Spaces:
Running
on
Zero
Running
on
Zero
File size: 47,762 Bytes
6c32ddc 6de14d9 6c32ddc 6de14d9 6c32ddc 6de14d9 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 6de14d9 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 6de14d9 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 5db82ef 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 6de14d9 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 6de14d9 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 5db82ef 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 6de14d9 6c32ddc 6de14d9 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 6c32ddc 01f8b5b 5de8611 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 |
""" This file contains the Separator class, to facilitate the separation of stems from audio. """
from importlib import metadata, resources
import os
import sys
import platform
import subprocess
import time
import logging
import warnings
import importlib
import io
from typing import Optional
import hashlib
import json
import yaml
import requests
import torch
import torch.amp.autocast_mode as autocast_mode
import onnxruntime as ort
from tqdm import tqdm
class Separator:
"""
The Separator class is designed to facilitate the separation of audio sources from a given audio file.
It supports various separation architectures and models, including MDX, VR, and Demucs. The class provides
functionalities to configure separation parameters, load models, and perform audio source separation.
It also handles logging, normalization, and output formatting of the separated audio stems.
The actual separation task is handled by one of the architecture-specific classes in the `architectures` module;
this class is responsible for initialising logging, configuring hardware acceleration, loading the model,
initiating the separation process and passing outputs back to the caller.
Common Attributes:
log_level (int): The logging level.
log_formatter (logging.Formatter): The logging formatter.
model_file_dir (str): The directory where model files are stored.
output_dir (str): The directory where output files will be saved.
output_format (str): The format of the output audio file.
output_bitrate (str): The bitrate of the output audio file.
amplification_threshold (float): The threshold for audio amplification.
normalization_threshold (float): The threshold for audio normalization.
output_single_stem (str): Option to output a single stem.
invert_using_spec (bool): Flag to invert using spectrogram.
sample_rate (int): The sample rate of the audio.
use_soundfile (bool): Use soundfile for audio writing, can solve OOM issues.
use_autocast (bool): Flag to use PyTorch autocast for faster inference.
MDX Architecture Specific Attributes:
hop_length (int): The hop length for STFT.
segment_size (int): The segment size for processing.
overlap (float): The overlap between segments.
batch_size (int): The batch size for processing.
enable_denoise (bool): Flag to enable or disable denoising.
VR Architecture Specific Attributes & Defaults:
batch_size: 16
window_size: 512
aggression: 5
enable_tta: False
enable_post_process: False
post_process_threshold: 0.2
high_end_process: False
Demucs Architecture Specific Attributes & Defaults:
segment_size: "Default"
shifts: 2
overlap: 0.25
segments_enabled: True
MDXC Architecture Specific Attributes & Defaults:
segment_size: 256
override_model_segment_size: False
batch_size: 1
overlap: 8
pitch_shift: 0
"""
def __init__(
self,
log_level=logging.INFO,
log_formatter=None,
model_file_dir="/tmp/audio-separator-models/",
output_dir=None,
output_format="WAV",
output_bitrate=None,
normalization_threshold=0.9,
amplification_threshold=0.0,
output_single_stem=None,
invert_using_spec=False,
sample_rate=44100,
use_soundfile=False,
use_autocast=False,
use_directml=False,
mdx_params={"hop_length": 1024, "segment_size": 256, "overlap": 0.25, "batch_size": 1, "enable_denoise": False},
vr_params={"batch_size": 1, "window_size": 512, "aggression": 5, "enable_tta": False, "enable_post_process": False, "post_process_threshold": 0.2, "high_end_process": False},
demucs_params={"segment_size": "Default", "shifts": 2, "overlap": 0.25, "segments_enabled": True},
mdxc_params={"segment_size": 256, "override_model_segment_size": False, "batch_size": 1, "overlap": 8, "pitch_shift": 0},
info_only=False,
):
"""Initialize the separator."""
self.logger = logging.getLogger(__name__)
self.logger.setLevel(log_level)
self.log_level = log_level
self.log_formatter = log_formatter
self.log_handler = logging.StreamHandler()
if self.log_formatter is None:
self.log_formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(module)s - %(message)s")
self.log_handler.setFormatter(self.log_formatter)
if not self.logger.hasHandlers():
self.logger.addHandler(self.log_handler)
# Filter out noisy warnings from PyTorch for users who don't care about them
if log_level > logging.DEBUG:
warnings.filterwarnings("ignore")
# Skip initialization logs if info_only is True
if not info_only:
package_version = self.get_package_distribution("audio-separator").version
self.logger.info(f"Separator version {package_version} instantiating with output_dir: {output_dir}, output_format: {output_format}")
if output_dir is None:
output_dir = os.getcwd()
if not info_only:
self.logger.info("Output directory not specified. Using current working directory.")
