File size: 47,762 Bytes
6c32ddc
 
 
6de14d9
6c32ddc
 
 
 
6de14d9
6c32ddc
 
 
 
 
 
 
 
6de14d9
 
 
 
 
 
6c32ddc
01f8b5b
 
6c32ddc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01f8b5b
6c32ddc
01f8b5b
 
 
6c32ddc
01f8b5b
6c32ddc
01f8b5b
 
 
 
 
 
 
6c32ddc
 
01f8b5b
 
 
 
 
 
 
6c32ddc
01f8b5b
 
6c32ddc
 
 
 
 
 
 
 
 
 
01f8b5b
6c32ddc
01f8b5b
6c32ddc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01f8b5b
6c32ddc
 
 
 
01f8b5b
6c32ddc
 
 
01f8b5b
6c32ddc
 
 
01f8b5b
6c32ddc
 
 
01f8b5b
6c32ddc
 
 
 
 
 
 
 
 
 
 
 
01f8b5b
 
 
 
6c32ddc
 
 
01f8b5b
6c32ddc
 
 
01f8b5b
6c32ddc
6de14d9
6c32ddc
01f8b5b
 
 
 
6c32ddc
01f8b5b
 
6c32ddc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6de14d9
6c32ddc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01f8b5b
 
6c32ddc
 
 
 
 
 
 
01f8b5b
6c32ddc
 
01f8b5b
 
6c32ddc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01f8b5b
6c32ddc
01f8b5b
6c32ddc
01f8b5b
 
6c32ddc
 
 
 
 
 
01f8b5b
6c32ddc
 
 
 
01f8b5b
6c32ddc
 
 
 
01f8b5b
6c32ddc
01f8b5b
6c32ddc
01f8b5b
6c32ddc
01f8b5b
 
6c32ddc
 
 
 
 
01f8b5b
6c32ddc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01f8b5b
6c32ddc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5db82ef
6c32ddc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01f8b5b
6c32ddc
 
01f8b5b
6c32ddc
01f8b5b
6c32ddc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6de14d9
6c32ddc
 
 
 
 
 
 
 
01f8b5b
6c32ddc
 
 
 
 
 
 
 
01f8b5b
6c32ddc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6de14d9
6c32ddc
 
 
 
 
 
 
01f8b5b
 
6c32ddc
01f8b5b
 
 
6c32ddc
 
 
01f8b5b
6c32ddc
 
01f8b5b
 
6c32ddc
 
 
 
 
 
 
01f8b5b
 
 
 
 
6c32ddc
 
 
 
 
 
01f8b5b
 
 
6c32ddc
 
01f8b5b
6c32ddc
01f8b5b
 
6c32ddc
 
01f8b5b
6c32ddc
01f8b5b
 
 
 
 
6c32ddc
01f8b5b
6c32ddc
 
 
 
 
 
 
 
 
 
 
 
 
 
01f8b5b
6c32ddc
 
01f8b5b
6c32ddc
 
 
 
01f8b5b
6c32ddc
 
01f8b5b
 
6c32ddc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01f8b5b
 
6c32ddc
 
 
 
 
 
 
 
 
 
 
 
 
01f8b5b
6c32ddc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01f8b5b
6c32ddc
 
 
 
 
 
 
 
 
 
01f8b5b
6c32ddc
 
 
 
5db82ef
6c32ddc
 
 
 
 
 
 
 
 
01f8b5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c32ddc
 
 
 
 
01f8b5b
 
6c32ddc
 
 
01f8b5b
 
6c32ddc
 
 
 
 
 
 
 
 
01f8b5b
 
6c32ddc
 
 
 
 
 
 
 
 
 
01f8b5b
6c32ddc
 
 
 
 
 
01f8b5b
6c32ddc
01f8b5b
 
 
6c32ddc
01f8b5b
6c32ddc
 
01f8b5b
 
6c32ddc
 
01f8b5b
6c32ddc
 
01f8b5b
6c32ddc
 
 
 
 
 
 
01f8b5b
6c32ddc
 
 
 
 
 
 
01f8b5b
 
 
 
6c32ddc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01f8b5b
6c32ddc
6de14d9
6c32ddc
 
6de14d9
6c32ddc
 
 
 
 
 
 
 
01f8b5b
 
 
6c32ddc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01f8b5b
 
6c32ddc
 
 
 
 
 
01f8b5b
 
 
 
 
 
6c32ddc
 
01f8b5b
6c32ddc
 
01f8b5b
 
6c32ddc
 
01f8b5b
6c32ddc
 
01f8b5b
6c32ddc
 
 
01f8b5b
 
 
6c32ddc
01f8b5b
 
 
6c32ddc
01f8b5b
 
 
 
6c32ddc
01f8b5b
6c32ddc
01f8b5b
 
 
 
 
 
6c32ddc
01f8b5b
6c32ddc
01f8b5b
6c32ddc
 
01f8b5b
6c32ddc
01f8b5b
6c32ddc
01f8b5b
 
5de8611
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
""" This file contains the Separator class, to facilitate the separation of stems from audio. """

from importlib import metadata, resources
import os
import sys
import platform
import subprocess
import time
import logging
import warnings
import importlib
import io
from typing import Optional

import hashlib
import json
import yaml
import requests
import torch
import torch.amp.autocast_mode as autocast_mode
import onnxruntime as ort
from tqdm import tqdm


class Separator:
    """
    The Separator class is designed to facilitate the separation of audio sources from a given audio file.
    It supports various separation architectures and models, including MDX, VR, and Demucs. The class provides
    functionalities to configure separation parameters, load models, and perform audio source separation.
    It also handles logging, normalization, and output formatting of the separated audio stems.

