Spaces:
Running
on
Zero
Running
on
Zero
File size: 52,516 Bytes
92e9644 cc64221 92e9644 cc64221 5e51096 f87864c cc64221 a5643d8 cc64221 489680b fd43400 26e2b18 86bcf81 92e9644 a5643d8 defb0b3 a3090f7 551e536 c15b90c 57b3cc7 b00852e fd43400 b00852e fd43400 2297009 fd43400 489680b 2297009 489680b fd43400 2297009 489680b fd43400 2297009 fd43400 2297009 1bed755 2297009 fd43400 5e51096 26e2b18 cc64221 a05e815 5e51096 b2897dc a05e815 cc64221 fdd4054 cc64221 fdd4054 cc64221 fdd4054 cc64221 fdd4054 cc64221 fdd4054 cc64221 fdd4054 cc64221 fdd4054 cc64221 728efca 3b02063 cc64221 bfd82aa cc64221 bfd82aa cc64221 bfd82aa cc64221 bfd82aa cc64221 bfd82aa cc64221 bfd82aa cc64221 bfd82aa cc64221 bfd82aa cc64221 bfd82aa cc64221 bfd82aa cc64221 b00852e cc64221 bc8e842 b00852e cc64221 b00852e bc8e842 a5643d8 bc8e842 b00852e bc8e842 a05e815 bc8e842 b00852e bc8e842 a05e815 bc8e842 db94774 b00852e bc8e842 b00852e cc64221 bfd82aa cc64221 bfd82aa cc64221 bfd82aa cc64221 bfd82aa cc64221 9e5c4b5 ae274a7 bfc7f2f ae274a7 bfc7f2f ae274a7 b65bd42 bfc7f2f 2e24270 b65bd42 26e2b18 b65bd42 ae274a7 b65bd42 ae274a7 b65bd42 ae274a7 b65bd42 f295c18 b65bd42 f295c18 b65bd42 f295c18 b65bd42 f295c18 b65bd42 f295c18 b65bd42 ae274a7 b65bd42 f295c18 ae274a7 26e2b18 ae274a7 26e2b18 ae274a7 26e2b18 1af1c4d cc64221 728efca 26e2b18 a3090f7 cc64221 a3090f7 728efca a3090f7 728efca a3090f7 728efca a3090f7 7b79193 a3090f7 26e2b18 defb0b3 7b79193 d69b111 7b79193 ddbc8fa cc64221 ddbc8fa cc64221 ddbc8fa a3090f7 cc64221 e0ac733 cc64221 e0ac733 728efca e0ac733 728efca cc64221 ddbc8fa aecae1e 7b79193 728efca a3090f7 728efca 26e2b18 ddbc8fa cc64221 1af1c4d 1d35b52 e14bd0f a3090f7 01781d2 a5643d8 7b79193 26e2b18 728efca 26e2b18 ddbc8fa a5643d8 defb0b3 a5643d8 a3090f7 728efca a3090f7 728efca a3090f7 c15b90c a3090f7 728efca a3090f7 01781d2 a3090f7 01781d2 defb0b3 a5643d8 a3090f7 7b79193 a3090f7 a5643d8 1d35b52 799e841 1d35b52 799e841 05553c4 7b79193 d69b111 ddbc8fa a5643d8 05553c4 01781d2 05553c4 a5643d8 05553c4 1d35b52 05553c4 3047c6d 05553c4 c15b90c 05553c4 c15b90c 05553c4 c15b90c 05553c4 c15b90c 05553c4 c15b90c 05553c4 1d35b52 05553c4 a5643d8 05553c4 e0ac733 c15b90c e0ac733 1d35b52 05553c4 01781d2 05553c4 1d35b52 05553c4 a3090f7 05553c4 1d35b52 05553c4 1d35b52 05553c4 1d35b52 05553c4 1d35b52 05553c4 1d87edf 01781d2 05553c4 1d35b52 05553c4 7b79193 ddbc8fa c15b90c 92e9644 05553c4 7b79193 01781d2 26e2b18 a3090f7 1d87edf ddbc8fa cc64221 b956722 394e662 b956722 cc64221 a3090f7 1d35b52 cc64221 ddbc8fa 92e9644 cc64221 ddbc8fa cc64221 728efca a3090f7 ddbc8fa cc64221 ddbc8fa a4f6734 cc64221 defb0b3 ddbc8fa cc64221 ddbc8fa cc64221 e0ac733 cc64221 ddbc8fa defb0b3 cc64221 728efca a3090f7 ddbc8fa cc64221 ddbc8fa a5643d8 cc64221 defb0b3 ddbc8fa a5643d8 ddbc8fa 768f7e4 e0ac733 ddbc8fa cc64221 6bc0914 b956722 6bc0914 26e2b18 6bc0914 cc64221 6bc0914 cc64221 23546b1 cc64221 e0ac733 cc64221 6bc0914 b956722 6bc0914 26e2b18 6bc0914 cc64221 489680b cc64221 1d35b52 a870444 cc64221 1d35b52 cc64221 a3908c3 ddbc8fa a3908c3 cb4dec1 a3908c3 ddbc8fa a3908c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 |
from typing import Optional, Any
import os
import sys
import torch
import logging
import yt_dlp
from yt_dlp import YoutubeDL
import gradio as gr
import argparse
from audio_separator.separator import Separator
import numpy as np
import librosa
import soundfile as sf
from ensemble import ensemble_files
import shutil
import gradio_client.utils as client_utils
import matchering as mg
import gdown
from pydub import AudioSegment
import gc
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
from threading import Lock
import scipy.io.wavfile
import subprocess
import spaces
import torchaudio
# Logging setup
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Gradio JSON schema patch
original_json_schema_to_python_type = client_utils._json_schema_to_python_type
def patched_json_schema_to_python_type(schema: Any, defs: Optional[dict] = None) -> str:
logger.debug(f"Parsing schema: {schema}")
if isinstance(schema, bool):
logger.info("Found boolean schema, returning 'boolean'")
return "boolean"
if not isinstance(schema, dict):
logger.warning(f"Unexpected schema type: {type(schema)}, returning 'Any'")
return "Any"
if "enum" in schema and schema.get("type") == "string":
logger.info(f"Handling enum schema: {schema['enum']}")
return f"Literal[{', '.join(repr(e) for e in schema['enum'])}]"
try:
return original_json_schema_to_python_type(schema, defs)
except client_utils.APIInfoParseError as e:
logger.error(f"Failed to parse schema {schema}: {e}")
return "str"
client_utils._json_schema_to_python_type = patched_json_schema_to_python_type
# Device setup
device = "cuda" if torch.cuda.is_available() else "cpu"
use_autocast = device == "cuda"
logger.info(f"Using device: {device}")
# Constants
max_models = 6
max_retries = 2
time_budget = 300 # ZeroGPU için işlem sınırı
gpu_lock = Lock()
# ROFORMER_MODELS and OUTPUT_FORMATS
ROFORMER_MODELS = {
"Vocals": {
'MelBand Roformer | Big Beta 6X by unwa': 'melband_roformer_big_beta6x.ckpt',
'MelBand Roformer Kim | Big Beta 4 FT by unwa': 'melband_roformer_big_beta4.ckpt',
'MelBand Roformer Kim | Big Beta 5e FT by unwa': 'melband_roformer_big_beta5e.ckpt',
'MelBand Roformer | Big Beta 6 by unwa': 'melband_roformer_big_beta6.ckpt',
'MelBand Roformer | Vocals by Kimberley Jensen': 'vocals_mel_band_roformer.ckpt',