self.output_dir = output_dir
# Check for environment variable to override model_file_dir
env_model_dir = os.environ.get("AUDIO_SEPARATOR_MODEL_DIR")
if env_model_dir:
self.model_file_dir = env_model_dir
self.logger.info(f"Using model directory from AUDIO_SEPARATOR_MODEL_DIR env var: {self.model_file_dir}")
if not os.path.exists(self.model_file_dir):
raise FileNotFoundError(f"The specified model directory does not exist: {self.model_file_dir}")
else:
self.logger.info(f"Using model directory from model_file_dir parameter: {model_file_dir}")
self.model_file_dir = model_file_dir
# Create the model directory if it does not exist
os.makedirs(self.model_file_dir, exist_ok=True)
os.makedirs(self.output_dir, exist_ok=True)
self.output_format = output_format
self.output_bitrate = output_bitrate
if self.output_format is None:
self.output_format = "WAV"
self.normalization_threshold = normalization_threshold
if normalization_threshold <= 0 or normalization_threshold > 1:
raise ValueError("The normalization_threshold must be greater than 0 and less than or equal to 1.")
self.amplification_threshold = amplification_threshold
if amplification_threshold < 0 or amplification_threshold > 1:
raise ValueError("The amplification_threshold must be greater than or equal to 0 and less than or equal to 1.")
self.output_single_stem = output_single_stem
if output_single_stem is not None:
self.logger.debug(f"Single stem output requested, so only one output file ({output_single_stem}) will be written")
self.invert_using_spec = invert_using_spec
if self.invert_using_spec:
self.logger.debug(f"Secondary step will be inverted using spectogram rather than waveform. This may improve quality but is slightly slower.")
try:
self.sample_rate = int(sample_rate)
if self.sample_rate <= 0:
raise ValueError(f"The sample rate setting is {self.sample_rate} but it must be a non-zero whole number.")
if self.sample_rate > 12800000:
raise ValueError(f"The sample rate setting is {self.sample_rate}. Enter something less ambitious.")
except ValueError:
raise ValueError("The sample rate must be a non-zero whole number. Please provide a valid integer.")
self.use_soundfile = use_soundfile
self.use_autocast = use_autocast
self.use_directml = use_directml
# These are parameters which users may want to configure so we expose them to the top-level Separator class,
# even though they are specific to a single model architecture
self.arch_specific_params = {"MDX": mdx_params, "VR": vr_params, "Demucs": demucs_params, "MDXC": mdxc_params}
self.torch_device = None
self.torch_device_cpu = None
self.torch_device_mps = None
self.onnx_execution_provider = None
self.model_instance = None
self.model_is_uvr_vip = False
self.model_friendly_name = None
if not info_only:
self.setup_accelerated_inferencing_device()
def setup_accelerated_inferencing_device(self):
"""
This method sets up the PyTorch and/or ONNX Runtime inferencing device, using GPU hardware acceleration if available.
"""
system_info = self.get_system_info()
self.check_ffmpeg_installed()
self.log_onnxruntime_packages()
self.setup_torch_device(system_info)
def get_system_info(self):
"""
This method logs the system information, including the operating system, CPU archutecture and Python version
"""
os_name = platform.system()
os_version = platform.version()
self.logger.info(f"Operating System: {os_name} {os_version}")
system_info = platform.uname()
self.logger.info(f"System: {system_info.system} Node: {system_info.node} Release: {system_info.release} Machine: {system_info.machine} Proc: {system_info.processor}")
python_version = platform.python_version()
self.logger.info(f"Python Version: {python_version}")
pytorch_version = torch.__version__
self.logger.info(f"PyTorch Version: {pytorch_version}")
return system_info
def check_ffmpeg_installed(self):
"""
This method checks if ffmpeg is installed and logs its version.
"""
try:
ffmpeg_version_output = subprocess.check_output(["ffmpeg", "-version"], text=True)
first_line = ffmpeg_version_output.splitlines()[0]
self.logger.info(f"FFmpeg installed: {first_line}")
except FileNotFoundError:
self.logger.error("FFmpeg is not installed. Please install FFmpeg to use this package.")
# Raise an exception if this is being run by a user, as ffmpeg is required for pydub to write audio
# but if we're just running unit tests in CI, no reason to throw
if "PYTEST_CURRENT_TEST" not in os.environ:
raise
def log_onnxruntime_packages(self):
"""
This method logs the ONNX Runtime package versions, including the GPU and Silicon packages if available.
