Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,041 Bytes
01f8b5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
#!/usr/bin/env python
import argparse
import logging
import json
import sys
import os
from importlib import metadata
def main():
"""Main entry point for the CLI."""
logger = logging.getLogger(__name__)
log_handler = logging.StreamHandler()
log_formatter = logging.Formatter(fmt="%(asctime)s.%(msecs)03d - %(levelname)s - %(module)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
log_handler.setFormatter(log_formatter)
logger.addHandler(log_handler)
parser = argparse.ArgumentParser(description="Separate audio file into different stems.", formatter_class=lambda prog: argparse.RawTextHelpFormatter(prog, max_help_position=60))
parser.add_argument("audio_files", nargs="*", help="The audio file paths or directory to separate, in any common format.", default=argparse.SUPPRESS)
package_version = metadata.distribution("audio-separator").version
version_help = "Show the program's version number and exit."
debug_help = "Enable debug logging, equivalent to --log_level=debug."
env_info_help = "Print environment information and exit."
list_models_help = "List all supported models and exit. Use --list_filter to filter/sort the list and --list_limit to show only top N results."
log_level_help = "Log level, e.g. info, debug, warning (default: %(default)s)."
info_params = parser.add_argument_group("Info and Debugging")
info_params.add_argument("-v", "--version", action="version", version=f"%(prog)s {package_version}", help=version_help)
info_params.add_argument("-d", "--debug", action="store_true", help=debug_help)
info_params.add_argument("-e", "--env_info", action="store_true", help=env_info_help)
info_params.add_argument("-l", "--list_models", action="store_true", help=list_models_help)
info_params.add_argument("--log_level", default="info", help=log_level_help)
info_params.add_argument("--list_filter", help="Filter and sort the model list by 'name', 'filename', or any stem e.g. vocals, instrumental, drums")
info_params.add_argument("--list_limit", type=int, help="Limit the number of models shown")
info_params.add_argument("--list_format", choices=["pretty", "json"], default="pretty", help="Format for listing models: 'pretty' for formatted output, 'json' for raw JSON dump")
model_filename_help = "Model to use for separation (default: %(default)s). Example: -m 2_HP-UVR.pth"
output_format_help = "Output format for separated files, any common format (default: %(default)s). Example: --output_format=MP3"
output_bitrate_help = "Output bitrate for separated files, any ffmpeg-compatible bitrate (default: %(default)s). Example: --output_bitrate=320k"
output_dir_help = "Directory to write output files (default: <current dir>). Example: --output_dir=/app/separated"
model_file_dir_help = "Model files directory (default: %(default)s or AUDIO_SEPARATOR_MODEL_DIR env var if set). Example: --model_file_dir=/app/models"
download_model_only_help = "Download a single model file only, without performing separation."
io_params = parser.add_argument_group("Separation I/O Params")
io_params.add_argument("-m", "--model_filename", default="model_bs_roformer_ep_317_sdr_12.9755.ckpt", help=model_filename_help)
io_params.add_argument("--output_format", default="FLAC", help=output_format_help)
io_params.add_argument("--output_bitrate", default=None, help=output_bitrate_help)
io_params.add_argument("--output_dir", default=None, help=output_dir_help)
io_params.add_argument("--model_file_dir", default="/tmp/audio-separator-models/", help=model_file_dir_help)
io_params.add_argument("--download_model_only", action="store_true", help=download_model_only_help)
invert_spect_help = "Invert secondary stem using spectrogram (default: %(default)s). Example: --invert_spect"
normalization_help = "Max peak amplitude to normalize input and output audio to (default: %(default)s). Example: --normalization=0.7"