    The actual separation task is handled by one of the architecture-specific classes in the `architectures` module;
    this class is responsible for initialising logging, configuring hardware acceleration, loading the model,
    initiating the separation process and passing outputs back to the caller.

    Common Attributes:
        log_level (int): The logging level.
        log_formatter (logging.Formatter): The logging formatter.
        model_file_dir (str): The directory where model files are stored.
        output_dir (str): The directory where output files will be saved.
        output_format (str): The format of the output audio file.
        output_bitrate (str): The bitrate of the output audio file.
        amplification_threshold (float): The threshold for audio amplification.
        normalization_threshold (float): The threshold for audio normalization.
        output_single_stem (str): Option to output a single stem.
        invert_using_spec (bool): Flag to invert using spectrogram.
        sample_rate (int): The sample rate of the audio.
        use_soundfile (bool): Use soundfile for audio writing, can solve OOM issues.
        use_autocast (bool): Flag to use PyTorch autocast for faster inference.

    MDX Architecture Specific Attributes:
        hop_length (int): The hop length for STFT.
        segment_size (int): The segment size for processing.
        overlap (float): The overlap between segments.
        batch_size (int): The batch size for processing.
        enable_denoise (bool): Flag to enable or disable denoising.

    VR Architecture Specific Attributes & Defaults:
        batch_size: 16
        window_size: 512
        aggression: 5
        enable_tta: False
        enable_post_process: False
        post_process_threshold: 0.2
        high_end_process: False

    Demucs Architecture Specific Attributes & Defaults:
        segment_size: "Default"
        shifts: 2
        overlap: 0.25
        segments_enabled: True

    MDXC Architecture Specific Attributes & Defaults:
        segment_size: 256
        override_model_segment_size: False
        batch_size: 1
        overlap: 8
        pitch_shift: 0
    """

    def __init__(
        self,
        log_level=logging.INFO,
        log_formatter=None,
        model_file_dir="/tmp/audio-separator-models/",
        output_dir=None,
        output_format="WAV",
        output_bitrate=None,
        normalization_threshold=0.9,
        amplification_threshold=0.0,
        output_single_stem=None,
        invert_using_spec=False,
        sample_rate=44100,
        use_soundfile=False,
        use_autocast=False,
        use_directml=False,
        mdx_params={"hop_length": 1024, "segment_size": 256, "overlap": 0.25, "batch_size": 1, "enable_denoise": False},
        vr_params={"batch_size": 1, "window_size": 512, "aggression": 5, "enable_tta": False, "enable_post_process": False, "post_process_threshold": 0.2, "high_end_process": False},
        demucs_params={"segment_size": "Default", "shifts": 2, "overlap": 0.25, "segments_enabled": True},
        mdxc_params={"segment_size": 256, "override_model_segment_size": False, "batch_size": 1, "overlap": 8, "pitch_shift": 0},
        info_only=False,
    ):
        """Initialize the separator."""
        self.logger = logging.getLogger(__name__)
        self.logger.setLevel(log_level)
        self.log_level = log_level
        self.log_formatter = log_formatter

        self.log_handler = logging.StreamHandler()

        if self.log_formatter is None:
            self.log_formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(module)s - %(message)s")

        self.log_handler.setFormatter(self.log_formatter)

        if not self.logger.hasHandlers():
            self.logger.addHandler(self.log_handler)

        # Filter out noisy warnings from PyTorch for users who don't care about them
        if log_level > logging.DEBUG:
            warnings.filterwarnings("ignore")

        # Skip initialization logs if info_only is True
        if not info_only:
            package_version = self.get_package_distribution("audio-separator").version
            self.logger.info(f"Separator version {package_version} instantiating with output_dir: {output_dir}, output_format: {output_format}")

        if output_dir is None:
            output_dir = os.getcwd()
            if not info_only:
                self.logger.info("Output directory not specified. Using current working directory.")

        self.output_dir = output_dir

        # Check for environment variable to override model_file_dir
        env_model_dir = os.environ.get("AUDIO_SEPARATOR_MODEL_DIR")
        if env_model_dir:
            self.model_file_dir = env_model_dir
            self.logger.info(f"Using model directory from AUDIO_SEPARATOR_MODEL_DIR env var: {self.model_file_dir}")
            if not os.path.exists(self.model_file_dir):
                raise FileNotFoundError(f"The specified model directory does not exist: {self.model_file_dir}")
        else:
            self.logger.info(f"Using model directory from model_file_dir parameter: {model_file_dir}")
            self.model_file_dir = model_file_dir

        # Create the model directory if it does not exist
        os.makedirs(self.model_file_dir, exist_ok=True)
        os.makedirs(self.output_dir, exist_ok=True)

        self.output_format = output_format
        self.output_bitrate = output_bitrate

        if self.output_format is None:
            self.output_format = "WAV"

        self.normalization_threshold = normalization_threshold
        if normalization_threshold <= 0 or normalization_threshold > 1:
            raise ValueError("The normalization_threshold must be greater than 0 and less than or equal to 1.")

        self.amplification_threshold = amplification_threshold
        if amplification_threshold < 0 or amplification_threshold > 1:
            raise ValueError("The amplification_threshold must be greater than or equal to 0 and less than or equal to 1.")

        self.output_single_stem = output_single_stem
        if output_single_stem is not None:
            self.logger.debug(f"Single stem output requested, so only one output file ({output_single_stem}) will be written")

        self.invert_using_spec = invert_using_spec
        if self.invert_using_spec:
            self.logger.debug(f"Secondary step will be inverted using spectogram rather than waveform. This may improve quality but is slightly slower.")