'MelBand Roformer Kim | FT 3 by unwa': 'mel_band_roformer_kim_ft3_unwa.ckpt',
'MelBand Roformer Kim | FT by unwa': 'mel_band_roformer_kim_ft_unwa.ckpt',
'MelBand Roformer Kim | FT 2 by unwa': 'mel_band_roformer_kim_ft2_unwa.ckpt',
'MelBand Roformer Kim | FT 2 Bleedless by unwa': 'mel_band_roformer_kim_ft2_bleedless_unwa.ckpt',
'MelBand Roformer | Vocals by becruily': 'mel_band_roformer_vocals_becruily.ckpt',
'MelBand Roformer | Vocals Fullness by Aname': 'mel_band_roformer_vocal_fullness_aname.ckpt',
'BS Roformer | Vocals by Gabox': 'bs_roformer_vocals_gabox.ckpt',
'MelBand Roformer | Vocals by Gabox': 'mel_band_roformer_vocals_gabox.ckpt',
'MelBand Roformer | Vocals FV1 by Gabox': 'mel_band_roformer_vocals_fv1_gabox.ckpt',
'MelBand Roformer | Vocals FV2 by Gabox': 'mel_band_roformer_vocals_fv2_gabox.ckpt',
'MelBand Roformer | Vocals FV3 by Gabox': 'mel_band_roformer_vocals_fv3_gabox.ckpt',
'MelBand Roformer | Vocals FV4 by Gabox': 'mel_band_roformer_vocals_fv4_gabox.ckpt',
'BS Roformer | Chorus Male-Female by Sucial': 'model_chorus_bs_roformer_ep_267_sdr_24.1275.ckpt',
'BS Roformer | Male-Female by aufr33': 'bs_roformer_male_female_by_aufr33_sdr_7.2889.ckpt',
},
"Instrumentals": {
'MelBand Roformer | FVX by Gabox': 'mel_band_roformer_instrumental_fvx_gabox.ckpt',
'MelBand Roformer | INSTV8N by Gabox': 'mel_band_roformer_instrumental_instv8n_gabox.ckpt',
'MelBand Roformer | INSTV8 by Gabox': 'mel_band_roformer_instrumental_instv8_gabox.ckpt',
'MelBand Roformer | INSTV7N by Gabox': 'mel_band_roformer_instrumental_instv7n_gabox.ckpt',
'MelBand Roformer | Instrumental Bleedless V3 by Gabox': 'mel_band_roformer_instrumental_bleedless_v3_gabox.ckpt',
'MelBand Roformer Kim | Inst V1 (E) Plus by Unwa': 'melband_roformer_inst_v1e_plus.ckpt',
'MelBand Roformer Kim | Inst V1 Plus by Unwa': 'melband_roformer_inst_v1_plus.ckpt',
'MelBand Roformer Kim | Inst V1 by Unwa': 'melband_roformer_inst_v1.ckpt',
'MelBand Roformer Kim | Inst V1 (E) by Unwa': 'melband_roformer_inst_v1e.ckpt',
'MelBand Roformer Kim | Inst V2 by Unwa': 'melband_roformer_inst_v2.ckpt',
'MelBand Roformer | Instrumental by becruily': 'mel_band_roformer_instrumental_becruily.ckpt',
'MelBand Roformer | Instrumental by Gabox': 'mel_band_roformer_instrumental_gabox.ckpt',
'MelBand Roformer | Instrumental 2 by Gabox': 'mel_band_roformer_instrumental_2_gabox.ckpt',
'MelBand Roformer | Instrumental 3 by Gabox': 'mel_band_roformer_instrumental_3_gabox.ckpt',
'MelBand Roformer | Instrumental Bleedless V1 by Gabox': 'mel_band_roformer_instrumental_bleedless_v1_gabox.ckpt',
'MelBand Roformer | Instrumental Bleedless V2 by Gabox': 'mel_band_roformer_instrumental_bleedless_v2_gabox.ckpt',
'MelBand Roformer | Instrumental Fullness V1 by Gabox': 'mel_band_roformer_instrumental_fullness_v1_gabox.ckpt',
'MelBand Roformer | Instrumental Fullness V2 by Gabox': 'mel_band_roformer_instrumental_fullness_v2_gabox.ckpt',
'MelBand Roformer | Instrumental Fullness V3 by Gabox': 'mel_band_roformer_instrumental_fullness_v3_gabox.ckpt',
'MelBand Roformer | Instrumental Fullness Noisy V4 by Gabox': 'mel_band_roformer_instrumental_fullness_noise_v4_gabox.ckpt',
'MelBand Roformer | INSTV5 by Gabox': 'mel_band_roformer_instrumental_instv5_gabox.ckpt',
'MelBand Roformer | INSTV5N by Gabox': 'mel_band_roformer_instrumental_instv5n_gabox.ckpt',
'MelBand Roformer | INSTV6 by Gabox': 'mel_band_roformer_instrumental_instv6_gabox.ckpt',
'MelBand Roformer | INSTV6N by Gabox': 'mel_band_roformer_instrumental_instv6n_gabox.ckpt',
'MelBand Roformer | INSTV7 by Gabox': 'mel_band_roformer_instrumental_instv7_gabox.ckpt',
},
"InstVoc Duality": {
'MelBand Roformer Kim | InstVoc Duality V1 by Unwa': 'melband_roformer_instvoc_duality_v1.ckpt',
'MelBand Roformer Kim | InstVoc Duality V2 by Unwa': 'melband_roformer_instvox_duality_v2.ckpt',
},
"De-Reverb": {
'BS-Roformer-De-Reverb': 'deverb_bs_roformer_8_384dim_10depth.ckpt',
'MelBand Roformer | De-Reverb by anvuew': 'dereverb_mel_band_roformer_anvuew_sdr_19.1729.ckpt',
'MelBand Roformer | De-Reverb Less Aggressive by anvuew': 'dereverb_mel_band_roformer_less_aggressive_anvuew_sdr_18.8050.ckpt',
'MelBand Roformer | De-Reverb Mono by anvuew': 'dereverb_mel_band_roformer_mono_anvuew.ckpt',
'MelBand Roformer | De-Reverb Big by Sucial': 'dereverb_big_mbr_ep_362.ckpt',
'MelBand Roformer | De-Reverb Super Big by Sucial': 'dereverb_super_big_mbr_ep_346.ckpt',
'MelBand Roformer | De-Reverb-Echo by Sucial': 'dereverb-echo_mel_band_roformer_sdr_10.0169.ckpt',
'MelBand Roformer | De-Reverb-Echo V2 by Sucial': 'dereverb-echo_mel_band_roformer_sdr_13.4843_v2.ckpt',
'MelBand Roformer | De-Reverb-Echo Fused by Sucial': 'dereverb_echo_mbr_fused.ckpt',
},
"Denoise": {
'Mel-Roformer-Denoise-Aufr33': 'denoise_mel_band_roformer_aufr33_sdr_27.9959.ckpt',
'Mel-Roformer-Denoise-Aufr33-Aggr': 'denoise_mel_band_roformer_aufr33_aggr_sdr_27.9768.ckpt',
'MelBand Roformer | Denoise-Debleed by Gabox': 'mel_band_roformer_denoise_debleed_gabox.ckpt',
'MelBand Roformer | Bleed Suppressor V1 by unwa-97chris': 'mel_band_roformer_bleed_suppressor_v1.ckpt',
},
"Karaoke": {
'Mel-Roformer-Karaoke-Aufr33-Viperx': 'mel_band_roformer_karaoke_aufr33_viperx_sdr_10.1956.ckpt',
'MelBand Roformer | Karaoke by Gabox': 'mel_band_roformer_karaoke_gabox.ckpt',
'MelBand Roformer | Karaoke by becruily': 'mel_band_roformer_karaoke_becruily.ckpt',
},
"General Purpose": {
'BS-Roformer-Viperx-1297': 'model_bs_roformer_ep_317_sdr_12.9755.ckpt',
