File size: 18,271 Bytes
01f8b5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
""" This file contains the CommonSeparator class, common to all architecture-specific Separator classes. """

from logging import Logger
import os
import re
import gc
import numpy as np
import librosa
import torch
from pydub import AudioSegment
import soundfile as sf
from audio_separator.separator.uvr_lib_v5 import spec_utils


class CommonSeparator:
    """
    This class contains the common methods and attributes common to all architecture-specific Separator classes.
    """

    ALL_STEMS = "All Stems"
    VOCAL_STEM = "Vocals"
    INST_STEM = "Instrumental"
    OTHER_STEM = "Other"
    BASS_STEM = "Bass"
    DRUM_STEM = "Drums"
    GUITAR_STEM = "Guitar"
    PIANO_STEM = "Piano"
    SYNTH_STEM = "Synthesizer"
    STRINGS_STEM = "Strings"
    WOODWINDS_STEM = "Woodwinds"
    BRASS_STEM = "Brass"
    WIND_INST_STEM = "Wind Inst"
    NO_OTHER_STEM = "No Other"
    NO_BASS_STEM = "No Bass"
    NO_DRUM_STEM = "No Drums"
    NO_GUITAR_STEM = "No Guitar"
    NO_PIANO_STEM = "No Piano"
    NO_SYNTH_STEM = "No Synthesizer"
    NO_STRINGS_STEM = "No Strings"
    NO_WOODWINDS_STEM = "No Woodwinds"
    NO_WIND_INST_STEM = "No Wind Inst"
    NO_BRASS_STEM = "No Brass"
    PRIMARY_STEM = "Primary Stem"
    SECONDARY_STEM = "Secondary Stem"
    LEAD_VOCAL_STEM = "lead_only"
    BV_VOCAL_STEM = "backing_only"
    LEAD_VOCAL_STEM_I = "with_lead_vocals"
    BV_VOCAL_STEM_I = "with_backing_vocals"
    LEAD_VOCAL_STEM_LABEL = "Lead Vocals"
    BV_VOCAL_STEM_LABEL = "Backing Vocals"
    NO_STEM = "No "

    STEM_PAIR_MAPPER = {VOCAL_STEM: INST_STEM, INST_STEM: VOCAL_STEM, LEAD_VOCAL_STEM: BV_VOCAL_STEM, BV_VOCAL_STEM: LEAD_VOCAL_STEM, PRIMARY_STEM: SECONDARY_STEM}

    NON_ACCOM_STEMS = (VOCAL_STEM, OTHER_STEM, BASS_STEM, DRUM_STEM, GUITAR_STEM, PIANO_STEM, SYNTH_STEM, STRINGS_STEM, WOODWINDS_STEM, BRASS_STEM, WIND_INST_STEM)

    def __init__(self, config):

        self.logger: Logger = config.get("logger")
        self.log_level: int = config.get("log_level")

        # Inferencing device / acceleration config
        self.torch_device = config.get("torch_device")
        self.torch_device_cpu = config.get("torch_device_cpu")
        self.torch_device_mps = config.get("torch_device_mps")
        self.onnx_execution_provider = config.get("onnx_execution_provider")

        # Model data
        self.model_name = config.get("model_name")
        self.model_path = config.get("model_path")
        self.model_data = config.get("model_data")

        # Output directory and format
        self.output_dir = config.get("output_dir")
        self.output_format = config.get("output_format")
        self.output_bitrate = config.get("output_bitrate")

        # Functional options which are applicable to all architectures and the user may tweak to affect the output
        self.normalization_threshold = config.get("normalization_threshold")
        self.amplification_threshold = config.get("amplification_threshold")
        self.enable_denoise = config.get("enable_denoise")
        self.output_single_stem = config.get("output_single_stem")
        self.invert_using_spec = config.get("invert_using_spec")
        self.sample_rate = config.get("sample_rate")
        self.use_soundfile = config.get("use_soundfile")