        try:
            self.sample_rate = int(sample_rate)
            if self.sample_rate <= 0:
                raise ValueError(f"The sample rate setting is {self.sample_rate} but it must be a non-zero whole number.")
            if self.sample_rate > 12800000:
                raise ValueError(f"The sample rate setting is {self.sample_rate}. Enter something less ambitious.")
        except ValueError:
            raise ValueError("The sample rate must be a non-zero whole number. Please provide a valid integer.")

        self.use_soundfile = use_soundfile
        self.use_autocast = use_autocast
        self.use_directml = use_directml

        # These are parameters which users may want to configure so we expose them to the top-level Separator class,
        # even though they are specific to a single model architecture
        self.arch_specific_params = {"MDX": mdx_params, "VR": vr_params, "Demucs": demucs_params, "MDXC": mdxc_params}

        self.torch_device = None
        self.torch_device_cpu = None
        self.torch_device_mps = None

        self.onnx_execution_provider = None
        self.model_instance = None

        self.model_is_uvr_vip = False
        self.model_friendly_name = None

        if not info_only:
            self.setup_accelerated_inferencing_device()

    def setup_accelerated_inferencing_device(self):
        """
        This method sets up the PyTorch and/or ONNX Runtime inferencing device, using GPU hardware acceleration if available.
        """
        system_info = self.get_system_info()
        self.check_ffmpeg_installed()
        self.log_onnxruntime_packages()
        self.setup_torch_device(system_info)

    def get_system_info(self):
        """
        This method logs the system information, including the operating system, CPU archutecture and Python version
        """
        os_name = platform.system()
        os_version = platform.version()
        self.logger.info(f"Operating System: {os_name} {os_version}")

        system_info = platform.uname()
        self.logger.info(f"System: {system_info.system} Node: {system_info.node} Release: {system_info.release} Machine: {system_info.machine} Proc: {system_info.processor}")

        python_version = platform.python_version()
        self.logger.info(f"Python Version: {python_version}")

        pytorch_version = torch.__version__
        self.logger.info(f"PyTorch Version: {pytorch_version}")
        return system_info

    def check_ffmpeg_installed(self):
        """
        This method checks if ffmpeg is installed and logs its version.
        """
        try:
            ffmpeg_version_output = subprocess.check_output(["ffmpeg", "-version"], text=True)
            first_line = ffmpeg_version_output.splitlines()[0]
            self.logger.info(f"FFmpeg installed: {first_line}")
        except FileNotFoundError:
            self.logger.error("FFmpeg is not installed. Please install FFmpeg to use this package.")
            # Raise an exception if this is being run by a user, as ffmpeg is required for pydub to write audio
            # but if we're just running unit tests in CI, no reason to throw
            if "PYTEST_CURRENT_TEST" not in os.environ:
                raise

    def log_onnxruntime_packages(self):
        """
        This method logs the ONNX Runtime package versions, including the GPU and Silicon packages if available.
        """
        onnxruntime_gpu_package = self.get_package_distribution("onnxruntime-gpu")
        onnxruntime_silicon_package = self.get_package_distribution("onnxruntime-silicon")
        onnxruntime_cpu_package = self.get_package_distribution("onnxruntime")
        onnxruntime_dml_package = self.get_package_distribution("onnxruntime-directml")

        if onnxruntime_gpu_package is not None:
            self.logger.info(f"ONNX Runtime GPU package installed with version: {onnxruntime_gpu_package.version}")
        if onnxruntime_silicon_package is not None:
            self.logger.info(f"ONNX Runtime Silicon package installed with version: {onnxruntime_silicon_package.version}")
        if onnxruntime_cpu_package is not None:
            self.logger.info(f"ONNX Runtime CPU package installed with version: {onnxruntime_cpu_package.version}")
        if onnxruntime_dml_package is not None:
            self.logger.info(f"ONNX Runtime DirectML package installed with version: {onnxruntime_dml_package.version}")

    def setup_torch_device(self, system_info):
        """
        This method sets up the PyTorch and/or ONNX Runtime inferencing device, using GPU hardware acceleration if available.
        """
        hardware_acceleration_enabled = False
        ort_providers = ort.get_available_providers()
        has_torch_dml_installed = self.get_package_distribution("torch_directml")

        self.torch_device_cpu = torch.device("cpu")

        if torch.cuda.is_available():
            self.configure_cuda(ort_providers)
            hardware_acceleration_enabled = True
        elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available() and system_info.processor == "arm":
            self.configure_mps(ort_providers)
            hardware_acceleration_enabled = True
        elif self.use_directml and has_torch_dml_installed:
            import torch_directml
            if torch_directml.is_available():
                self.configure_dml(ort_providers)
                hardware_acceleration_enabled = True

        if not hardware_acceleration_enabled:
            self.logger.info("No hardware acceleration could be configured, running in CPU mode")
            self.torch_device = self.torch_device_cpu
            self.onnx_execution_provider = ["CPUExecutionProvider"]

    def configure_cuda(self, ort_providers):
        """
        This method configures the CUDA device for PyTorch and ONNX Runtime, if available.
        """
        self.logger.info("CUDA is available in Torch, setting Torch device to CUDA")
        self.torch_device = torch.device("cuda")
        if "CUDAExecutionProvider" in ort_providers:
            self.logger.info("ONNXruntime has CUDAExecutionProvider available, enabling acceleration")
            self.onnx_execution_provider = ["CUDAExecutionProvider"]
        else:
            self.logger.warning("CUDAExecutionProvider not available in ONNXruntime, so acceleration will NOT be enabled")