'BS-Roformer-Viperx-1296': 'model_bs_roformer_ep_368_sdr_12.9628.ckpt',
'BS-Roformer-Viperx-1053': 'model_bs_roformer_ep_937_sdr_10.5309.ckpt',
'Mel-Roformer-Viperx-1143': 'model_mel_band_roformer_ep_3005_sdr_11.4360.ckpt',
'Mel-Roformer-Crowd-Aufr33-Viperx': 'mel_band_roformer_crowd_aufr33_viperx_sdr_8.7144.ckpt',
'MelBand Roformer Kim | SYHFT by SYH99999': 'MelBandRoformerSYHFT.ckpt',
'MelBand Roformer Kim | SYHFT V2 by SYH99999': 'MelBandRoformerSYHFTV2.ckpt',
'MelBand Roformer Kim | SYHFT V2.5 by SYH99999': 'MelBandRoformerSYHFTV2.5.ckpt',
'MelBand Roformer Kim | SYHFT V3 by SYH99999': 'MelBandRoformerSYHFTV3Epsilon.ckpt',
'MelBand Roformer Kim | Big SYHFT V1 by SYH99999': 'MelBandRoformerBigSYHFTV1.ckpt',
'MelBand Roformer | Aspiration by Sucial': 'aspiration_mel_band_roformer_sdr_18.9845.ckpt',
'MelBand Roformer | Aspiration Less Aggressive by Sucial': 'aspiration_mel_band_roformer_less_aggr_sdr_18.1201.ckpt',
}
}
OUTPUT_FORMATS = ['wav', 'flac', 'mp3', 'ogg', 'opus', 'm4a', 'aiff', 'ac3']
# CSS (orijinal CSS korundu)
CSS = """
body {
background: linear-gradient(to bottom, rgba(45, 11, 11, 0.9), rgba(0, 0, 0, 0.8)), url('/content/logo.jpg') no-repeat center center fixed;
background-size: cover;
min-height: 100vh;
margin: 0;
padding: 1rem;
font-family: 'Poppins', sans-serif;
color: #C0C0C0;
overflow-x: hidden;
}
.header-text {
text-align: center;
padding: 100px 20px 20px;
color: #ff4040;
font-size: 3rem;
font-weight: 900;
text-shadow: 0 0 10px rgba(255, 64, 64, 0.5);
z-index: 1500;
animation: text-glow 2s infinite;
}
.header-subtitle {
text-align: center;
color: #C0C0C0;
font-size: 1.2rem;
font-weight: 300;
margin-top: -10px;
text-shadow: 0 0 5px rgba(255, 64, 64, 0.3);
}
.gr-tab {
background: rgba(128, 0, 0, 0.5) !important;
border-radius: 12px 12px 0 0 !important;
margin: 0 5px !important;
color: #C0C0C0 !important;
border: 1px solid #ff4040 !important;
z-index: 1500;
transition: background 0.3s ease, color 0.3s ease;
padding: 10px 20px !important;
font-size: 1.1rem !important;
}
button {
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important;
background: #800000 !important;
border: 1px solid #ff4040 !important;
color: #C0C0C0 !important;
border-radius: 8px !important;
padding: 8px 16px !important;
box-shadow: 0 2px 10px rgba(255, 64, 64, 0.3);
}
button:hover {
transform: scale(1.05) !important;
box-shadow: 0 10px 40px rgba(255, 64, 64, 0.7) !important;
background: #ff4040 !important;
}
.compact-upload.horizontal {
display: inline-flex !important;
align-items: center !important;
gap: 8px !important;
max-width: 400px !important;
height: 40px !important;
padding: 0 12px !important;
border: 1px solid #ff4040 !important;
background: rgba(128, 0, 0, 0.5) !important;
border-radius: 8px !important;
}
.compact-dropdown {
padding: 8px 12px !important;
border-radius: 8px !important;
border: 2px solid #ff6b6b !important;
background: rgba(46, 26, 71, 0.7) !important;
color: #e0e0e0 !important;
width: 100%;
font-size: 1rem !important;
transition: border-color 0.3s ease, box-shadow 0.3s ease !important;
position: relative;
z-index: 100;
}
.compact-dropdown:hover {
border-color: #ff8787 !important;
box-shadow: 0 2px 8px rgba(255, 107, 107, 0.4) !important;
}
.compact-dropdown select, .compact-dropdown .gr-dropdown {
background: transparent !important;
color: #e0e0e0 !important;
border: none !important;
width: 100% !important;
padding: 8px !important;
font-size: 1rem !important;
appearance: none !important;
-webkit-appearance: none !important;
-moz-appearance: none !important;
}
.compact-dropdown .gr-dropdown-menu {
background: rgba(46, 26, 71, 0.95) !important;
border: 2px solid #ff6b6b !important;
border-radius: 8px !important;
color: #e0e0e0 !important;
max-height: 300px !important;
overflow-y: auto !important;
z-index: 300 !important;
width: 100% !important;
opacity: 1 !important;
visibility: visible !important;
position: absolute !important;
top: 100% !important;
left: 0 !important;
pointer-events: auto !important;
}
.compact-dropdown:hover .gr-dropdown-menu {
display: block !important;
}
.compact-dropdown .gr-dropdown-menu option {
padding: 8px !important;
color: #e0e0e0 !important;
background: transparent !important;
}
.compact-dropdown .gr-dropdown-menu option:hover {
background: rgba(255, 107, 107, 0.3) !important;
}
#custom-progress {
margin-top: 10px;
padding: 10px;
background: rgba(128, 0, 0, 0.3);
border-radius: 8px;
border: 1px solid #ff4040;
}
#progress-bar {
height: 20px;
background: linear-gradient(to right, #6e8efb, #ff4040);
border-radius: 5px;
transition: width 0.5s ease-in-out;
max-width: 100% !important;
}
.gr-accordion {
background: rgba(128, 0, 0, 0.5) !important;
border-radius: 10px !important;
border: 1px solid #ff4040 !important;
}
.footer {
text-align: center;
padding: 20px;
color: #ff4040;
font-size: 14px;
margin-top: 40px;
background: rgba(128, 0, 0, 0.3);
border-top: 1px solid #ff4040;
}
#log-accordion {
max-height: 400px;
overflow-y: auto;
background: rgba(0, 0, 0, 0.7) !important;
padding: 10px;
border-radius: 8px;
}
@keyframes text-glow {
0% { text-shadow: 0 0 5px rgba(192, 192, 192, 0); }
50% { text-shadow: 0 0 15px rgba(192, 192, 192, 1); }
100% { text-shadow: 0 0 5px rgba(192, 192, 192, 0); }
}
"""
def download_audio(url, cookie_file=None):
"""
Downloads audio from YouTube or Google Drive and converts it to WAV format.