        # Model specific properties

        # Check if model_data has a "training" key with "instruments" list
        self.primary_stem_name = None
        self.secondary_stem_name = None

        if "training" in self.model_data and "instruments" in self.model_data["training"]:
            instruments = self.model_data["training"]["instruments"]
            if instruments:
                self.primary_stem_name = instruments[0]
                self.secondary_stem_name = instruments[1] if len(instruments) > 1 else self.secondary_stem(self.primary_stem_name)

        if self.primary_stem_name is None:
            self.primary_stem_name = self.model_data.get("primary_stem", "Vocals")
            self.secondary_stem_name = self.secondary_stem(self.primary_stem_name)

        self.is_karaoke = self.model_data.get("is_karaoke", False)
        self.is_bv_model = self.model_data.get("is_bv_model", False)
        self.bv_model_rebalance = self.model_data.get("is_bv_model_rebalanced", 0)

        self.logger.debug(f"Common params: model_name={self.model_name}, model_path={self.model_path}")
        self.logger.debug(f"Common params: output_dir={self.output_dir}, output_format={self.output_format}")
        self.logger.debug(f"Common params: normalization_threshold={self.normalization_threshold}, amplification_threshold={self.amplification_threshold}")
        self.logger.debug(f"Common params: enable_denoise={self.enable_denoise}, output_single_stem={self.output_single_stem}")
        self.logger.debug(f"Common params: invert_using_spec={self.invert_using_spec}, sample_rate={self.sample_rate}")

        self.logger.debug(f"Common params: primary_stem_name={self.primary_stem_name}, secondary_stem_name={self.secondary_stem_name}")
        self.logger.debug(f"Common params: is_karaoke={self.is_karaoke}, is_bv_model={self.is_bv_model}, bv_model_rebalance={self.bv_model_rebalance}")

        # File-specific variables which need to be cleared between processing different audio inputs
        self.audio_file_path = None
        self.audio_file_base = None

        self.primary_source = None
        self.secondary_source = None

        self.primary_stem_output_path = None
        self.secondary_stem_output_path = None

        self.cached_sources_map = {}

    def secondary_stem(self, primary_stem: str):
        """Determines secondary stem name based on the primary stem name."""
        primary_stem = primary_stem if primary_stem else self.NO_STEM

        if primary_stem in self.STEM_PAIR_MAPPER:
            secondary_stem = self.STEM_PAIR_MAPPER[primary_stem]
        else:
            secondary_stem = primary_stem.replace(self.NO_STEM, "") if self.NO_STEM in primary_stem else f"{self.NO_STEM}{primary_stem}"

        return secondary_stem

    def separate(self, audio_file_path):
        """
        Placeholder method for separating audio sources. Should be overridden by subclasses.
        """
        raise NotImplementedError("This method should be overridden by subclasses.")

    def final_process(self, stem_path, source, stem_name):
        """
        Finalizes the processing of a stem by writing the audio to a file and returning the processed source.
        """
        self.logger.debug(f"Finalizing {stem_name} stem processing and writing audio...")
        self.write_audio(stem_path, source)

        return {stem_name: source}

    def cached_sources_clear(self):
        """
        Clears the cache dictionaries for VR, MDX, and Demucs models.

        This function is essential for ensuring that the cache does not hold outdated or irrelevant data
        between different processing sessions or when a new batch of audio files is processed.
        It helps in managing memory efficiently and prevents potential errors due to stale data.
        """
        self.cached_sources_map = {}

    def cached_source_callback(self, model_architecture, model_name=None):
        """
        Retrieves the model and sources from the cache based on the processing method and model name.

        Args:
            model_architecture: The architecture type (VR, MDX, or Demucs) being used for processing.
            model_name: The specific model name within the architecture type, if applicable.

        Returns:
            A tuple containing the model and its sources if found in the cache; otherwise, None.

        This function is crucial for optimizing performance by avoiding redundant processing.
        If the requested model and its sources are already in the cache, they can be reused directly,
        saving time and computational resources.
        """
        model, sources = None, None

        mapper = self.cached_sources_map[model_architecture]

        for key, value in mapper.items():
            if model_name in key:
                model = key
                sources = value

        return model, sources

    def cached_model_source_holder(self, model_architecture, sources, model_name=None):
        """
        Update the dictionary for the given model_architecture with the new model name and its sources.
        Use the model_architecture as a key to access the corresponding cache source mapper dictionary.
        """
        self.cached_sources_map[model_architecture] = {**self.cached_sources_map.get(model_architecture, {}), **{model_name: sources}}

    def prepare_mix(self, mix):
        """
        Prepares the mix for processing. This includes loading the audio from a file if necessary,
        ensuring the mix is in the correct format, and converting mono to stereo if needed.
        """
        # Store the original path or the mix itself for later checks
        audio_path = mix