    def configure_mps(self, ort_providers):
        """
        This method configures the Apple Silicon MPS/CoreML device for PyTorch and ONNX Runtime, if available.
        """
        self.logger.info("Apple Silicon MPS/CoreML is available in Torch and processor is ARM, setting Torch device to MPS")
        self.torch_device_mps = torch.device("mps")

        self.torch_device = self.torch_device_mps

        if "CoreMLExecutionProvider" in ort_providers:
            self.logger.info("ONNXruntime has CoreMLExecutionProvider available, enabling acceleration")
            self.onnx_execution_provider = ["CoreMLExecutionProvider"]
        else:
            self.logger.warning("CoreMLExecutionProvider not available in ONNXruntime, so acceleration will NOT be enabled")

    def configure_dml(self, ort_providers):
        """
        This method configures the DirectML device for PyTorch and ONNX Runtime, if available.
        """
        import torch_directml
        self.logger.info("DirectML is available in Torch, setting Torch device to DirectML")
        self.torch_device_dml = torch_directml.device() 
        self.torch_device = self.torch_device_dml

        if "DmlExecutionProvider" in ort_providers:
            self.logger.info("ONNXruntime has DmlExecutionProvider available, enabling acceleration")
            self.onnx_execution_provider = ["DmlExecutionProvider"]
        else:
            self.logger.warning("DmlExecutionProvider not available in ONNXruntime, so acceleration will NOT be enabled")

    def get_package_distribution(self, package_name):
        """
        This method returns the package distribution for a given package name if installed, or None otherwise.
        """
        try:
            return metadata.distribution(package_name)
        except metadata.PackageNotFoundError:
            self.logger.debug(f"Python package: {package_name} not installed")
            return None

    def get_model_hash(self, model_path):
        """
        This method returns the MD5 hash of a given model file.
        """
        self.logger.debug(f"Calculating hash of model file {model_path}")
        # Use the specific byte count from the original logic
        BYTES_TO_HASH = 10000 * 1024  # 10,240,000 bytes

        try:
            file_size = os.path.getsize(model_path)

            with open(model_path, "rb") as f:
                if file_size < BYTES_TO_HASH:
                    # Hash the entire file if smaller than the target byte count
                    self.logger.debug(f"File size {file_size} < {BYTES_TO_HASH}, hashing entire file.")
                    hash_value = hashlib.md5(f.read()).hexdigest()
                else:
                    # Seek to the specific position before the end (from the beginning) and hash
                    seek_pos = file_size - BYTES_TO_HASH
                    self.logger.debug(f"File size {file_size} >= {BYTES_TO_HASH}, seeking to {seek_pos} and hashing remaining bytes.")
                    f.seek(seek_pos, io.SEEK_SET)
                    hash_value = hashlib.md5(f.read()).hexdigest()

            # Log the calculated hash
            self.logger.info(f"Hash of model file {model_path} is {hash_value}")
            return hash_value

        except FileNotFoundError:
            self.logger.error(f"Model file not found at {model_path}")
            raise # Re-raise the specific error
        except Exception as e:
            # Catch other potential errors (e.g., permissions, other IOErrors)
            self.logger.error(f"Error calculating hash for {model_path}: {e}")
            raise # Re-raise other errors

    def download_file_if_not_exists(self, url, output_path):
        """
        This method downloads a file from a given URL to a given output path, if the file does not already exist.
        """

        if os.path.isfile(output_path):
            self.logger.debug(f"File already exists at {output_path}, skipping download")
            return

        self.logger.debug(f"Downloading file from {url} to {output_path} with timeout 300s")
        response = requests.get(url, stream=True, timeout=300)

        if response.status_code == 200:
            total_size_in_bytes = int(response.headers.get("content-length", 0))
            progress_bar = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True)

            with open(output_path, "wb") as f:
                for chunk in response.iter_content(chunk_size=8192):
                    progress_bar.update(len(chunk))
                    f.write(chunk)
            progress_bar.close()
        else:
            raise RuntimeError(f"Failed to download file from {url}, response code: {response.status_code}")

    def list_supported_model_files(self):
        """
        This method lists the supported model files for audio-separator, by fetching the same file UVR uses to list these.
        Also includes model performance scores where available.

        Example response object:

        {
            "MDX": {
                "MDX-Net Model VIP: UVR-MDX-NET-Inst_full_292": {
                "filename": "UVR-MDX-NET-Inst_full_292.onnx",
                "scores": {
                    "vocals": {
                    "SDR": 10.6497,
                    "SIR": 20.3786,
                    "SAR": 10.692,
                    "ISR": 14.848
                    },
                    "instrumental": {
                    "SDR": 15.2149,
                    "SIR": 25.6075,
                    "SAR": 17.1363,
                    "ISR": 17.7893
                    }
                },
                "download_files": [
                    "UVR-MDX-NET-Inst_full_292.onnx"
                ]
                }
            },
            "Demucs": {
                "Demucs v4: htdemucs_ft": {
                "filename": "htdemucs_ft.yaml",
                "scores": {
                    "vocals": {
                    "SDR": 11.2685,
                    "SIR": 21.257,
                    "SAR": 11.0359,
                    "ISR": 19.3753
                    },
                    "drums": {
                    "SDR": 13.235,
                    "SIR": 23.3053,
                    "SAR": 13.0313,
                    "ISR": 17.2889
                    },
                    "bass": {
                    "SDR": 9.72743,
                    "SIR": 19.5435,
                    "SAR": 9.20801,
                    "ISR": 13.5037
                    }
                },
                "download_files": [
                    "https://dl.fbaipublicfiles.com/demucs/hybrid_transformer/f7e0c4bc-ba3fe64a.th",
                    "https://dl.fbaipublicfiles.com/demucs/hybrid_transformer/d12395a8-e57c48e6.th",
                    "https://dl.fbaipublicfiles.com/demucs/hybrid_transformer/92cfc3b6-ef3bcb9c.th",
                    "https://dl.fbaipublicfiles.com/demucs/hybrid_transformer/04573f0d-f3cf25b2.th",
                    "https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/htdemucs_ft.yaml"
                ]
                }
            },
            "MDXC": {
                "MDX23C Model: MDX23C-InstVoc HQ": {
                "filename": "MDX23C-8KFFT-InstVoc_HQ.ckpt",
                "scores": {
                    "vocals": {
                    "SDR": 11.9504,
                    "SIR": 23.1166,
                    "SAR": 12.093,
                    "ISR": 15.4782
                    },
                    "instrumental": {
                    "SDR": 16.3035,
                    "SIR": 26.6161,
                    "SAR": 18.5167,
                    "ISR": 18.3939
                    }
                },
                "download_files": [
                    "MDX23C-8KFFT-InstVoc_HQ.ckpt",
                    "model_2_stem_full_band_8k.yaml"
                ]
                }
            }
        }
        """
        download_checks_path = os.path.join(self.model_file_dir, "download_checks.json")