Args:
url (str): URL of the YouTube video or Google Drive file.
cookie_file (file object): File object containing YouTube cookies in Netscape format.
Returns:
tuple: (file_path, message, (sample_rate, data)) or (None, error_message, None)
"""
# Common output directory
os.makedirs('ytdl', exist_ok=True)
# Validate cookie file
cookie_path = None
if cookie_file:
if not hasattr(cookie_file, 'name') or not os.path.exists(cookie_file.name):
return None, "Invalid or missing cookie file. Ensure it's a valid Netscape format .txt file.", None
cookie_path = cookie_file.name
# Check if cookie file is in Netscape format
with open(cookie_path, 'r') as f:
content = f.read()
if not content.startswith('# Netscape HTTP Cookie File'):
return None, "Cookie file is not in Netscape format. See https://github.com/yt-dlp/yt-dlp/wiki/Extractors#exporting-youtube-cookies", None
logger.info(f"Using cookie file: {cookie_path}")
if 'drive.google.com' in url:
return download_from_google_drive(url)
else:
return download_from_youtube(url, cookie_path)
def download_from_youtube(url, cookie_path):
# Common options
base_opts = {
'outtmpl': 'ytdl/%(title)s.%(ext)s',
'user_agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.54 Safari/537.36',
'geo_bypass': True,
'force_ipv4': True,
'referer': 'https://www.youtube.com/',
'noplaylist': True,
'cookiefile': cookie_path,
'extractor_retries': 5,
'ignoreerrors': False,
'no_check_certificate': True,
'verbose': True,
}
# Strategy 1: Video+audio (best quality)
try:
logger.info("Attempting video+audio download")
ydl_opts = base_opts.copy()
ydl_opts.update({
'format': 'bestvideo+bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
}],
'merge_output_format': 'mp4',
})
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(url, download=True)
file_path = ydl.prepare_filename(info_dict).rsplit('.', 1)[0] + '.wav'
if os.path.exists(file_path):
sample_rate, data = scipy.io.wavfile.read(file_path)
return file_path, "YouTube video+audio download successful", (sample_rate, data)
else:
logger.warning("Video+audio download succeeded but output file missing")
except Exception as e:
logger.warning(f"Video+audio download failed: {str(e)}")
# Strategy 2: Audio-only (best quality)
try:
logger.info("Attempting audio-only download")
ydl_opts = base_opts.copy()
ydl_opts.update({
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
}],
})
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(url, download=True)
file_path = ydl.prepare_filename(info_dict).rsplit('.', 1)[0] + '.wav'
if os.path.exists(file_path):
sample_rate, data = scipy.io.wavfile.read(file_path)
return file_path, "YouTube audio-only download successful", (sample_rate, data)
else:
logger.warning("Audio-only download succeeded but output file missing")
except Exception as e:
logger.warning(f"Audio-only download failed: {str(e)}")
# Strategy 3: Specific format IDs (common audio formats)
format_ids = [
'140', # m4a 128k
'139', # m4a 48k
'251', # webm 160k (opus)
'250', # webm 70k (opus)
'249', # webm 50k (opus)
]
for fid in format_ids:
try:
logger.info(f"Attempting download with format ID: {fid}")
ydl_opts = base_opts.copy()
ydl_opts.update({
'format': fid,
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
}],
})
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(url, download=True)
file_path = ydl.prepare_filename(info_dict).rsplit('.', 1)[0] + '.wav'
if os.path.exists(file_path):
sample_rate, data = scipy.io.wavfile.read(file_path)
return file_path, f"Download successful with format {fid}", (sample_rate, data)
except Exception as e:
logger.warning(f"Download with format {fid} failed: {str(e)}")
# Strategy 4: Direct URL extraction
try:
logger.info("Attempting direct URL extraction")
ydl_opts = base_opts.copy()
ydl_opts.update({
'format': 'best',
'forceurl': True,
'quiet': True,
})
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(url, download=False)
direct_url = info_dict.get('url')
if direct_url:
temp_path = 'ytdl/direct_audio.wav'
ffmpeg_command = [
"ffmpeg", "-i", direct_url, "-c", "copy", temp_path
]
subprocess.run(ffmpeg_command, check=True, capture_output=True, text=True)
if os.path.exists(temp_path):
sample_rate, data = scipy.io.wavfile.read(temp_path)
return temp_path, "Direct URL download successful", (sample_rate, data)
except Exception as e:
logger.warning(f"Direct URL extraction failed: {str(e)}")
return None, "All download strategies failed. This video may not be available in your region or requires authentication.", None
def download_from_google_drive(url):
temp_output_path = 'ytdl/gdrive_temp_audio'
output_path = 'ytdl/gdrive_audio.wav'
try:
# Extract file ID from URL
file_id = url.split('/d/')[1].split('/')[0]
download_url = f'https://drive.google.com/uc?id={file_id}'
# Download file
gdown.download(download_url, temp_output_path, quiet=False)
if not os.path.exists(temp_output_path):
return None, "Google Drive downloaded file not found", None
# Convert to WAV
audio = AudioSegment.from_file(temp_output_path)
audio.export(output_path, format="wav")
sample_rate, data = scipy.io.wavfile.read(output_path)
return output_path, "Google Drive audio download and conversion successful", (sample_rate, data)
except Exception as e:
return None, f"Failed to process Google Drive file: {str(e)}. Ensure the file contains audio (e.g., MP3, WAV, or video with audio track).", None
finally:
if os.path.exists(temp_output_path):
try:
os.remove(temp_output_path)
logger.info(f"Temporary file deleted: {temp_output_path}")
except Exception as e:
logger.warning(f"Failed to delete temporary file {temp_output_path}: {str(e)}")
@spaces.GPU(duration=60)
def roformer_separator(audio, model_key, seg_size, override_seg_size, overlap, pitch_shift, model_dir, output_dir, out_format, norm_thresh, amp_thresh, batch_size, exclude_stems="", progress=gr.Progress(track_tqdm=True)):
if not audio:
raise ValueError("No audio or video file provided.")