"""
onnxruntime_gpu_package = self.get_package_distribution("onnxruntime-gpu")
onnxruntime_silicon_package = self.get_package_distribution("onnxruntime-silicon")
onnxruntime_cpu_package = self.get_package_distribution("onnxruntime")
onnxruntime_dml_package = self.get_package_distribution("onnxruntime-directml")
if onnxruntime_gpu_package is not None:
self.logger.info(f"ONNX Runtime GPU package installed with version: {onnxruntime_gpu_package.version}")
if onnxruntime_silicon_package is not None:
self.logger.info(f"ONNX Runtime Silicon package installed with version: {onnxruntime_silicon_package.version}")
if onnxruntime_cpu_package is not None:
self.logger.info(f"ONNX Runtime CPU package installed with version: {onnxruntime_cpu_package.version}")
if onnxruntime_dml_package is not None:
self.logger.info(f"ONNX Runtime DirectML package installed with version: {onnxruntime_dml_package.version}")
def setup_torch_device(self, system_info):
"""
This method sets up the PyTorch and/or ONNX Runtime inferencing device, using GPU hardware acceleration if available.
"""
hardware_acceleration_enabled = False
ort_providers = ort.get_available_providers()
has_torch_dml_installed = self.get_package_distribution("torch_directml")
self.torch_device_cpu = torch.device("cpu")
if torch.cuda.is_available():
self.configure_cuda(ort_providers)
hardware_acceleration_enabled = True
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available() and system_info.processor == "arm":
self.configure_mps(ort_providers)
hardware_acceleration_enabled = True
elif self.use_directml and has_torch_dml_installed:
import torch_directml
if torch_directml.is_available():
self.configure_dml(ort_providers)
hardware_acceleration_enabled = True
if not hardware_acceleration_enabled:
self.logger.info("No hardware acceleration could be configured, running in CPU mode")
self.torch_device = self.torch_device_cpu
self.onnx_execution_provider = ["CPUExecutionProvider"]
def configure_cuda(self, ort_providers):
"""
This method configures the CUDA device for PyTorch and ONNX Runtime, if available.
"""
self.logger.info("CUDA is available in Torch, setting Torch device to CUDA")
self.torch_device = torch.device("cuda")
if "CUDAExecutionProvider" in ort_providers:
self.logger.info("ONNXruntime has CUDAExecutionProvider available, enabling acceleration")
self.onnx_execution_provider = ["CUDAExecutionProvider"]
else:
self.logger.warning("CUDAExecutionProvider not available in ONNXruntime, so acceleration will NOT be enabled")
def configure_mps(self, ort_providers):
"""
This method configures the Apple Silicon MPS/CoreML device for PyTorch and ONNX Runtime, if available.
"""
self.logger.info("Apple Silicon MPS/CoreML is available in Torch and processor is ARM, setting Torch device to MPS")
self.torch_device_mps = torch.device("mps")
self.torch_device = self.torch_device_mps
if "CoreMLExecutionProvider" in ort_providers:
self.logger.info("ONNXruntime has CoreMLExecutionProvider available, enabling acceleration")
self.onnx_execution_provider = ["CoreMLExecutionProvider"]
else:
self.logger.warning("CoreMLExecutionProvider not available in ONNXruntime, so acceleration will NOT be enabled")
def configure_dml(self, ort_providers):
"""
This method configures the DirectML device for PyTorch and ONNX Runtime, if available.
"""
import torch_directml
self.logger.info("DirectML is available in Torch, setting Torch device to DirectML")
self.torch_device_dml = torch_directml.device()
self.torch_device = self.torch_device_dml
if "DmlExecutionProvider" in ort_providers:
self.logger.info("ONNXruntime has DmlExecutionProvider available, enabling acceleration")
self.onnx_execution_provider = ["DmlExecutionProvider"]
else:
self.logger.warning("DmlExecutionProvider not available in ONNXruntime, so acceleration will NOT be enabled")
def get_package_distribution(self, package_name):
"""
This method returns the package distribution for a given package name if installed, or None otherwise.
"""
try:
return metadata.distribution(package_name)
except metadata.PackageNotFoundError:
self.logger.debug(f"Python package: {package_name} not installed")
return None
def get_model_hash(self, model_path):
"""
This method returns the MD5 hash of a given model file.
"""
self.logger.debug(f"Calculating hash of model file {model_path}")
# Use the specific byte count from the original logic
BYTES_TO_HASH = 10000 * 1024 # 10,240,000 bytes
try:
file_size = os.path.getsize(model_path)
with open(model_path, "rb") as f:
if file_size < BYTES_TO_HASH:
# Hash the entire file if smaller than the target byte count
self.logger.debug(f"File size {file_size} < {BYTES_TO_HASH}, hashing entire file.")
hash_value = hashlib.md5(f.read()).hexdigest()
else:
# Seek to the specific position before the end (from the beginning) and hash
seek_pos = file_size - BYTES_TO_HASH
self.logger.debug(f"File size {file_size} >= {BYTES_TO_HASH}, seeking to {seek_pos} and hashing remaining bytes.")
f.seek(seek_pos, io.SEEK_SET)
hash_value = hashlib.md5(f.read()).hexdigest()
# Log the calculated hash
self.logger.info(f"Hash of model file {model_path} is {hash_value}")
return hash_value
except FileNotFoundError:
self.logger.error(f"Model file not found at {model_path}")
raise # Re-raise the specific error
except Exception as e:
# Catch other potential errors (e.g., permissions, other IOErrors)
self.logger.error(f"Error calculating hash for {model_path}: {e}")
raise # Re-raise other errors
def download_file_if_not_exists(self, url, output_path):
"""
This method downloads a file from a given URL to a given output path, if the file does not already exist.