        self.download_file_if_not_exists("https://raw.githubusercontent.com/TRvlvr/application_data/main/filelists/download_checks.json", download_checks_path)

        model_downloads_list = json.load(open(download_checks_path, encoding="utf-8"))
        self.logger.debug(f"UVR model download list loaded")

        # Load the model scores with error handling
        model_scores = {}
        try:
            with resources.open_text("audio_separator", "models-scores.json") as f:
                model_scores = json.load(f)
            self.logger.debug(f"Model scores loaded")
        except json.JSONDecodeError as e:
            self.logger.warning(f"Failed to load model scores: {str(e)}")
            self.logger.warning("Continuing without model scores")

        # Only show Demucs v4 models as we've only implemented support for v4
        filtered_demucs_v4 = {key: value for key, value in model_downloads_list["demucs_download_list"].items() if key.startswith("Demucs v4")}

        # Modified Demucs handling to use YAML files as identifiers and include download files
        demucs_models = {}
        for name, files in filtered_demucs_v4.items():
            # Find the YAML file in the model files
            yaml_file = next((filename for filename in files.keys() if filename.endswith(".yaml")), None)
            if yaml_file:
                model_score_data = model_scores.get(yaml_file, {})
                demucs_models[name] = {
                    "filename": yaml_file,
                    "scores": model_score_data.get("median_scores", {}),
                    "stems": model_score_data.get("stems", []),
                    "target_stem": model_score_data.get("target_stem"),
                    "download_files": list(files.values()),  # List of all download URLs/filenames
                }

        # Load the JSON file using importlib.resources
        with resources.open_text("audio_separator", "models.json") as f:
            audio_separator_models_list = json.load(f)
        self.logger.debug(f"Audio-Separator model list loaded")

        # Return object with list of model names
        model_files_grouped_by_type = {
            "VR": {
                name: {
                    "filename": filename,
                    "scores": model_scores.get(filename, {}).get("median_scores", {}),
                    "stems": model_scores.get(filename, {}).get("stems", []),
                    "target_stem": model_scores.get(filename, {}).get("target_stem"),
                    "download_files": [filename],
                }  # Just the filename for VR models
                for name, filename in {**model_downloads_list["vr_download_list"], **audio_separator_models_list["vr_download_list"]}.items()
            },
            "MDX": {
                name: {
                    "filename": filename,
                    "scores": model_scores.get(filename, {}).get("median_scores", {}),
                    "stems": model_scores.get(filename, {}).get("stems", []),
                    "target_stem": model_scores.get(filename, {}).get("target_stem"),
                    "download_files": [filename],
                }  # Just the filename for MDX models
                for name, filename in {**model_downloads_list["mdx_download_list"], **model_downloads_list["mdx_download_vip_list"], **audio_separator_models_list["mdx_download_list"]}.items()
            },
            "Demucs": demucs_models,
            "MDXC": {
                name: {
                    "filename": next(iter(files.keys())),
                    "scores": model_scores.get(next(iter(files.keys())), {}).get("median_scores", {}),
                    "stems": model_scores.get(next(iter(files.keys())), {}).get("stems", []),
                    "target_stem": model_scores.get(next(iter(files.keys())), {}).get("target_stem"),
                    "download_files": list(files.keys()) + list(files.values()),  # List of both model filenames and config filenames
                }
                for name, files in {
                    **model_downloads_list["mdx23c_download_list"],
                    **model_downloads_list["mdx23c_download_vip_list"],
                    **model_downloads_list["roformer_download_list"],
                    **audio_separator_models_list["mdx23c_download_list"],
                    **audio_separator_models_list["roformer_download_list"],
                }.items()
            },
        }

        return model_files_grouped_by_type

    def print_uvr_vip_message(self):
        """
        This method prints a message to the user if they have downloaded a VIP model, reminding them to support Anjok07 on Patreon.
        """
        if self.model_is_uvr_vip:
            self.logger.warning(f"The model: '{self.model_friendly_name}' is a VIP model, intended by Anjok07 for access by paying subscribers only.")
            self.logger.warning("If you are not already subscribed, please consider supporting the developer of UVR, Anjok07 by subscribing here: https://patreon.com/uvr")

    def download_model_files(self, model_filename):
        """
        This method downloads the model files for a given model filename, if they are not already present.
        Returns tuple of (model_filename, model_type, model_friendly_name, model_path, yaml_config_filename)
        """
        model_path = os.path.join(self.model_file_dir, f"{model_filename}")

        supported_model_files_grouped = self.list_supported_model_files()
        public_model_repo_url_prefix = "https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models"
        vip_model_repo_url_prefix = "https://github.com/Anjok0109/ai_magic/releases/download/v5"
        audio_separator_models_repo_url_prefix = "https://github.com/nomadkaraoke/python-audio-separator/releases/download/model-configs"

        yaml_config_filename = None

        self.logger.debug(f"Searching for model_filename {model_filename} in supported_model_files_grouped")