temp_audio_path = None
extracted_audio_path = None
try:
file_extension = os.path.splitext(audio)[1].lower().lstrip('.')
supported_formats = ['wav', 'mp3', 'flac', 'ogg', 'opus', 'm4a', 'aiff', 'ac3', 'mp4', 'mov', 'avi', 'mkv', 'flv', 'wmv', 'webm', 'mpeg', 'mpg', 'ts', 'vob']
if file_extension not in supported_formats:
raise ValueError(f"Unsupported file format: {file_extension}. Supported formats: {', '.join(supported_formats)}")
audio_to_process = audio
if file_extension in ['mp4', 'mov', 'avi', 'mkv', 'flv', 'wmv', 'webm', 'mpeg', 'mpg', 'ts', 'vob']:
extracted_audio_path = os.path.join("/tmp", f"extracted_audio_{os.path.basename(audio)}.wav")
logger.info(f"Extracting audio from video file: {audio}")
ffmpeg_command = [
"ffmpeg", "-i", audio, "-vn", "-acodec", "pcm_s16le", "-ar", "44100", "-ac", "2",
extracted_audio_path, "-y"
]
try:
subprocess.run(ffmpeg_command, check=True, capture_output=True, text=True)
logger.info(f"Audio extracted to: {extracted_audio_path}")
audio_to_process = extracted_audio_path
except subprocess.CalledProcessError as e:
error_message = e.stderr.decode() if e.stderr else str(e)
if "No audio stream" in error_message:
raise RuntimeError("The provided video file does not contain an audio track.")
elif "Invalid data" in error_message:
raise RuntimeError("The video file is corrupted or not supported.")
else:
raise RuntimeError(f"Failed to extract audio from video: {error_message}")
if isinstance(audio_to_process, tuple):
sample_rate, data = audio_to_process
temp_audio_path = os.path.join("/tmp", "temp_audio.wav")
scipy.io.wavfile.write(temp_audio_path, sample_rate, data)
audio_to_process = temp_audio_path
if seg_size > 512:
logger.warning(f"Segment size {seg_size} is large, this may cause issues.")
override_seg_size = override_seg_size == "True"
if os.path.exists(output_dir):
shutil.rmtree(output_dir)
os.makedirs(output_dir, exist_ok=True)
base_name = os.path.splitext(os.path.basename(audio))[0].replace(' ', '_') # Boşlukları alt çizgi ile değiştir
for category, models in ROFORMER_MODELS.items():
if model_key in models:
model = models[model_key]
break
else:
raise ValueError(f"Model '{model_key}' not found.")
logger.info(f"Separating {base_name} with {model_key} on {device}")
separator = Separator(
log_level=logging.INFO,
model_file_dir=model_dir,
output_dir=output_dir,
output_format=out_format,
normalization_threshold=norm_thresh,
amplification_threshold=amp_thresh,
use_autocast=use_autocast,
mdxc_params={"segment_size": seg_size, "override_model_segment_size": override_seg_size, "batch_size": batch_size, "overlap": overlap, "pitch_shift": pitch_shift}
)
progress(0.2, desc="Loading model...")
separator.load_model(model_filename=model)
progress(0.7, desc="Separating audio...")
separation = separator.separate(audio_to_process)
stems = [os.path.join(output_dir, file_name) for file_name in separation]
file_list = []
if exclude_stems.strip():
excluded = [s.strip().lower() for s in exclude_stems.split(',')]
filtered_stems = [stem for stem in stems if not any(ex in os.path.basename(stem).lower() for ex in excluded)]
file_list = filtered_stems
stem1 = filtered_stems[0] if filtered_stems else None
stem2 = filtered_stems[1] if len(filtered_stems) > 1 else None
else:
file_list = stems
stem1 = stems[0]
stem2 = stems[1] if len(stems) > 1 else None
return stem1, stem2, file_list
except Exception as e:
logger.error(f"Separation error: {e}")
raise RuntimeError(f"Separation error: {e}")
finally:
if temp_audio_path and os.path.exists(temp_audio_path):
try:
os.remove(temp_audio_path)
logger.info(f"Temporary file deleted: {temp_audio_path}")
except Exception as e:
logger.warning(f"Failed to delete temporary file {temp_audio_path}: {e}")
if extracted_audio_path and os.path.exists(extracted_audio_path):
try:
os.remove(extracted_audio_path)
logger.info(f"Extracted audio file deleted: {extracted_audio_path}")
except Exception as e:
logger.warning(f"Failed to delete extracted audio file {extracted_audio_path}: {e}")
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.info("GPU memory cleared")
@spaces.GPU(duration=60)
def auto_ensemble_process(audio, model_keys, state, seg_size=64, overlap=0.1, out_format="wav", use_tta="False", model_dir="/tmp/audio-separator-models/", output_dir="output", norm_thresh=0.9, amp_thresh=0.9, batch_size=1, ensemble_method="avg_wave", exclude_stems="", weights_str="", progress=gr.Progress(track_tqdm=True)):
temp_audio_path = None
extracted_audio_path = None
resampled_audio_path = None
start_time = time.time()
try:
if not audio:
raise ValueError("No audio or video file provided.")
if not model_keys:
raise ValueError("No models selected.")
if len(model_keys) > max_models:
logger.warning(f"Selected {len(model_keys)} models, limiting to {max_models}.")
model_keys = model_keys[:max_models]
file_extension = os.path.splitext(audio)[1].lower().lstrip('.')