amplification_help = "Min peak amplitude to amplify input and output audio to (default: %(default)s). Example: --amplification=0.4"
single_stem_help = "Output only single stem, e.g. Instrumental, Vocals, Drums, Bass, Guitar, Piano, Other. Example: --single_stem=Instrumental"
sample_rate_help = "Modify the sample rate of the output audio (default: %(default)s). Example: --sample_rate=44100"
use_soundfile_help = "Use soundfile to write audio output (default: %(default)s). Example: --use_soundfile"
use_autocast_help = "Use PyTorch autocast for faster inference (default: %(default)s). Do not use for CPU inference. Example: --use_autocast"
custom_output_names_help = 'Custom names for all output files in JSON format (default: %(default)s). Example: --custom_output_names=\'{"Vocals": "vocals_output", "Drums": "drums_output"}\''
common_params = parser.add_argument_group("Common Separation Parameters")
common_params.add_argument("--invert_spect", action="store_true", help=invert_spect_help)
common_params.add_argument("--normalization", type=float, default=0.9, help=normalization_help)
common_params.add_argument("--amplification", type=float, default=0.0, help=amplification_help)
common_params.add_argument("--single_stem", default=None, help=single_stem_help)
common_params.add_argument("--sample_rate", type=int, default=44100, help=sample_rate_help)
common_params.add_argument("--use_soundfile", action="store_true", help=use_soundfile_help)
common_params.add_argument("--use_autocast", action="store_true", help=use_autocast_help)
common_params.add_argument("--custom_output_names", type=json.loads, default=None, help=custom_output_names_help)
mdx_segment_size_help = "Larger consumes more resources, but may give better results (default: %(default)s). Example: --mdx_segment_size=256"
mdx_overlap_help = "Amount of overlap between prediction windows, 0.001-0.999. Higher is better but slower (default: %(default)s). Example: --mdx_overlap=0.25"
mdx_batch_size_help = "Larger consumes more RAM but may process slightly faster (default: %(default)s). Example: --mdx_batch_size=4"
mdx_hop_length_help = "Usually called stride in neural networks, only change if you know what you're doing (default: %(default)s). Example: --mdx_hop_length=1024"
mdx_enable_denoise_help = "Enable denoising during separation (default: %(default)s). Example: --mdx_enable_denoise"
mdx_params = parser.add_argument_group("MDX Architecture Parameters")
mdx_params.add_argument("--mdx_segment_size", type=int, default=256, help=mdx_segment_size_help)
mdx_params.add_argument("--mdx_overlap", type=float, default=0.25, help=mdx_overlap_help)
mdx_params.add_argument("--mdx_batch_size", type=int, default=1, help=mdx_batch_size_help)
mdx_params.add_argument("--mdx_hop_length", type=int, default=1024, help=mdx_hop_length_help)
mdx_params.add_argument("--mdx_enable_denoise", action="store_true", help=mdx_enable_denoise_help)
vr_batch_size_help = "Number of batches to process at a time. Higher = more RAM, slightly faster processing (default: %(default)s). Example: --vr_batch_size=16"
vr_window_size_help = "Balance quality and speed. 1024 = fast but lower, 320 = slower but better quality. (default: %(default)s). Example: --vr_window_size=320"
vr_aggression_help = "Intensity of primary stem extraction, -100 - 100. Typically, 5 for vocals & instrumentals (default: %(default)s). Example: --vr_aggression=2"
vr_enable_tta_help = "Enable Test-Time-Augmentation; slow but improves quality (default: %(default)s). Example: --vr_enable_tta"
vr_high_end_process_help = "Mirror the missing frequency range of the output (default: %(default)s). Example: --vr_high_end_process"
vr_enable_post_process_help = "Identify leftover artifacts within vocal output; may improve separation for some songs (default: %(default)s). Example: --vr_enable_post_process"
vr_post_process_threshold_help = "Threshold for post_process feature: 0.1-0.3 (default: %(default)s). Example: --vr_post_process_threshold=0.1"