        # Iterate through model types (MDX, Demucs, MDXC)
        for model_type, models in supported_model_files_grouped.items():
            # Iterate through each model in this type
            for model_friendly_name, model_info in models.items():
                self.model_is_uvr_vip = "VIP" in model_friendly_name
                model_repo_url_prefix = vip_model_repo_url_prefix if self.model_is_uvr_vip else public_model_repo_url_prefix

                # Check if this model matches our target filename
                if model_info["filename"] == model_filename or model_filename in model_info["download_files"]:
                    self.logger.debug(f"Found matching model: {model_friendly_name}")
                    self.model_friendly_name = model_friendly_name
                    self.print_uvr_vip_message()

                    # Download each required file for this model
                    for file_to_download in model_info["download_files"]:
                        # For URLs, extract just the filename portion
                        if file_to_download.startswith("http"):
                            filename = file_to_download.split("/")[-1]
                            download_path = os.path.join(self.model_file_dir, filename)
                            self.download_file_if_not_exists(file_to_download, download_path)
                            continue

                        download_path = os.path.join(self.model_file_dir, file_to_download)

                        # For MDXC models, handle YAML config files specially
                        if model_type == "MDXC" and file_to_download.endswith(".yaml"):
                            yaml_config_filename = file_to_download
                            try:
                                yaml_url = f"{model_repo_url_prefix}/mdx_model_data/mdx_c_configs/{file_to_download}"
                                self.download_file_if_not_exists(yaml_url, download_path)
                            except RuntimeError:
                                self.logger.debug("YAML config not found in UVR repo, trying audio-separator models repo...")
                                yaml_url = f"{audio_separator_models_repo_url_prefix}/{file_to_download}"
                                self.download_file_if_not_exists(yaml_url, download_path)
                            continue

                        # For regular model files, try UVR repo first, then audio-separator repo
                        try:
                            download_url = f"{model_repo_url_prefix}/{file_to_download}"
                            self.download_file_if_not_exists(download_url, download_path)
                        except RuntimeError:
                            self.logger.debug("Model not found in UVR repo, trying audio-separator models repo...")
                            download_url = f"{audio_separator_models_repo_url_prefix}/{file_to_download}"
                            self.download_file_if_not_exists(download_url, download_path)

                    return model_filename, model_type, model_friendly_name, model_path, yaml_config_filename

        raise ValueError(f"Model file {model_filename} not found in supported model files")

    def load_model_data_from_yaml(self, yaml_config_filename):
        """
        This method loads model-specific parameters from the YAML file for that model.
        The parameters in the YAML are critical to inferencing, as they need to match whatever was used during training.
        """
        # Verify if the YAML filename includes a full path or just the filename
        if not os.path.exists(yaml_config_filename):
            model_data_yaml_filepath = os.path.join(self.model_file_dir, yaml_config_filename)
        else:
            model_data_yaml_filepath = yaml_config_filename

        self.logger.debug(f"Loading model data from YAML at path {model_data_yaml_filepath}")

        model_data = yaml.load(open(model_data_yaml_filepath, encoding="utf-8"), Loader=yaml.FullLoader)
        self.logger.debug(f"Model data loaded from YAML file: {model_data}")

        if "roformer" in model_data_yaml_filepath:
            model_data["is_roformer"] = True

        return model_data

    def load_model_data_using_hash(self, model_path):
        """
        This method loads model-specific parameters from UVR model data files.
        These parameters are critical to inferencing using a given model, as they need to match whatever was used during training.
        The correct parameters are identified by calculating the hash of the model file and looking up the hash in the UVR data files.
        """
        # Model data and configuration sources from UVR
        model_data_url_prefix = "https://raw.githubusercontent.com/TRvlvr/application_data/main"

        vr_model_data_url = f"{model_data_url_prefix}/vr_model_data/model_data_new.json"
        mdx_model_data_url = f"{model_data_url_prefix}/mdx_model_data/model_data_new.json"

        # Calculate hash for the downloaded model
        self.logger.debug("Calculating MD5 hash for model file to identify model parameters from UVR data...")
        model_hash = self.get_model_hash(model_path)
        self.logger.debug(f"Model {model_path} has hash {model_hash}")

        # Setting up the path for model data and checking its existence
        vr_model_data_path = os.path.join(self.model_file_dir, "vr_model_data.json")
        self.logger.debug(f"VR model data path set to {vr_model_data_path}")
        self.download_file_if_not_exists(vr_model_data_url, vr_model_data_path)

        mdx_model_data_path = os.path.join(self.model_file_dir, "mdx_model_data.json")
        self.logger.debug(f"MDX model data path set to {mdx_model_data_path}")
        self.download_file_if_not_exists(mdx_model_data_url, mdx_model_data_path)

        # Loading model data from UVR
        self.logger.debug("Loading MDX and VR model parameters from UVR model data files...")
        vr_model_data_object = json.load(open(vr_model_data_path, encoding="utf-8"))
        mdx_model_data_object = json.load(open(mdx_model_data_path, encoding="utf-8"))