"""
if os.path.isfile(output_path):
self.logger.debug(f"File already exists at {output_path}, skipping download")
return
self.logger.debug(f"Downloading file from {url} to {output_path} with timeout 300s")
response = requests.get(url, stream=True, timeout=300)
if response.status_code == 200:
total_size_in_bytes = int(response.headers.get("content-length", 0))
progress_bar = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True)
with open(output_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
progress_bar.update(len(chunk))
f.write(chunk)
progress_bar.close()
else:
raise RuntimeError(f"Failed to download file from {url}, response code: {response.status_code}")
def list_supported_model_files(self):
"""
This method lists the supported model files for audio-separator, by fetching the same file UVR uses to list these.
Also includes model performance scores where available.
Example response object:
{
"MDX": {
"MDX-Net Model VIP: UVR-MDX-NET-Inst_full_292": {
"filename": "UVR-MDX-NET-Inst_full_292.onnx",
"scores": {
"vocals": {
"SDR": 10.6497,
"SIR": 20.3786,
"SAR": 10.692,
"ISR": 14.848
},
"instrumental": {
"SDR": 15.2149,
"SIR": 25.6075,
"SAR": 17.1363,
"ISR": 17.7893
}
},
"download_files": [
"UVR-MDX-NET-Inst_full_292.onnx"
]
}
},
"Demucs": {
"Demucs v4: htdemucs_ft": {
"filename": "htdemucs_ft.yaml",
"scores": {
"vocals": {
"SDR": 11.2685,
"SIR": 21.257,
"SAR": 11.0359,
"ISR": 19.3753
},
"drums": {
"SDR": 13.235,
"SIR": 23.3053,
"SAR": 13.0313,
"ISR": 17.2889
},
"bass": {
"SDR": 9.72743,
"SIR": 19.5435,
"SAR": 9.20801,
"ISR": 13.5037
}
},
"download_files": [
"https://dl.fbaipublicfiles.com/demucs/hybrid_transformer/f7e0c4bc-ba3fe64a.th",
"https://dl.fbaipublicfiles.com/demucs/hybrid_transformer/d12395a8-e57c48e6.th",
"https://dl.fbaipublicfiles.com/demucs/hybrid_transformer/92cfc3b6-ef3bcb9c.th",
"https://dl.fbaipublicfiles.com/demucs/hybrid_transformer/04573f0d-f3cf25b2.th",
"https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/htdemucs_ft.yaml"
]
}
},
"MDXC": {
"MDX23C Model: MDX23C-InstVoc HQ": {
"filename": "MDX23C-8KFFT-InstVoc_HQ.ckpt",
"scores": {
"vocals": {
"SDR": 11.9504,
"SIR": 23.1166,
"SAR": 12.093,
"ISR": 15.4782
},
"instrumental": {
"SDR": 16.3035,
"SIR": 26.6161,
"SAR": 18.5167,
"ISR": 18.3939
}
},
"download_files": [
"MDX23C-8KFFT-InstVoc_HQ.ckpt",
"model_2_stem_full_band_8k.yaml"
]
}
}
}
"""
download_checks_path = os.path.join(self.model_file_dir, "download_checks.json")
self.download_file_if_not_exists("https://raw.githubusercontent.com/TRvlvr/application_data/main/filelists/download_checks.json", download_checks_path)
model_downloads_list = json.load(open(download_checks_path, encoding="utf-8"))
self.logger.debug(f"UVR model download list loaded")
# Load the model scores with error handling
model_scores = {}
try:
with resources.open_text("audio_separator", "models-scores.json") as f:
model_scores = json.load(f)
self.logger.debug(f"Model scores loaded")
except json.JSONDecodeError as e:
self.logger.warning(f"Failed to load model scores: {str(e)}")
self.logger.warning("Continuing without model scores")
# Only show Demucs v4 models as we've only implemented support for v4
filtered_demucs_v4 = {key: value for key, value in model_downloads_list["demucs_download_list"].items() if key.startswith("Demucs v4")}
# Modified Demucs handling to use YAML files as identifiers and include download files
demucs_models = {}
for name, files in filtered_demucs_v4.items():
# Find the YAML file in the model files
yaml_file = next((filename for filename in files.keys() if filename.endswith(".yaml")), None)
if yaml_file:
model_score_data = model_scores.get(yaml_file, {})
demucs_models[name] = {
"filename": yaml_file,
"scores": model_score_data.get("median_scores", {}),
"stems": model_score_data.get("stems", []),
"target_stem": model_score_data.get("target_stem"),
"download_files": list(files.values()), # List of all download URLs/filenames
}
# Load the JSON file using importlib.resources
with resources.open_text("audio_separator", "models.json") as f:
audio_separator_models_list = json.load(f)
self.logger.debug(f"Audio-Separator model list loaded")
# Return object with list of model names
model_files_grouped_by_type = {
"VR": {
name: {
"filename": filename,
"scores": model_scores.get(filename, {}).get("median_scores", {}),
"stems": model_scores.get(filename, {}).get("stems", []),
