for faster inference (default: %(default)s). Do not use for CPU inference. Example: --use_autocast"
    custom_output_names_help = 'Custom names for all output files in JSON format (default: %(default)s). Example: --custom_output_names=\'{"Vocals": "vocals_output", "Drums": "drums_output"}\''

    common_params = parser.add_argument_group("Common Separation Parameters")
    common_params.add_argument("--invert_spect", action="store_true", help=invert_spect_help)
    common_params.add_argument("--normalization", type=float, default=0.9, help=normalization_help)
    common_params.add_argument("--amplification", type=float, default=0.0, help=amplification_help)
    common_params.add_argument("--single_stem", default=None, help=single_stem_help)
    common_params.add_argument("--sample_rate", type=int, default=44100, help=sample_rate_help)
    common_params.add_argument("--use_soundfile", action="store_true", help=use_soundfile_help)
    common_params.add_argument("--use_autocast", action="store_true", help=use_autocast_help)
    common_params.add_argument("--custom_output_names", type=json.loads, default=None, help=custom_output_names_help)

    mdx_segment_size_help = "Larger consumes more resources, but may give better results (default: %(default)s). Example: --mdx_segment_size=256"
    mdx_overlap_help = "Amount of overlap between prediction windows, 0.001-0.999. Higher is better but slower (default: %(default)s). Example: --mdx_overlap=0.25"
    mdx_batch_size_help = "Larger consumes more RAM but may process slightly faster (default: %(default)s). Example: --mdx_batch_size=4"
    mdx_hop_length_help = "Usually called stride in neural networks, only change if you know what you're doing (default: %(default)s). Example: --mdx_hop_length=1024"
    mdx_enable_denoise_help = "Enable denoising during separation (default: %(default)s). Example: --mdx_enable_denoise"

    mdx_params = parser.add_argument_group("MDX Architecture Parameters")
    mdx_params.add_argument("--mdx_segment_size", type=int, default=256, help=mdx_segment_size_help)
    mdx_params.add_argument("--mdx_overlap", type=float, default=0.25, help=mdx_overlap_help)
    mdx_params.add_argument("--mdx_batch_size", type=int, default=1, help=mdx_batch_size_help)
    mdx_params.add_argument("--mdx_hop_length", type=int, default=1024, help=mdx_hop_length_help)
    mdx_params.add_argument("--mdx_enable_denoise", action="store_true", help=mdx_enable_denoise_help)

    vr_batch_size_help = "Number of batches to process at a time. Higher = more RAM, slightly faster processing (default: %(default)s). Example: --vr_batch_size=16"
    vr_window_size_help = "Balance quality and speed. 1024 = fast but lower, 320 = slower but better quality. (default: %(default)s). Example: --vr_window_size=320"
    vr_aggression_help = "Intensity of primary stem extraction, -100 - 100. Typically, 5 for vocals & instrumentals (default: %(default)s). Example: --vr_aggression=2"
    vr_enable_tta_help = "Enable Test-Time-Augmentation; slow but improves quality (default: %(default)s). Example: --vr_enable_tta"
    vr_high_end_process_help = "Mirror the missing frequency range of the output (default: %(default)s). Example: --vr_high_end_process"
    vr_enable_post_process_help = "Identify leftover artifacts within vocal output; may improve separation for some songs (default: %(default)s). Example: --vr_enable_post_process"
    vr_post_process_threshold_help = "Threshold for post_process feature: 0.1-0.3 (default: %(default)s). Example: --vr_post_process_threshold=0.1"

    vr_params = parser.add_argument_group("VR Architecture Parameters")
    vr_params.add_argument("--vr_batch_size", type=int, default=1, help=vr_batch_size_help)
    vr_params.add_argument("--vr_window_size", type=int, default=512, help=vr_window_size_help)
    vr_params.add_argument("--vr_aggression", type=int, default=5, help=vr_aggression_help)
    vr_params.add_argument("--vr_enable_tta", action="store_true", help=vr_enable_tta_help)
    vr_params.add_argument("--vr_high_end_process", action="store_true", help=vr_high_end_process_help)
    vr_params.add_argument("--vr_enable_post_process", action="store_true", help=vr_enable_post_process_help)
    vr_params.add_argument("--vr_post_process_threshold", type=float, default=0.2, help=vr_post_process_threshold_help)