        # Load additional model data from audio-separator
        self.logger.debug("Loading additional model parameters from audio-separator model data file...")
        with resources.open_text("audio_separator", "model-data.json") as f:
            audio_separator_model_data = json.load(f)

        # Merge the model data objects, with audio-separator data taking precedence
        vr_model_data_object = {**vr_model_data_object, **audio_separator_model_data.get("vr_model_data", {})}
        mdx_model_data_object = {**mdx_model_data_object, **audio_separator_model_data.get("mdx_model_data", {})}

        if model_hash in mdx_model_data_object:
            model_data = mdx_model_data_object[model_hash]
        elif model_hash in vr_model_data_object:
            model_data = vr_model_data_object[model_hash]
        else:
            raise ValueError(f"Unsupported Model File: parameters for MD5 hash {model_hash} could not be found in UVR model data file for MDX or VR arch.")

        self.logger.debug(f"Model data loaded using hash {model_hash}: {model_data}")

        return model_data

    def load_model(self, model_filename="model_mel_band_roformer_ep_3005_sdr_11.4360.ckpt"):
        """
        This method instantiates the architecture-specific separation class,
        loading the separation model into memory, downloading it first if necessary.
        """
        self.logger.info(f"Loading model {model_filename}...")

        load_model_start_time = time.perf_counter()

        # Setting up the model path
        model_filename, model_type, model_friendly_name, model_path, yaml_config_filename = self.download_model_files(model_filename)
        model_name = model_filename.split(".")[0]
        self.logger.debug(f"Model downloaded, friendly name: {model_friendly_name}, model_path: {model_path}")

        if model_path.lower().endswith(".yaml"):
            yaml_config_filename = model_path

        if yaml_config_filename is not None:
            model_data = self.load_model_data_from_yaml(yaml_config_filename)
        else:
            model_data = self.load_model_data_using_hash(model_path)

        common_params = {
            "logger": self.logger,
            "log_level": self.log_level,
            "torch_device": self.torch_device,
            "torch_device_cpu": self.torch_device_cpu,
            "torch_device_mps": self.torch_device_mps,
            "onnx_execution_provider": self.onnx_execution_provider,
            "model_name": model_name,
            "model_path": model_path,
            "model_data": model_data,
            "output_format": self.output_format,
            "output_bitrate": self.output_bitrate,
            "output_dir": self.output_dir,
            "normalization_threshold": self.normalization_threshold,
            "amplification_threshold": self.amplification_threshold,
            "output_single_stem": self.output_single_stem,
            "invert_using_spec": self.invert_using_spec,
            "sample_rate": self.sample_rate,
            "use_soundfile": self.use_soundfile,
        }

        # Instantiate the appropriate separator class depending on the model type
        separator_classes = {"MDX": "mdx_separator.MDXSeparator", "VR": "vr_separator.VRSeparator", "Demucs": "demucs_separator.DemucsSeparator", "MDXC": "mdxc_separator.MDXCSeparator"}

        if model_type not in self.arch_specific_params or model_type not in separator_classes:
            raise ValueError(f"Model type not supported (yet): {model_type}")

        if model_type == "Demucs" and sys.version_info < (3, 10):
            raise Exception("Demucs models require Python version 3.10 or newer.")

        self.logger.debug(f"Importing module for model type {model_type}: {separator_classes[model_type]}")

        module_name, class_name = separator_classes[model_type].split(".")
        module = importlib.import_module(f"audio_separator.separator.architectures.{module_name}")
        separator_class = getattr(module, class_name)

        self.logger.debug(f"Instantiating separator class for model type {model_type}: {separator_class}")
        self.model_instance = separator_class(common_config=common_params, arch_config=self.arch_specific_params[model_type])

        # Log the completion of the model load process
        self.logger.debug("Loading model completed.")
        self.logger.info(f'Load model duration: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - load_model_start_time)))}')

    def separate(self, audio_file_path, custom_output_names=None):
        """
        Separates the audio file(s) into different stems (e.g., vocals, instruments) using the loaded model.

        This method takes the path to an audio file or a directory containing audio files, processes them through
        the loaded separation model, and returns the paths to the output files containing the separated audio stems.
        It handles the entire flow from loading the audio, running the separation, clearing up resources, and logging the process.

        Parameters:
        - audio_file_path (str or list): The path to the audio file or directory, or a list of paths.
        - custom_output_names (dict, optional): Custom names for the output files. Defaults to None.

        Returns:
        - output_files (list of str): A list containing the paths to the separated audio stem files.
        """
        # Check if the model and device are properly initialized
        if not (self.torch_device and self.model_instance):
            raise ValueError("Initialization failed or model not loaded. Please load a model before attempting to separate.")

        # If audio_file_path is a string, convert it to a list for uniform processing
        if isinstance(audio_file_path, str):
            audio_file_path = [audio_file_path]