supported_formats = ['wav', 'mp3', 'flac', 'ogg', 'opus', 'm4a', 'aiff', 'ac3', 'mp4', 'mov', 'avi', 'mkv', 'flv', 'wmv', 'webm', 'mpeg', 'mpg', 'ts', 'vob']
if file_extension not in supported_formats:
raise ValueError(f"Unsupported file format: {file_extension}. Supported formats: {', '.join(supported_formats)}")
audio_to_process = audio
if file_extension in ['mp4', 'mov', 'avi', 'mkv', 'flv', 'wmv', 'webm', 'mpeg', 'mpg', 'ts', 'vob']:
extracted_audio_path = os.path.join("/tmp", f"extracted_audio_{os.path.basename(audio)}.wav")
logger.info(f"Extracting audio from video file: {audio}")
ffmpeg_command = [
"ffmpeg", "-i", audio, "-vn", "-acodec", "pcm_s16le", "-ar", "44100", "-ac", "2",
extracted_audio_path, "-y"
]
try:
subprocess.run(ffmpeg_command, check=True, capture_output=True, text=True)
logger.info(f"Audio extracted to: {extracted_audio_path}")
audio_to_process = extracted_audio_path
except subprocess.CalledProcessError as e:
error_message = e.stderr.decode() if e.stderr else str(e)
if "No audio stream" in error_message:
raise RuntimeError("The provided video file does not contain an audio track.")
elif "Invalid data" in error_message:
raise RuntimeError("The video file is corrupted or not supported.")
else:
raise RuntimeError(f"Failed to extract audio from video: {error_message}")
# Load audio and resample to 48 kHz
audio_data, sr = librosa.load(audio_to_process, sr=None, mono=False)
logger.info(f"Original sample rate: {sr} Hz, Audio duration: {librosa.get_duration(y=audio_data, sr=sr):.2f} seconds")
if sr != 48000:
logger.info(f"Resampling audio from {sr} Hz to 48000 Hz")
resampled_audio_path = os.path.join("/tmp", f"resampled_audio_{os.path.basename(audio)}.wav")
waveform, _ = torchaudio.load(audio_to_process)
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=48000)
resampled_waveform = resampler(waveform)
torchaudio.save(resampled_audio_path, resampled_waveform, 48000)
audio_to_process = resampled_audio_path
audio_data, sr = librosa.load(audio_to_process, sr=None, mono=False)
logger.info(f"Resampled audio saved to: {resampled_audio_path}, new sample rate: {sr} Hz")
duration = librosa.get_duration(y=audio_data, sr=sr)
dynamic_batch_size = max(1, min(4, 1 + int(900 / (duration + 1)) - len(model_keys) // 2))
logger.info(f"Using batch size: {dynamic_batch_size} for {len(model_keys)} models, duration {duration:.2f}s")
if isinstance(audio_to_process, tuple):
sample_rate, data = audio_to_process
temp_audio_path = os.path.join("/tmp", "temp_audio.wav")
scipy.io.wavfile.write(temp_audio_path, sample_rate, data)
audio_to_process = temp_audio_path
if not state:
state = {
"current_audio": None,
"current_model_idx": 0,
"processed_stems": [],
"model_outputs": {}
}
if state["current_audio"] != audio:
state["current_audio"] = audio
state["current_model_idx"] = 0
state["processed_stems"] = []
state["model_outputs"] = {model_key: {"vocals": [], "other": []} for model_key in model_keys}
logger.info("New audio detected, resetting ensemble state.")
use_tta = use_tta == "True"
base_name = os.path.splitext(os.path.basename(audio))[0].replace(' ', '_') # Boşlukları alt çizgi ile değiştir
logger.info(f"Ensemble for {base_name} with {model_keys} on {device}")
permanent_output_dir = os.path.join(output_dir, "permanent_stems")
os.makedirs(permanent_output_dir, exist_ok=True)
model_cache = {}
all_stems = []
total_tasks = len(model_keys)
current_idx = state["current_model_idx"]
logger.info(f"Current model index: {current_idx}, total models: {len(model_keys)}")
if current_idx >= len(model_keys):
logger.info("All models processed, running ensemble...")
progress(0.9, desc="Running ensemble...")
excluded_stems_list = [s.strip().lower() for s in exclude_stems.split(',')] if exclude_stems.strip() else []
for model_key, stems_dict in state["model_outputs"].items():
for stem_type in ["vocals", "other"]:
if stems_dict[stem_type]:
if stem_type.lower() in excluded_stems_list:
logger.info(f"Excluding {stem_type} for {model_key} from ensemble")
continue
all_stems.extend(stems_dict[stem_type])
# Dosyaların gerçekten var olduğundan emin ol
valid_stems = []
for stem in all_stems:
if os.path.exists(stem):
valid_stems.append(stem)
else:
logger.warning(f"Stem file not found: {stem}")
if not valid_stems:
raise ValueError("No valid stems found for ensemble after excluding specified stems.")
weights = [float(w.strip()) for w in weights_str.split(',')] if weights_str.strip() else [1.0] * len(valid_stems)
if len(weights) != len(valid_stems):
weights = [1.0] * len(valid_stems)
logger.info("Weights mismatched, defaulting to 1.0")
# Mutlak yol kullanarak çıktı dosyasını belirle
output_file = os.path.abspath(os.path.join(output_dir, f"{base_name}_ensemble_{ensemble_method}.{out_format}"))
# Çıktı dizinini oluştur
os.makedirs(os.path.dirname(output_file), exist_ok=True)
ensemble_args = [
"--files", *valid_stems,
"--type", ensemble_method,
"--weights", *[str(w) for w in weights],
"--output", output_file
]
logger.info(f"Running ensemble with args: {ensemble_args}")
try:
# Ensemble işlemini denetimli çalıştır
result = ensemble_files(ensemble_args)
except Exception as e:
logger.error(f"Ensemble processing failed: {str(e)}")
raise RuntimeError(f"Ensemble processing failed: {str(e)}")
# Çıktı dosyasının oluştuğundan emin ol
if not os.path.exists(output_file):
# Alternatif yol deneyelim
alt_path = os.path.join(output_dir, f"{base_name}_ensemble_{ensemble_method}.{out_format}")
if os.path.exists(alt_path):
logger.info(f"Found ensemble output at alternative path: {alt_path}")
output_file = alt_path
else:
raise RuntimeError(f"Ensemble output file not created: {output_file}")
state["current_model_idx"] = 0
state["current_audio"] = None
state["processed_stems"] = []
state["model_outputs"] = {}
elapsed = time.time() - start_time
logger.info(f"Ensemble completed, output: {output_file}, took {elapsed:.2f}s")
progress(1.0, desc="Ensemble completed")
status = f"Ensemble completed with {ensemble_method}, excluded: {exclude_stems if exclude_stems else 'None'}, {len(model_keys)} models in {elapsed:.2f}s<br>Download files:<ul>"
file_list = [output_file] + valid_stems
for file in file_list:
file_name = os.path.basename(file)
status += f"<li><a href='file={file}' download>{file_name}</a></li>"
status += "</ul>"
return output_file, status, file_list, state
model_key = model_keys[current_idx]
logger.info(f"Processing model {current_idx + 1}/{len(model_keys)}: {model_key}")
progress(0.1, desc=f"Processing model {model_key}...")