    demucs_segment_size_help = "Size of segments into which the audio is split, 1-100. Higher = slower but better quality (default: %(default)s). Example: --demucs_segment_size=256"
    demucs_shifts_help = "Number of predictions with random shifts, higher = slower but better quality (default: %(default)s). Example: --demucs_shifts=4"
    demucs_overlap_help = "Overlap between prediction windows, 0.001-0.999. Higher = slower but better quality (default: %(default)s). Example: --demucs_overlap=0.25"
    demucs_segments_enabled_help = "Enable segment-wise processing (default: %(default)s). Example: --demucs_segments_enabled=False"

    demucs_params = parser.add_argument_group("Demucs Architecture Parameters")
    demucs_params.add_argument("--demucs_segment_size", type=str, default="Default", help=demucs_segment_size_help)
    demucs_params.add_argument("--demucs_shifts", type=int, default=2, help=demucs_shifts_help)
    demucs_params.add_argument("--demucs_overlap", type=float, default=0.25, help=demucs_overlap_help)
    demucs_params.add_argument("--demucs_segments_enabled", type=bool, default=True, help=demucs_segments_enabled_help)

    mdxc_segment_size_help = "Larger consumes more resources, but may give better results (default: %(default)s). Example: --mdxc_segment_size=256"
    mdxc_override_model_segment_size_help = "Override model default segment size instead of using the model default value. Example: --mdxc_override_model_segment_size"
    mdxc_overlap_help = "Amount of overlap between prediction windows, 2-50. Higher is better but slower (default: %(default)s). Example: --mdxc_overlap=8"
    mdxc_batch_size_help = "Larger consumes more RAM but may process slightly faster (default: %(default)s). Example: --mdxc_batch_size=4"
    mdxc_pitch_shift_help = "Shift audio pitch by a number of semitones while processing. May improve output for deep/high vocals. (default: %(default)s). Example: --mdxc_pitch_shift=2"

    mdxc_params = parser.add_argument_group("MDXC Architecture Parameters")
    mdxc_params.add_argument("--mdxc_segment_size", type=int, default=256, help=mdxc_segment_size_help)
    mdxc_params.add_argument("--mdxc_override_model_segment_size", action="store_true", help=mdxc_override_model_segment_size_help)
    mdxc_params.add_argument("--mdxc_overlap", type=int, default=8, help=mdxc_overlap_help)
    mdxc_params.add_argument("--mdxc_batch_size", type=int, default=1, help=mdxc_batch_size_help)
    mdxc_params.add_argument("--mdxc_pitch_shift", type=int, default=0, help=mdxc_pitch_shift_help)

    args = parser.parse_args()

    if args.debug:
        log_level = logging.DEBUG
    else:
        log_level = getattr(logging, args.log_level.upper())
    logger.setLevel(log_level)

    from audio_separator.separator import Separator

    if args.env_info:
        separator = Separator()
        sys.exit(0)

    if args.list_models:
        separator = Separator(info_only=True)

        if args.list_format == "json":
            model_list = separator.list_supported_model_files()
            print(json.dumps(model_list, indent=2))
        else:
            models = separator.get_simplified_model_list(filter_sort_by=args.list_filter)

            # Apply limit if specified
            if args.list_limit and args.list_limit > 0:
                models = dict(list(models.items())[: args.list_limit])

            # Calculate maximum widths for each column
            filename_width = max(len("Model Filename"), max(len(filename) for filename in models.keys()))
            arch_width = max(len("Arch"), max(len(info["Type"]) for info in models.values()))
            stems_width = max(len("Output Stems (SDR)"), max(len(", ".join(info["Stems"])) for info in models.values()))
            name_width = max(len("Friendly Name"), max(len(info["Name"]) for info in models.values()))