"target_stem": model_scores.get(filename, {}).get("target_stem"),
"download_files": [filename],
} # Just the filename for VR models
for name, filename in {**model_downloads_list["vr_download_list"], **audio_separator_models_list["vr_download_list"]}.items()
},
"MDX": {
name: {
"filename": filename,
"scores": model_scores.get(filename, {}).get("median_scores", {}),
"stems": model_scores.get(filename, {}).get("stems", []),
"target_stem": model_scores.get(filename, {}).get("target_stem"),
"download_files": [filename],
} # Just the filename for MDX models
for name, filename in {**model_downloads_list["mdx_download_list"], **model_downloads_list["mdx_download_vip_list"], **audio_separator_models_list["mdx_download_list"]}.items()
},
"Demucs": demucs_models,
"MDXC": {
name: {
"filename": next(iter(files.keys())),
"scores": model_scores.get(next(iter(files.keys())), {}).get("median_scores", {}),
"stems": model_scores.get(next(iter(files.keys())), {}).get("stems", []),
"target_stem": model_scores.get(next(iter(files.keys())), {}).get("target_stem"),
"download_files": list(files.keys()) + list(files.values()), # List of both model filenames and config filenames
}
for name, files in {
**model_downloads_list["mdx23c_download_list"],
**model_downloads_list["mdx23c_download_vip_list"],
**model_downloads_list["roformer_download_list"],
**audio_separator_models_list["mdx23c_download_list"],
**audio_separator_models_list["roformer_download_list"],
}.items()
},
}
return model_files_grouped_by_type
def print_uvr_vip_message(self):
"""
This method prints a message to the user if they have downloaded a VIP model, reminding them to support Anjok07 on Patreon.
"""
if self.model_is_uvr_vip:
self.logger.warning(f"The model: '{self.model_friendly_name}' is a VIP model, intended by Anjok07 for access by paying subscribers only.")
self.logger.warning("If you are not already subscribed, please consider supporting the developer of UVR, Anjok07 by subscribing here: https://patreon.com/uvr")
def download_model_files(self, model_filename):
"""
This method downloads the model files for a given model filename, if they are not already present.
Returns tuple of (model_filename, model_type, model_friendly_name, model_path, yaml_config_filename)
"""
model_path = os.path.join(self.model_file_dir, f"{model_filename}")
supported_model_files_grouped = self.list_supported_model_files()
public_model_repo_url_prefix = "https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models"
vip_model_repo_url_prefix = "https://github.com/Anjok0109/ai_magic/releases/download/v5"
audio_separator_models_repo_url_prefix = "https://github.com/nomadkaraoke/python-audio-separator/releases/download/model-configs"
yaml_config_filename = None
self.logger.debug(f"Searching for model_filename {model_filename} in supported_model_files_grouped")
# Iterate through model types (MDX, Demucs, MDXC)
for model_type, models in supported_model_files_grouped.items():
# Iterate through each model in this type
for model_friendly_name, model_info in models.items():
self.model_is_uvr_vip = "VIP" in model_friendly_name
model_repo_url_prefix = vip_model_repo_url_prefix if self.model_is_uvr_vip else public_model_repo_url_prefix
# Check if this model matches our target filename
if model_info["filename"] == model_filename or model_filename in model_info["download_files"]:
self.logger.debug(f"Found matching model: {model_friendly_name}")
self.model_friendly_name = model_friendly_name
self.print_uvr_vip_message()
# Download each required file for this model
for file_to_download in model_info["download_files"]:
# For URLs, extract just the filename portion
if file_to_download.startswith("http"):
filename = file_to_download.split("/")[-1]
download_path = os.path.join(self.model_file_dir, filename)
self.download_file_if_not_exists(file_to_download, download_path)
continue
download_path = os.path.join(self.model_file_dir, file_to_download)
# For MDXC models, handle YAML config files specially
if model_type == "MDXC" and file_to_download.endswith(".yaml"):
yaml_config_filename = file_to_download
try:
yaml_url = f"{model_repo_url_prefix}/mdx_model_data/mdx_c_configs/{file_to_download}"
self.download_file_if_not_exists(yaml_url, download_path)
except RuntimeError:
self.logger.debug("YAML config not found in UVR repo, trying audio-separator models repo...")