vr_params = parser.add_argument_group("VR Architecture Parameters")
vr_params.add_argument("--vr_batch_size", type=int, default=1, help=vr_batch_size_help)
vr_params.add_argument("--vr_window_size", type=int, default=512, help=vr_window_size_help)
vr_params.add_argument("--vr_aggression", type=int, default=5, help=vr_aggression_help)
vr_params.add_argument("--vr_enable_tta", action="store_true", help=vr_enable_tta_help)
vr_params.add_argument("--vr_high_end_process", action="store_true", help=vr_high_end_process_help)
vr_params.add_argument("--vr_enable_post_process", action="store_true", help=vr_enable_post_process_help)
vr_params.add_argument("--vr_post_process_threshold", type=float, default=0.2, help=vr_post_process_threshold_help)
demucs_segment_size_help = "Size of segments into which the audio is split, 1-100. Higher = slower but better quality (default: %(default)s). Example: --demucs_segment_size=256"
demucs_shifts_help = "Number of predictions with random shifts, higher = slower but better quality (default: %(default)s). Example: --demucs_shifts=4"
demucs_overlap_help = "Overlap between prediction windows, 0.001-0.999. Higher = slower but better quality (default: %(default)s). Example: --demucs_overlap=0.25"
demucs_segments_enabled_help = "Enable segment-wise processing (default: %(default)s). Example: --demucs_segments_enabled=False"
demucs_params = parser.add_argument_group("Demucs Architecture Parameters")
demucs_params.add_argument("--demucs_segment_size", type=str, default="Default", help=demucs_segment_size_help)
demucs_params.add_argument("--demucs_shifts", type=int, default=2, help=demucs_shifts_help)
demucs_params.add_argument("--demucs_overlap", type=float, default=0.25, help=demucs_overlap_help)
demucs_params.add_argument("--demucs_segments_enabled", type=bool, default=True, help=demucs_segments_enabled_help)
mdxc_segment_size_help = "Larger consumes more resources, but may give better results (default: %(default)s). Example: --mdxc_segment_size=256"
mdxc_override_model_segment_size_help = "Override model default segment size instead of using the model default value. Example: --mdxc_override_model_segment_size"
mdxc_overlap_help = "Amount of overlap between prediction windows, 2-50. Higher is better but slower (default: %(default)s). Example: --mdxc_overlap=8"
mdxc_batch_size_help = "Larger consumes more RAM but may process slightly faster (default: %(default)s). Example: --mdxc_batch_size=4"
mdxc_pitch_shift_help = "Shift audio pitch by a number of semitones while processing. May improve output for deep/high vocals. (default: %(default)s). Example: --mdxc_pitch_shift=2"
mdxc_params = parser.add_argument_group("MDXC Architecture Parameters")
mdxc_params.add_argument("--mdxc_segment_size", type=int, default=256, help=mdxc_segment_size_help)
mdxc_params.add_argument("--mdxc_override_model_segment_size", action="store_true", help=mdxc_override_model_segment_size_help)
mdxc_params.add_argument("--mdxc_overlap", type=int, default=8, help=mdxc_overlap_help)
mdxc_params.add_argument("--mdxc_batch_size", type=int, default=1, help=mdxc_batch_size_help)
mdxc_params.add_argument("--mdxc_pitch_shift", type=int, default=0, help=mdxc_pitch_shift_help)
args = parser.parse_args()
if args.debug:
log_level = logging.DEBUG
else:
log_level = getattr(logging, args.log_level.upper())
logger.setLevel(log_level)
from audio_separator.separator import Separator
if args.env_info:
separator = Separator()
sys.exit(0)
if args.list_models:
separator = Separator(info_only=True)
if args.list_format == "json":
model_list = separator.list_supported_model_files()
print(json.dumps(model_list, indent=2))
else:
models = separator.get_simplified_model_list(filter_sort_by=args.list_filter)
# Apply limit if specified
if args.list_limit and args.list_limit > 0:
models = dict(list(models.items())[: args.list_limit])