            # Calculate total width for separator line
            total_width = filename_width + arch_width + stems_width + name_width + 15  # 15 accounts for spacing between columns

            # Format the output with dynamic widths and extra spacing
            print("-" * total_width)
            print(f"{'Model Filename':<{filename_width}}  {'Arch':<{arch_width}}  {'Output Stems (SDR)':<{stems_width}}  {'Friendly Name'}")
            print("-" * total_width)

            for filename, info in models.items():
                stems = ", ".join(info["Stems"])
                print(f"{filename:<{filename_width}}  {info['Type']:<{arch_width}}  {stems:<{stems_width}}  {info['Name']}")

        sys.exit(0)

    if args.download_model_only:
        logger.info(f"Separator version {package_version} downloading model {args.model_filename} to directory {args.model_file_dir}")
        separator = Separator(log_formatter=log_formatter, log_level=log_level, model_file_dir=args.model_file_dir)
        separator.download_model_and_data(args.model_filename)
        logger.info(f"Model {args.model_filename} downloaded successfully.")
        sys.exit(0)

    if not hasattr(args, "audio_files"):
        parser.print_help()
        sys.exit(1)

    # Path processing: if a directory is specified, collect all audio files from it
    audio_files = []
    for path in args.audio_files:
        if os.path.isdir(path):
            # If the path is a directory, recursively search for all audio files
            for root, dirs, files in os.walk(path):
                for file in files:
                    # Check the file extension to ensure it's an audio file
                    if file.endswith((".wav", ".flac", ".mp3", ".ogg", ".opus", ".m4a", ".aiff", ".ac3")):  # Add other formats if needed
                        audio_files.append(os.path.join(root, file))
        else:
            # If the path is a file, add it to the list
            audio_files.append(path)

    # If no audio files are found, log an error and exit the program
    if not audio_files:
        logger.error("No valid audio files found in the specified path(s).")
        sys.exit(1)

    logger.info(f"Separator version {package_version} beginning with input file(s): {', '.join(audio_files)}")

    separator = Separator(
        log_formatter=log_formatter,
        log_level=log_level,
        model_file_dir=args.model_file_dir,
        output_dir=args.output_dir,
        output_format=args.output_format,
        output_bitrate=args.output_bitrate,
        normalization_threshold=args.normalization,
        amplification_threshold=args.amplification,
        output_single_stem=args.single_stem,
        invert_using_spec=args.invert_spect,
        sample_rate=args.sample_rate,
        use_soundfile=args.use_soundfile,
        use_autocast=args.use_autocast,
        mdx_params={
            "hop_length": args.mdx_hop_length,
            "segment_size": args.mdx_segment_size,
            "overlap": args.mdx_overlap,
            "batch_size": args.mdx_batch_size,
            "enable_denoise": args.mdx_enable_denoise,
        },
        vr_params={
            "batch_size": args.vr_batch_size,
            "window_size": args.vr_window_size,
            "aggression": args.vr_aggression,
            "enable_tta": args.vr_enable_tta,
            "enable_post_process": args.vr_enable_post_process,
            "post_process_threshold": args.vr_post_process_threshold,
            "high_end_process": args.vr_high_end_process,
        },
        demucs_params={"segment_size": args.demucs_segment_size, "shifts": args.demucs_shifts, "overlap": args.demucs_overlap, "segments_enabled": args.demucs_segments_enabled},
        mdxc_params={
            "segment_size": args.mdxc_segment_size,
            "batch_size": args.mdxc_batch_size,
            "overlap": args.mdxc_overlap,
            "override_model_segment_size": args.mdxc_override_model_segment_size,
            "pitch_shift": args.mdxc_pitch_shift,
        },
    )

    separator.load_model(model_filename=args.model_filename)

    for audio_file in audio_files:
        output_files = separator.separate(audio_file, custom_output_names=args.custom_output_names)
        logger.info(f"Separation complete! Output file(s): {' '.join(output_files)}")