with torch.no_grad():
for attempt in range(max_retries + 1):
try:
for category, models in ROFORMER_MODELS.items():
if model_key in models:
model = models[model_key]
break
else:
logger.warning(f"Model {model_key} not found, skipping")
state["current_model_idx"] += 1
return None, f"Model {model_key} not found, proceeding to next model.", [], state
elapsed = time.time() - start_time
if elapsed > time_budget:
logger.error(f"Time budget ({time_budget}s) exceeded")
raise TimeoutError("Processing took too long")
if model_key not in model_cache:
logger.info(f"Loading {model_key} into cache")
separator = Separator(
log_level=logging.INFO,
model_file_dir=model_dir,
output_dir=output_dir,
output_format=out_format,
normalization_threshold=norm_thresh,
amplification_threshold=amp_thresh,
use_autocast=use_autocast,
mdxc_params={
"segment_size": seg_size,
"overlap": overlap,
"use_tta": use_tta,
"batch_size": dynamic_batch_size
}
)
separator.load_model(model_filename=model)
model_cache[model_key] = separator
else:
separator = model_cache[model_key]
with gpu_lock:
progress(0.3, desc=f"Separating with {model_key}")
logger.info(f"Separating with {model_key}")
separation = separator.separate(audio_to_process)
stems = [os.path.join(output_dir, file_name) for file_name in separation]
result = []
for stem in stems:
stem_type = "vocals" if "vocals" in os.path.basename(stem).lower() else "other"
permanent_stem_path = os.path.join(permanent_output_dir, f"{base_name}_{stem_type}_{model_key.replace(' | ', '_').replace(' ', '_')}.{out_format}")
shutil.copy(stem, permanent_stem_path)
state["model_outputs"][model_key][stem_type].append(permanent_stem_path)
if stem_type not in exclude_stems.lower():
result.append(permanent_stem_path)
state["processed_stems"].extend(result)
break
except Exception as e:
logger.error(f"Error processing {model_key}, attempt {attempt + 1}/{max_retries + 1}: {e}")
if attempt == max_retries:
logger.error(f"Max retries reached for {model_key}, skipping")
state["current_model_idx"] += 1
return None, f"Failed to process {model_key} after {max_retries} attempts.", [], state
time.sleep(1)
finally:
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.info(f"Cleared CUDA cache after {model_key}")
model_cache.clear()
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.info("Cleared model cache and GPU memory")
state["current_model_idx"] += 1
elapsed = time.time() - start_time
logger.info(f"Model {model_key} completed in {elapsed:.2f}s")
if state["current_model_idx"] >= len(model_keys):
logger.info("Last model processed, running ensemble immediately...")
return auto_ensemble_process(audio, model_keys, state, seg_size, overlap, out_format, use_tta, model_dir, output_dir, norm_thresh, amp_thresh, batch_size, ensemble_method, exclude_stems, weights_str, progress)
file_list = state["processed_stems"]
status = f"Model {model_key} (Model {current_idx + 1}/{len(model_keys)}) completed in {elapsed:.2f}s<br>Click 'Run Ensemble!' to process the next model.<br>Processed stems:<ul>"
for file in file_list:
file_name = os.path.basename(file)
status += f"<li><a href='file={file}' download>{file_name}</a></li>"
status += "</ul>"
return file_list[0] if file_list else None, status, file_list, state
except Exception as e:
logger.error(f"Ensemble error: {e}")
# Daha açıklayıcı hata mesajı
error_msg = f"Processing failed: {e}\n\nPossible solutions:\n"
error_msg += "1. Try fewer models (max 6)\n"
error_msg += "2. Upload a local WAV/MP4 file instead of YouTube URL\n"
error_msg += "3. Reduce segment size or overlap\n"
error_msg += "4. Check if output directory has write permissions"
raise RuntimeError(error_msg)
finally:
for temp_file in [temp_audio_path, extracted_audio_path, resampled_audio_path]:
if temp_file and os.path.exists(temp_file):
try:
os.remove(temp_file)
logger.info(f"Temporary file deleted: {temp_file}")
except Exception as e:
logger.warning(f"Failed to delete temporary file {temp_file}: {e}")
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.info("GPU memory cleared")
def update_roformer_models(category):
choices = list(ROFORMER_MODELS.get(category, {}).keys()) or []
logger.debug(f"Updating roformer models for category {category}: {choices}")
return gr.update(choices=choices, value=choices[0] if choices else None)
def update_ensemble_models(category):
choices = list(ROFORMER_MODELS.get(category, {}).keys()) or []
logger.debug(f"Updating ensemble models for category {category}: {choices}")
return gr.update(choices=choices, value=[])
def download_audio_wrapper(url, cookie_file):
file_path, status, audio_data = download_audio(url, cookie_file)
return file_path, status # Return file_path instead of audio_data
def create_interface():
with gr.Blocks(title="🎵 SESA Fast Separation 🎵", css=CSS, elem_id="app-container") as app:
gr.Markdown("<h1 class='header-text'>🎵 SESA Fast Separation 🎵</h1>")
gr.Markdown("**Note**: If YouTube downloads fail, upload a valid cookies file or a local WAV/MP4/MOV file. [Cookie Instructions](https://github.com/yt-dlp/yt-dlp/wiki/Extractors#exporting-youtube-cookies)")
gr.Markdown("**Tip**: For best results, use audio/video shorter than 15 minutes or fewer models (up to 6) to ensure smooth processing.")