        # Check if the input is a file path (string) and needs to be loaded
        if not isinstance(mix, np.ndarray):
            self.logger.debug(f"Loading audio from file: {mix}")
            mix, sr = librosa.load(mix, mono=False, sr=self.sample_rate)
            self.logger.debug(f"Audio loaded. Sample rate: {sr}, Audio shape: {mix.shape}")
        else:
            # Transpose the mix if it's already an ndarray (expected shape: [channels, samples])
            self.logger.debug("Transposing the provided mix array.")
            mix = mix.T
            self.logger.debug(f"Transposed mix shape: {mix.shape}")

        # If the original input was a filepath, check if the loaded mix is empty
        if isinstance(audio_path, str):
            if not np.any(mix):
                error_msg = f"Audio file {audio_path} is empty or not valid"
                self.logger.error(error_msg)
                raise ValueError(error_msg)
            else:
                self.logger.debug("Audio file is valid and contains data.")

        # Ensure the mix is in stereo format
        if mix.ndim == 1:
            self.logger.debug("Mix is mono. Converting to stereo.")
            mix = np.asfortranarray([mix, mix])
            self.logger.debug("Converted to stereo mix.")

        # Final log indicating successful preparation of the mix
        self.logger.debug("Mix preparation completed.")
        return mix

    def write_audio(self, stem_path: str, stem_source):
        """
        Writes the separated audio source to a file using pydub or soundfile
        Pydub supports a much wider range of audio formats and produces better encoded lossy files for some formats.
        Soundfile is used for very large files (longer than 1 hour), as pydub has memory issues with large files:
        https://github.com/jiaaro/pydub/issues/135
        """
        # Get the duration of the input audio file
        duration_seconds = librosa.get_duration(filename=self.audio_file_path)
        duration_hours = duration_seconds / 3600
        self.logger.info(f"Audio duration is {duration_hours:.2f} hours ({duration_seconds:.2f} seconds).")

        if self.use_soundfile:
            self.logger.warning(f"Using soundfile for writing.")
            self.write_audio_soundfile(stem_path, stem_source)
        else:
            self.logger.info(f"Using pydub for writing.")
            self.write_audio_pydub(stem_path, stem_source)

    def write_audio_pydub(self, stem_path: str, stem_source):
        """
        Writes the separated audio source to a file using pydub (ffmpeg)
        """
        self.logger.debug(f"Entering write_audio_pydub with stem_path: {stem_path}")

        stem_source = spec_utils.normalize(wave=stem_source, max_peak=self.normalization_threshold, min_peak=self.amplification_threshold)

        # Check if the numpy array is empty or contains very low values
        if np.max(np.abs(stem_source)) < 1e-6:
            self.logger.warning("Warning: stem_source array is near-silent or empty.")
            return

        # If output_dir is specified, create it and join it with stem_path
        if self.output_dir:
            os.makedirs(self.output_dir, exist_ok=True)
            stem_path = os.path.join(self.output_dir, stem_path)

        self.logger.debug(f"Audio data shape before processing: {stem_source.shape}")
        self.logger.debug(f"Data type before conversion: {stem_source.dtype}")

        # Ensure the audio data is in the correct format (e.g., int16)
        if stem_source.dtype != np.int16:
            stem_source = (stem_source * 32767).astype(np.int16)
            self.logger.debug("Converted stem_source to int16.")

        # Correctly interleave stereo channels
        stem_source_interleaved = np.empty((2 * stem_source.shape[0],), dtype=np.int16)
        stem_source_interleaved[0::2] = stem_source[:, 0]  # Left channel
        stem_source_interleaved[1::2] = stem_source[:, 1]  # Right channel

        self.logger.debug(f"Interleaved audio data shape: {stem_source_interleaved.shape}")

        # Create a pydub AudioSegment
        try:
            audio_segment = AudioSegment(stem_source_interleaved.tobytes(), frame_rate=self.sample_rate, sample_width=stem_source.dtype.itemsize, channels=2)
            self.logger.debug("Created AudioSegment successfully.")
        except (IOError, ValueError) as e:
            self.logger.error(f"Specific error creating AudioSegment: {e}")
            return