        # Initialize a list to store paths of all output files
        output_files = []

        # Process each path in the list
        for path in audio_file_path:
            if os.path.isdir(path):
                # If the path is a directory, recursively search for all audio files
                for root, dirs, files in os.walk(path):
                    for file in files:
                        # Check the file extension to ensure it's an audio file
                        if file.endswith((".wav", ".flac", ".mp3", ".ogg", ".opus", ".m4a", ".aiff", ".ac3")):  # Add other formats if needed
                            full_path = os.path.join(root, file)
                            self.logger.info(f"Processing file: {full_path}")
                            try:
                                # Perform separation for each file
                                files_output = self._separate_file(full_path, custom_output_names)
                                output_files.extend(files_output)
                            except Exception as e:
                                self.logger.error(f"Failed to process file {full_path}: {e}")
            else:
                # If the path is a file, process it directly
                self.logger.info(f"Processing file: {path}")
                try:
                    files_output = self._separate_file(path, custom_output_names)
                    output_files.extend(files_output)
                except Exception as e:
                    self.logger.error(f"Failed to process file {path}: {e}")

        return output_files

    def _separate_file(self, audio_file_path, custom_output_names=None):
        """
        Internal method to handle separation for a single audio file.
        This method performs the actual separation process for a single audio file. It logs the start and end of the process,
        handles autocast if enabled, and ensures GPU cache is cleared after processing.
        Parameters:
        - audio_file_path (str): The path to the audio file.
        - custom_output_names (dict, optional): Custom names for the output files. Defaults to None.
        Returns:
        - output_files (list of str): A list containing the paths to the separated audio stem files.
        """
        # Log the start of the separation process
        self.logger.info(f"Starting separation process for audio_file_path: {audio_file_path}")
        separate_start_time = time.perf_counter()

        # Log normalization and amplification thresholds
        self.logger.debug(f"Normalization threshold set to {self.normalization_threshold}, waveform will be lowered to this max amplitude to avoid clipping.")
        self.logger.debug(f"Amplification threshold set to {self.amplification_threshold}, waveform will be scaled up to this max amplitude if below it.")

        # Run separation method for the loaded model with autocast enabled if supported by the device
        output_files = None
        if self.use_autocast and autocast_mode.is_autocast_available(self.torch_device.type):
            self.logger.debug("Autocast available.")
            with autocast_mode.autocast(self.torch_device.type):
                output_files = self.model_instance.separate(audio_file_path, custom_output_names)
        else:
            self.logger.debug("Autocast unavailable.")
            output_files = self.model_instance.separate(audio_file_path, custom_output_names)

        # Clear GPU cache to free up memory
        self.model_instance.clear_gpu_cache()

        # Unset separation parameters to prevent accidentally re-using the wrong source files or output paths
        self.model_instance.clear_file_specific_paths()

        # Remind the user one more time if they used a VIP model, so the message doesn't get lost in the logs
        self.print_uvr_vip_message()

        # Log the completion of the separation process
        self.logger.debug("Separation process completed.")
        self.logger.info(f'Separation duration: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - separate_start_time)))}')

        return output_files

    def download_model_and_data(self, model_filename):
        """
        Downloads the model file without loading it into memory.
        """
        self.logger.info(f"Downloading model {model_filename}...")

        model_filename, model_type, model_friendly_name, model_path, yaml_config_filename = self.download_model_files(model_filename)

        if model_path.lower().endswith(".yaml"):
            yaml_config_filename = model_path

        if yaml_config_filename is not None:
            model_data = self.load_model_data_from_yaml(yaml_config_filename)
        else:
            model_data = self.load_model_data_using_hash(model_path)

        model_data_dict_size = len(model_data)

        self.logger.info(f"Model downloaded, type: {model_type}, friendly name: {model_friendly_name}, model_path: {model_path}, model_data: {model_data_dict_size} items")

    def get_simplified_model_list(self, filter_sort_by: Optional[str] = None):
        """
        Returns a simplified, user-friendly list of models with their key metrics.
        Optionally sorts the list based on the specified criteria.

        :param sort_by: Criteria to sort by. Can be "name", "filename", or any stem name
        """
        model_files = self.list_supported_model_files()
        simplified_list = {}

        for model_type, models in model_files.items():
            for name, data in models.items():
                filename = data["filename"]
                scores = data.get("scores") or {}
                stems = data.get("stems") or []
                target_stem = data.get("target_stem")

                # Format stems with their SDR scores where available
                stems_with_scores = []
                stem_sdr_dict = {}

                # Process each stem from the model's stem list
                for stem in stems:
                    stem_scores = scores.get(stem, {})
                    # Add asterisk if this is the target stem
                    stem_display = f"{stem}*" if stem == target_stem else stem

                    if isinstance(stem_scores, dict) and "SDR" in stem_scores:
                        sdr = round(stem_scores["SDR"], 1)
                        stems_with_scores.append(f"{stem_display} ({sdr})")
                        stem_sdr_dict[stem.lower()] = sdr
                    else:
                        # Include stem without SDR score
                        stems_with_scores.append(stem_display)
                        stem_sdr_dict[stem.lower()] = None

                # If no stems listed, mark as Unknown
                if not stems_with_scores:
                    stems_with_scores = ["Unknown"]
                    stem_sdr_dict["unknown"] = None

                simplified_list[filename] = {"Name": name, "Type": model_type, "Stems": stems_with_scores, "SDR": stem_sdr_dict}

        # Sort and filter the list if a sort_by parameter is provided
        if filter_sort_by:
            if filter_sort_by == "name":
                return dict(sorted(simplified_list.items(), key=lambda x: x[1]["Name"]))
            elif filter_sort_by == "filename":
                return dict(sorted(simplified_list.items()))
            else:
                # Convert sort_by to lowercase for case-insensitive comparison
                sort_by_lower = filter_sort_by.lower()
                # Filter out models that don't have the specified stem
                filtered_list = {k: v for k, v in simplified_list.items() if sort_by_lower in v["SDR"]}

                # Sort by SDR score if available, putting None values last
                def sort_key(item):
                    sdr = item[1]["SDR"][sort_by_lower]
                    return (0 if sdr is None else 1, sdr if sdr is not None else float("-inf"))

                return dict(sorted(filtered_list.items(), key=sort_key, reverse=True))

        return simplified_list