yaml_url = f"{audio_separator_models_repo_url_prefix}/{file_to_download}"
self.download_file_if_not_exists(yaml_url, download_path)
continue
# For regular model files, try UVR repo first, then audio-separator repo
try:
download_url = f"{model_repo_url_prefix}/{file_to_download}"
self.download_file_if_not_exists(download_url, download_path)
except RuntimeError:
self.logger.debug("Model not found in UVR repo, trying audio-separator models repo...")
download_url = f"{audio_separator_models_repo_url_prefix}/{file_to_download}"
self.download_file_if_not_exists(download_url, download_path)
return model_filename, model_type, model_friendly_name, model_path, yaml_config_filename
raise ValueError(f"Model file {model_filename} not found in supported model files")
def load_model_data_from_yaml(self, yaml_config_filename):
"""
This method loads model-specific parameters from the YAML file for that model.
The parameters in the YAML are critical to inferencing, as they need to match whatever was used during training.
"""
# Verify if the YAML filename includes a full path or just the filename
if not os.path.exists(yaml_config_filename):
model_data_yaml_filepath = os.path.join(self.model_file_dir, yaml_config_filename)
else:
model_data_yaml_filepath = yaml_config_filename
self.logger.debug(f"Loading model data from YAML at path {model_data_yaml_filepath}")
model_data = yaml.load(open(model_data_yaml_filepath, encoding="utf-8"), Loader=yaml.FullLoader)
self.logger.debug(f"Model data loaded from YAML file: {model_data}")
if "roformer" in model_data_yaml_filepath:
model_data["is_roformer"] = True
return model_data
def load_model_data_using_hash(self, model_path):
"""
This method loads model-specific parameters from UVR model data files.
These parameters are critical to inferencing using a given model, as they need to match whatever was used during training.
The correct parameters are identified by calculating the hash of the model file and looking up the hash in the UVR data files.
"""
# Model data and configuration sources from UVR
model_data_url_prefix = "https://raw.githubusercontent.com/TRvlvr/application_data/main"
vr_model_data_url = f"{model_data_url_prefix}/vr_model_data/model_data_new.json"
mdx_model_data_url = f"{model_data_url_prefix}/mdx_model_data/model_data_new.json"
# Calculate hash for the downloaded model
self.logger.debug("Calculating MD5 hash for model file to identify model parameters from UVR data...")
model_hash = self.get_model_hash(model_path)
self.logger.debug(f"Model {model_path} has hash {model_hash}")
# Setting up the path for model data and checking its existence
vr_model_data_path = os.path.join(self.model_file_dir, "vr_model_data.json")
self.logger.debug(f"VR model data path set to {vr_model_data_path}")
self.download_file_if_not_exists(vr_model_data_url, vr_model_data_path)
mdx_model_data_path = os.path.join(self.model_file_dir, "mdx_model_data.json")
self.logger.debug(f"MDX model data path set to {mdx_model_data_path}")
self.download_file_if_not_exists(mdx_model_data_url, mdx_model_data_path)
# Loading model data from UVR
self.logger.debug("Loading MDX and VR model parameters from UVR model data files...")
vr_model_data_object = json.load(open(vr_model_data_path, encoding="utf-8"))
mdx_model_data_object = json.load(open(mdx_model_data_path, encoding="utf-8"))
# Load additional model data from audio-separator
self.logger.debug("Loading additional model parameters from audio-separator model data file...")
with resources.open_text("audio_separator", "model-data.json") as f:
audio_separator_model_data = json.load(f)
# Merge the model data objects, with audio-separator data taking precedence
vr_model_data_object = {**vr_model_data_object, **audio_separator_model_data.get("vr_model_data", {})}
mdx_model_data_object = {**mdx_model_data_object, **audio_separator_model_data.get("mdx_model_data", {})}
if model_hash in mdx_model_data_object:
model_data = mdx_model_data_object[model_hash]
elif model_hash in vr_model_data_object:
model_data = vr_model_data_object[model_hash]
else:
raise ValueError(f"Unsupported Model File: parameters for MD5 hash {model_hash} could not be found in UVR model data file for MDX or VR arch.")
self.logger.debug(f"Model data loaded using hash {model_hash}: {model_data}")
return model_data
def load_model(self, model_filename="model_mel_band_roformer_ep_3005_sdr_11.4360.ckpt"):
"""
This method instantiates the architecture-specific separation class,
loading the separation model into memory, downloading it first if necessary.