        # Determine file format based on the file extension
        file_format = stem_path.lower().split(".")[-1]

        # For m4a files, specify mp4 as the container format as the extension doesn't match the format name
        if file_format == "m4a":
            file_format = "mp4"
        elif file_format == "mka":
            file_format = "matroska"

        # Set the bitrate to 320k for mp3 files if output_bitrate is not specified
        bitrate = "320k" if file_format == "mp3" and self.output_bitrate is None else self.output_bitrate

        # Export using the determined format
        try:
            audio_segment.export(stem_path, format=file_format, bitrate=bitrate)
            self.logger.debug(f"Exported audio file successfully to {stem_path}")
        except (IOError, ValueError) as e:
            self.logger.error(f"Error exporting audio file: {e}")

    def write_audio_soundfile(self, stem_path: str, stem_source):
        """
        Writes the separated audio source to a file using soundfile library.
        """
        self.logger.debug(f"Entering write_audio_soundfile with stem_path: {stem_path}")

        # Correctly interleave stereo channels if needed
        if stem_source.shape[1] == 2:
            # If the audio is already interleaved, ensure it's in the correct order
            # Check if the array is Fortran contiguous (column-major)
            if stem_source.flags["F_CONTIGUOUS"]:
                # Convert to C contiguous (row-major)
                stem_source = np.ascontiguousarray(stem_source)
            # Otherwise, perform interleaving
            else:
                stereo_interleaved = np.empty((2 * stem_source.shape[0],), dtype=np.int16)
                # Left channel
                stereo_interleaved[0::2] = stem_source[:, 0]
                # Right channel
                stereo_interleaved[1::2] = stem_source[:, 1]
                stem_source = stereo_interleaved

        self.logger.debug(f"Interleaved audio data shape: {stem_source.shape}")

        """
        Write audio using soundfile (for formats other than M4A).
        """
        # Save audio using soundfile
        try:
            # Specify the subtype to define the sample width
            sf.write(stem_path, stem_source, self.sample_rate)
            self.logger.debug(f"Exported audio file successfully to {stem_path}")
        except Exception as e:
            self.logger.error(f"Error exporting audio file: {e}")

    def clear_gpu_cache(self):
        """
        This method clears the GPU cache to free up memory.
        """
        self.logger.debug("Running garbage collection...")
        gc.collect()
        if self.torch_device == torch.device("mps"):
            self.logger.debug("Clearing MPS cache...")
            torch.mps.empty_cache()
        if self.torch_device == torch.device("cuda"):
            self.logger.debug("Clearing CUDA cache...")
            torch.cuda.empty_cache()

    def clear_file_specific_paths(self):
        """
        Clears the file-specific variables which need to be cleared between processing different audio inputs.
        """
        self.logger.info("Clearing input audio file paths, sources and stems...")

        self.audio_file_path = None
        self.audio_file_base = None

        self.primary_source = None
        self.secondary_source = None

        self.primary_stem_output_path = None
        self.secondary_stem_output_path = None

    def sanitize_filename(self, filename):
        """
        Cleans the filename by replacing invalid characters with underscores.
        """
        sanitized = re.sub(r'[<>:"/\\|?*]', '_', filename)
        sanitized = re.sub(r'_+', '_', sanitized)
        sanitized = sanitized.strip('_. ')
        return sanitized

    def get_stem_output_path(self, stem_name, custom_output_names):
        """
        Gets the output path for a stem based on the stem name and custom output names.
        """
        # Convert custom_output_names keys to lowercase for case-insensitive comparison
        if custom_output_names:
            custom_output_names_lower = {k.lower(): v for k, v in custom_output_names.items()}
            stem_name_lower = stem_name.lower()
            if stem_name_lower in custom_output_names_lower:
                sanitized_custom_name = self.sanitize_filename(custom_output_names_lower[stem_name_lower])
                return os.path.join(f"{sanitized_custom_name}.{self.output_format.lower()}")

        sanitized_audio_base = self.sanitize_filename(self.audio_file_base)
        sanitized_stem_name = self.sanitize_filename(stem_name)
        sanitized_model_name = self.sanitize_filename(self.model_name) 

        filename = f"{sanitized_audio_base}_({sanitized_stem_name})_{sanitized_model_name}.{self.output_format.lower()}"
        return os.path.join(filename)