# Calculate maximum widths for each column
filename_width = max(len("Model Filename"), max(len(filename) for filename in models.keys()))
arch_width = max(len("Arch"), max(len(info["Type"]) for info in models.values()))
stems_width = max(len("Output Stems (SDR)"), max(len(", ".join(info["Stems"])) for info in models.values()))
name_width = max(len("Friendly Name"), max(len(info["Name"]) for info in models.values()))
# Calculate total width for separator line
total_width = filename_width + arch_width + stems_width + name_width + 15 # 15 accounts for spacing between columns
# Format the output with dynamic widths and extra spacing
print("-" * total_width)
print(f"{'Model Filename':<{filename_width}} {'Arch':<{arch_width}} {'Output Stems (SDR)':<{stems_width}} {'Friendly Name'}")
print("-" * total_width)
for filename, info in models.items():
stems = ", ".join(info["Stems"])
print(f"{filename:<{filename_width}} {info['Type']:<{arch_width}} {stems:<{stems_width}} {info['Name']}")
sys.exit(0)
if args.download_model_only:
logger.info(f"Separator version {package_version} downloading model {args.model_filename} to directory {args.model_file_dir}")
separator = Separator(log_formatter=log_formatter, log_level=log_level, model_file_dir=args.model_file_dir)
separator.download_model_and_data(args.model_filename)
logger.info(f"Model {args.model_filename} downloaded successfully.")
sys.exit(0)
if not hasattr(args, "audio_files"):
parser.print_help()
sys.exit(1)
# Path processing: if a directory is specified, collect all audio files from it
audio_files = []
for path in args.audio_files:
if os.path.isdir(path):
# If the path is a directory, recursively search for all audio files
for root, dirs, files in os.walk(path):
for file in files:
# Check the file extension to ensure it's an audio file
if file.endswith((".wav", ".flac", ".mp3", ".ogg", ".opus", ".m4a", ".aiff", ".ac3")): # Add other formats if needed
audio_files.append(os.path.join(root, file))
else:
# If the path is a file, add it to the list
audio_files.append(path)
# If no audio files are found, log an error and exit the program
if not audio_files:
logger.error("No valid audio files found in the specified path(s).")
sys.exit(1)
logger.info(f"Separator version {package_version} beginning with input file(s): {', '.join(audio_files)}")
separator = Separator(
log_formatter=log_formatter,
log_level=log_level,
model_file_dir=args.model_file_dir,
output_dir=args.output_dir,
output_format=args.output_format,
output_bitrate=args.output_bitrate,
normalization_threshold=args.normalization,
amplification_threshold=args.amplification,
output_single_stem=args.single_stem,
invert_using_spec=args.invert_spect,
sample_rate=args.sample_rate,
use_soundfile=args.use_soundfile,
use_autocast=args.use_autocast,
mdx_params={
"hop_length": args.mdx_hop_length,
"segment_size": args.mdx_segment_size,
"overlap": args.mdx_overlap,
"batch_size": args.mdx_batch_size,
"enable_denoise": args.mdx_enable_denoise,
},
vr_params={
"batch_size": args.vr_batch_size,
"window_size": args.vr_window_size,
"aggression": args.vr_aggression,
"enable_tta": args.vr_enable_tta,
"enable_post_process": args.vr_enable_post_process,
"post_process_threshold": args.vr_post_process_threshold,
"high_end_process": args.vr_high_end_process,
},
demucs_params={"segment_size": args.demucs_segment_size, "shifts": args.demucs_shifts, "overlap": args.demucs_overlap, "segments_enabled": args.demucs_segments_enabled},
mdxc_params={
"segment_size": args.mdxc_segment_size,
"batch_size": args.mdxc_batch_size,
"overlap": args.mdxc_overlap,
"override_model_segment_size": args.mdxc_override_model_segment_size,
"pitch_shift": args.mdxc_pitch_shift,
},
)
separator.load_model(model_filename=args.model_filename)
for audio_file in audio_files:
output_files = separator.separate(audio_file, custom_output_names=args.custom_output_names)
logger.info(f"Separation complete! Output file(s): {' '.join(output_files)}")
|