"""
self.logger.info(f"Loading model {model_filename}...")
load_model_start_time = time.perf_counter()
# Setting up the model path
model_filename, model_type, model_friendly_name, model_path, yaml_config_filename = self.download_model_files(model_filename)
model_name = model_filename.split(".")[0]
self.logger.debug(f"Model downloaded, friendly name: {model_friendly_name}, model_path: {model_path}")
if model_path.lower().endswith(".yaml"):
yaml_config_filename = model_path
if yaml_config_filename is not None:
model_data = self.load_model_data_from_yaml(yaml_config_filename)
else:
model_data = self.load_model_data_using_hash(model_path)
common_params = {
"logger": self.logger,
"log_level": self.log_level,
"torch_device": self.torch_device,
"torch_device_cpu": self.torch_device_cpu,
"torch_device_mps": self.torch_device_mps,
"onnx_execution_provider": self.onnx_execution_provider,
"model_name": model_name,
"model_path": model_path,
"model_data": model_data,
"output_format": self.output_format,
"output_bitrate": self.output_bitrate,
"output_dir": self.output_dir,
"normalization_threshold": self.normalization_threshold,
"amplification_threshold": self.amplification_threshold,
"output_single_stem": self.output_single_stem,
"invert_using_spec": self.invert_using_spec,
"sample_rate": self.sample_rate,
"use_soundfile": self.use_soundfile,
}
# Instantiate the appropriate separator class depending on the model type
separator_classes = {"MDX": "mdx_separator.MDXSeparator", "VR": "vr_separator.VRSeparator", "Demucs": "demucs_separator.DemucsSeparator", "MDXC": "mdxc_separator.MDXCSeparator"}
if model_type not in self.arch_specific_params or model_type not in separator_classes:
raise ValueError(f"Model type not supported (yet): {model_type}")
if model_type == "Demucs" and sys.version_info < (3, 10):
raise Exception("Demucs models require Python version 3.10 or newer.")
self.logger.debug(f"Importing module for model type {model_type}: {separator_classes[model_type]}")
module_name, class_name = separator_classes[model_type].split(".")
module = importlib.import_module(f"audio_separator.separator.architectures.{module_name}")
separator_class = getattr(module, class_name)
self.logger.debug(f"Instantiating separator class for model type {model_type}: {separator_class}")
self.model_instance = separator_class(common_config=common_params, arch_config=self.arch_specific_params[model_type])
# Log the completion of the model load process
self.logger.debug("Loading model completed.")
self.logger.info(f'Load model duration: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - load_model_start_time)))}')
def separate(self, audio_file_path, custom_output_names=None):
"""
Separates the audio file(s) into different stems (e.g., vocals, instruments) using the loaded model.
This method takes the path to an audio file or a directory containing audio files, processes them through
the loaded separation model, and returns the paths to the output files containing the separated audio stems.
It handles the entire flow from loading the audio, running the separation, clearing up resources, and logging the process.
Parameters:
- audio_file_path (str or list): The path to the audio file or directory, or a list of paths.
- custom_output_names (dict, optional): Custom names for the output files. Defaults to None.
Returns:
- output_files (list of str): A list containing the paths to the separated audio stem files.
"""
# Check if the model and device are properly initialized
if not (self.torch_device and self.model_instance):
raise ValueError("Initialization failed or model not loaded. Please load a model before attempting to separate.")
# If audio_file_path is a string, convert it to a list for uniform processing
if isinstance(audio_file_path, str):
audio_file_path = [audio_file_path]
# Initialize a list to store paths of all output files
output_files = []
# Process each path in the list
for path in audio_file_path:
if os.path.isdir(path):
# If the path is a directory, recursively search for all audio files
for root, dirs, files in os.walk(path):
for file in files:
# Check the file extension to ensure it's an audio file
if file.endswith((".wav", ".flac", ".mp3", ".ogg", ".opus", ".m4a", ".aiff", ".ac3")): # Add other formats if needed
full_path = os.path.join(root, file)
self.logger.info(f"Processing file: {full_path}")
try:
# Perform separation for each file
files_output = self._separate_file(full_path, custom_output_names)
output_files.extend(files_output)
except Exception as e:
self.logger.error(f"Failed to process file {full_path}: {e}")
else:
# If the path is a file, process it directly
self.logger.info(f"Processing file: {path}")
try:
files_output = self._separate_file(path, custom_output_names)
output_files.extend(files_output)
except Exception as e:
self.logger.error(f"Failed to process file {path}: {e}")
return output_files
def _separate_file(self, audio_file_path, custom_output_names=None):
"""
Internal method to handle separation for a single audio file.
This method performs the actual separation process for a single audio file. It logs the start and end of the process,
handles autocast if enabled, and ensures GPU cache is cleared after processing.