ensemble_state = gr.State(value={
"current_audio": None,
"current_model_idx": 0,
"processed_stems": [],
"model_outputs": {}
})
with gr.Tabs():
with gr.Tab("⚙️ Settings"):
with gr.Group(elem_classes="dubbing-theme"):
gr.Markdown("### General Settings")
model_file_dir = gr.Textbox(value="/tmp/audio-separator-models/", label="📂 Model Cache", placeholder="Path to model directory", interactive=True)
output_dir = gr.Textbox(value="output", label="📤 Output Directory", placeholder="Where to save results", interactive=True)
output_format = gr.Dropdown(value="wav", choices=OUTPUT_FORMATS, label="🎶 Output Format", interactive=True)
norm_threshold = gr.Slider(0.1, 1.0, value=0.9, step=0.1, label="🔊 Normalization Threshold", interactive=True)
amp_threshold = gr.Slider(0.1, 1.0, value=0.3, step=0.1, label="📈 Amplification Threshold", interactive=True)
batch_size = gr.Slider(1, 8, value=1, step=1, label="⚡ Batch Size", interactive=True)
with gr.Tab("🎤 Roformer"):
with gr.Group(elem_classes="dubbing-theme"):
gr.Markdown("### Audio Separation")
with gr.Row():
roformer_audio = gr.File(label="🎧 Upload Audio or Video (WAV, MP3, MP4, MOV, etc.)", file_types=['.wav', '.mp3', '.flac', '.ogg', '.opus', '.m4a', '.aiff', '.ac3', '.mp4', '.mov', '.avi', '.mkv', '.flv', '.wmv', '.webm', '.mpeg', '.mpg', '.ts', '.vob'], interactive=True)
url_ro = gr.Textbox(label="🔗 Or Paste URL", placeholder="YouTube or audio/video URL", interactive=True)
cookies_ro = gr.File(label="🍪 Cookies File", file_types=[".txt"], interactive=True)
download_roformer = gr.Button("⬇️ Download", variant="secondary")
roformer_download_status = gr.Textbox(label="📢 Download Status", interactive=False)
roformer_exclude_stems = gr.Textbox(label="🚫 Exclude Stems", placeholder="e.g., vocals, drums (comma-separated)", interactive=True)
with gr.Row():
roformer_category = gr.Dropdown(label="📚 Category", choices=list(ROFORMER_MODELS.keys()), value="General Purpose", interactive=True)
roformer_model = gr.Dropdown(label="🛠️ Model", choices=list(ROFORMER_MODELS["General Purpose"].keys()), interactive=True, allow_custom_value=True)
with gr.Row():
roformer_seg_size = gr.Slider(32, 512, value=64, step=32, label="📏 Segment Size", interactive=True)
roformer_overlap = gr.Slider(2, 10, value=8, step=1, label="🔄 Overlap", interactive=True)
with gr.Row():
roformer_pitch_shift = gr.Slider(-12, 12, value=0, step=1, label="🎵 Pitch Shift", interactive=True)
roformer_override_seg_size = gr.Dropdown(choices=["True", "False"], value="False", label="🔧 Override Segment Size", interactive=True)
roformer_button = gr.Button("✂️ Separate Now!", variant="primary")
with gr.Row():
roformer_stem1 = gr.Audio(label="🎸 Stem 1", type="filepath", interactive=False)
roformer_stem2 = gr.Audio(label="🥁 Stem 2", type="filepath", interactive=False)
roformer_files = gr.File(label="📥 Download Stems", interactive=False)
with gr.Tab("🎚️ Auto Ensemble"):
with gr.Group(elem_classes="dubbing-theme"):
gr.Markdown("### Ensemble Processing")
gr.Markdown("Note: If weights are not specified, equal weights (1.0) are applied. Use up to 6 models for best results.")
with gr.Row():
ensemble_audio = gr.File(label="🎧 Upload Audio or Video (WAV, MP3, MP4, MOV, etc.)", file_types=['.wav', '.mp3', '.flac', '.ogg', '.opus', '.m4a', '.aiff', '.ac3', '.mp4', '.mov', '.avi', '.mkv', '.flv', '.wmv', '.webm', '.mpeg', '.mpg', '.ts', '.vob'], interactive=True)
url_ensemble = gr.Textbox(label="🔗 Or Paste URL", placeholder="YouTube or audio/video URL", interactive=True)
cookies_ensemble = gr.File(label="🍪 Cookies File", file_types=[".txt"], interactive=True)
download_ensemble = gr.Button("⬇️ Download", variant="secondary")
ensemble_download_status = gr.Textbox(label="📢 Download Status", interactive=False)
ensemble_exclude_stems = gr.Textbox(label="🚫 Exclude Stems", placeholder="e.g., vocals, drums (comma-separated)", interactive=True)
with gr.Row():
ensemble_category = gr.Dropdown(label="📚 Category", choices=list(ROFORMER_MODELS.keys()), value="Instrumentals", interactive=True)
ensemble_models = gr.Dropdown(label="🛠️ Models (Max 6)", choices=list(ROFORMER_MODELS["Instrumentals"].keys()), multiselect=True, interactive=True, allow_custom_value=True)
with gr.Row():
ensemble_seg_size = gr.Slider(32, 512, value=64, step=32, label="📏 Segment Size", interactive=True)
ensemble_overlap = gr.Slider(2, 10, value=8, step=1, label="🔄 Overlap", interactive=True)
ensemble_use_tta = gr.Dropdown(choices=["True", "False"], value="False", label="🔍 Use TTA", interactive=True)
ensemble_method = gr.Dropdown(label="⚙️ Ensemble Method", choices=['avg_wave', 'median_wave', 'max_wave', 'min_wave', 'avg_fft', 'median_fft', 'max_fft', 'min_fft'], value='avg_wave', interactive=True)
ensemble_weights = gr.Textbox(label="⚖️ Weights", placeholder="e.g., 1.0, 1.0, 1.0 (comma-separated)", interactive=True)
ensemble_button = gr.Button("🎛️ Run Ensemble!", variant="primary")
ensemble_output = gr.Audio(label="🎶 Ensemble Result", type="filepath", interactive=False)
ensemble_status = gr.HTML(label="📢 Status")
ensemble_files = gr.File(label="📥 Download Ensemble and Stems", interactive=False)
gr.HTML("<div class='footer'>Powered by Audio-Separator 🌟🎶 | Made with ❤️</div>")
roformer_category.change(update_roformer_models, inputs=[roformer_category], outputs=[roformer_model])
download_roformer.click(
fn=download_audio_wrapper,
inputs=[url_ro, cookies_ro],
outputs=[roformer_audio, roformer_download_status]
)
roformer_button.click(
fn=roformer_separator,
inputs=[
roformer_audio, roformer_model, roformer_seg_size, roformer_override_seg_size,
roformer_overlap, roformer_pitch_shift, model_file_dir, output_dir,
output_format, norm_threshold, amp_threshold, batch_size, roformer_exclude_stems
],
outputs=[roformer_stem1, roformer_stem2, roformer_files]
)
ensemble_category.change(update_ensemble_models, inputs=[ensemble_category], outputs=[ensemble_models])
download_ensemble.click(
fn=download_audio_wrapper,
inputs=[url_ensemble, cookies_ensemble],
outputs=[ensemble_audio, ensemble_download_status]
)
ensemble_button.click(
fn=auto_ensemble_process,
inputs=[
ensemble_audio, ensemble_models, ensemble_state, ensemble_seg_size, ensemble_overlap,
output_format, ensemble_use_tta, model_file_dir, output_dir,
norm_threshold, amp_threshold, batch_size, ensemble_method,
ensemble_exclude_stems, ensemble_weights
],
outputs=[ensemble_output, ensemble_status, ensemble_files, ensemble_state]
)
return app
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Music Source Separation Web UI")
parser.add_argument("--port", type=int, default=7860, help="Port to run the UI on")
args = parser.parse_args()
app = create_interface()
try:
app.launch(server_name="0.0.0.0", server_port=args.port, share=True)
except Exception as e:
logger.error(f"Failed to launch UI: {e}")
raise
finally:
app.close() |