Parameters:
- audio_file_path (str): The path to the audio file.
- custom_output_names (dict, optional): Custom names for the output files. Defaults to None.
Returns:
- output_files (list of str): A list containing the paths to the separated audio stem files.
"""
# Log the start of the separation process
self.logger.info(f"Starting separation process for audio_file_path: {audio_file_path}")
separate_start_time = time.perf_counter()
# Log normalization and amplification thresholds
self.logger.debug(f"Normalization threshold set to {self.normalization_threshold}, waveform will be lowered to this max amplitude to avoid clipping.")
self.logger.debug(f"Amplification threshold set to {self.amplification_threshold}, waveform will be scaled up to this max amplitude if below it.")
# Run separation method for the loaded model with autocast enabled if supported by the device
output_files = None
if self.use_autocast and autocast_mode.is_autocast_available(self.torch_device.type):
self.logger.debug("Autocast available.")
with autocast_mode.autocast(self.torch_device.type):
output_files = self.model_instance.separate(audio_file_path, custom_output_names)
else:
self.logger.debug("Autocast unavailable.")
output_files = self.model_instance.separate(audio_file_path, custom_output_names)
# Clear GPU cache to free up memory
self.model_instance.clear_gpu_cache()
# Unset separation parameters to prevent accidentally re-using the wrong source files or output paths
self.model_instance.clear_file_specific_paths()
# Remind the user one more time if they used a VIP model, so the message doesn't get lost in the logs
self.print_uvr_vip_message()
# Log the completion of the separation process
self.logger.debug("Separation process completed.")
self.logger.info(f'Separation duration: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - separate_start_time)))}')
return output_files
def download_model_and_data(self, model_filename):
"""
Downloads the model file without loading it into memory.
"""
self.logger.info(f"Downloading model {model_filename}...")
model_filename, model_type, model_friendly_name, model_path, yaml_config_filename = self.download_model_files(model_filename)
if model_path.lower().endswith(".yaml"):
yaml_config_filename = model_path
if yaml_config_filename is not None:
model_data = self.load_model_data_from_yaml(yaml_config_filename)
else:
model_data = self.load_model_data_using_hash(model_path)
model_data_dict_size = len(model_data)
self.logger.info(f"Model downloaded, type: {model_type}, friendly name: {model_friendly_name}, model_path: {model_path}, model_data: {model_data_dict_size} items")
def get_simplified_model_list(self, filter_sort_by: Optional[str] = None):
"""
Returns a simplified, user-friendly list of models with their key metrics.
Optionally sorts the list based on the specified criteria.
:param sort_by: Criteria to sort by. Can be "name", "filename", or any stem name
"""
model_files = self.list_supported_model_files()
simplified_list = {}
for model_type, models in model_files.items():
for name, data in models.items():
filename = data["filename"]
scores = data.get("scores") or {}
stems = data.get("stems") or []
target_stem = data.get("target_stem")
# Format stems with their SDR scores where available
stems_with_scores = []
stem_sdr_dict = {}
# Process each stem from the model's stem list
for stem in stems:
stem_scores = scores.get(stem, {})
# Add asterisk if this is the target stem
stem_display = f"{stem}*" if stem == target_stem else stem
if isinstance(stem_scores, dict) and "SDR" in stem_scores:
sdr = round(stem_scores["SDR"], 1)
stems_with_scores.append(f"{stem_display} ({sdr})")
stem_sdr_dict[stem.lower()] = sdr
else:
# Include stem without SDR score
stems_with_scores.append(stem_display)
stem_sdr_dict[stem.lower()] = None
# If no stems listed, mark as Unknown
if not stems_with_scores:
stems_with_scores = ["Unknown"]
stem_sdr_dict["unknown"] = None
simplified_list[filename] = {"Name": name, "Type": model_type, "Stems": stems_with_scores, "SDR": stem_sdr_dict}
# Sort and filter the list if a sort_by parameter is provided
if filter_sort_by:
if filter_sort_by == "name":
return dict(sorted(simplified_list.items(), key=lambda x: x[1]["Name"]))
elif filter_sort_by == "filename":
return dict(sorted(simplified_list.items()))
else:
# Convert sort_by to lowercase for case-insensitive comparison
sort_by_lower = filter_sort_by.lower()
# Filter out models that don't have the specified stem
filtered_list = {k: v for k, v in simplified_list.items() if sort_by_lower in v["SDR"]}
# Sort by SDR score if available, putting None values last
def sort_key(item):
sdr = item[1]["SDR"][sort_by_lower]
return (0 if sdr is None else 1, sdr if sdr is not None else float("-inf"))
return dict(sorted(filtered_list.items(), key=sort_key, reverse=True))
return simplified_list
|