# coding: utf-8 __author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/' import argparse import numpy as np import torch import torch.nn as nn import yaml import os import soundfile as sf from ml_collections import ConfigDict from omegaconf import OmegaConf from tqdm.auto import tqdm from typing import Dict, List, Tuple, Any, Union import loralib as lora import gc # For garbage collection import logging # Hata takibi için # Log ayarları logging.basicConfig(level=logging.INFO, filename='utils.log', format='%(asctime)s - %(message)s') def load_config(model_type: str, config_path: str) -> Union[ConfigDict, OmegaConf]: try: with open(config_path, 'r') as f: if model_type == 'htdemucs': config = OmegaConf.load(config_path) else: config = ConfigDict(yaml.load(f, Loader=yaml.FullLoader)) return config except FileNotFoundError: raise FileNotFoundError(f"Configuration file not found at {config_path}") except Exception as e: raise ValueError(f"Error loading configuration: {e}") def get_model_from_config(model_type: str, config_path: str) -> Tuple: """ Load the model specified by the model type and configuration file. Parameters: ---------- model_type : str The type of model to load (e.g., 'mdx23c', 'htdemucs', 'scnet', etc.). config_path : str The path to the configuration file (YAML or OmegaConf format). Returns: ------- model : nn.Module or None The initialized model based on the `model_type`, or None if the model type is not recognized. config : Any The configuration used to initialize the model. This could be in different formats depending on the model type (e.g., OmegaConf, ConfigDict). Raises: ------ ValueError: If the `model_type` is unknown or an error occurs during model initialization. """ config = load_config(model_type, config_path) if model_type == 'mdx23c': from models.mdx23c_tfc_tdf_v3 import TFC_TDF_net model = TFC_TDF_net(config) elif model_type == 'htdemucs': from models.demucs4ht import get_model model = get_model(config) elif model_type == 'segm_models': from models.segm_models import Segm_Models_Net model = Segm_Models_Net(config) elif model_type == 'torchseg': from models.torchseg_models import Torchseg_Net model = Torchseg_Net(config) elif model_type == 'mel_band_roformer': from models.bs_roformer import MelBandRoformer model = MelBandRoformer(**dict(config.model)) elif model_type == 'bs_roformer': from models.bs_roformer import BSRoformer model = BSRoformer(**dict(config.model)) elif model_type == 'swin_upernet': from models.upernet_swin_transformers import Swin_UperNet_Model model = Swin_UperNet_Model(config) elif model_type == 'bandit': from models.bandit.core.model import MultiMaskMultiSourceBandSplitRNNSimple model = MultiMaskMultiSourceBandSplitRNNSimple(**config.model) elif model_type == 'bandit_v2': from models.bandit_v2.bandit import Bandit model = Bandit(**config.kwargs) elif model_type == 'scnet_unofficial': from models.scnet_unofficial import SCNet model = SCNet(**config.model) elif model_type == 'scnet': from models.scnet import SCNet model = SCNet(**config.model) elif model_type == 'apollo': from models.look2hear.models import BaseModel model = BaseModel.apollo(**config.model) elif model_type == 'bs_mamba2': from models.ts_bs_mamba2 import Separator model = Separator(**config.model) elif model_type == 'experimental_mdx23c_stht': from models.mdx23c_tfc_tdf_v3_with_STHT import TFC_TDF_net model = TFC_TDF_net(config) else: raise ValueError(f"Unknown model type: {model_type}") return model, config def read_audio_transposed(path: str, instr: str = None, skip_err: bool = False) -> Tuple[np.ndarray, int]: try: mix, sr = sf.read(path) if len(mix.shape) == 1: # Mono audio mix = np.expand_dims(mix, axis=-1) return mix.T, sr except Exception as e: if skip_err: print(f"No stem {instr}: skip!") return None, None raise RuntimeError(f"Error reading the file at {path}: {e}") def normalize_audio(audio: np.ndarray) -> Tuple[np.ndarray, Dict[str, float]]: mono = audio.mean(0) mean, std = mono.mean(), mono.std() return (audio - mean) / (std + 1e-8), {"mean": mean, "std": std} def denormalize_audio(audio: np.ndarray, norm_params: Dict[str, float]) -> np.ndarray: return audio * norm_params["std"] + norm_params["mean"] def apply_tta( config, model: nn.Module, mix: torch.Tensor, waveforms_orig: Dict[str, torch.Tensor], device: str, model_type: str, progress=None # Gradio progress nesnesi ) -> Dict[str, torch.Tensor]: track_proc_list = [mix[::-1].clone(), -mix.clone()] total_steps = len(track_proc_list) processed_steps = 0 for i, augmented_mix in enumerate(track_proc_list): # TTA adımı için ilerleme güncellemesi processed_steps += 1 progress_value = round((processed_steps / total_steps) * 50) # TTA için 0-50% aralığı if progress is not None and callable(getattr(progress, '__call__', None)): progress(progress_value / 100, desc=f"Applying TTA step {processed_steps}/{total_steps}") update_progress_html(f"Applying TTA step {processed_steps}/{total_steps}", progress_value) waveforms = demix(config, model, augmented_mix, device, model_type=model_type, pbar=False, progress=progress) for el in waveforms: if i == 0: waveforms_orig[el] += waveforms[el][::-1].clone() else: waveforms_orig[el] -= waveforms[el] del waveforms, augmented_mix gc.collect() if device.startswith('cuda'): torch.cuda.empty_cache() for el in waveforms_orig: waveforms_orig[el] /= (len(track_proc_list) + 1) # TTA tamamlandı if progress is not None and callable(getattr(progress, '__call__', None)): progress(0.5, desc="TTA completed") update_progress_html("TTA completed", 50) return waveforms_orig def _getWindowingArray(window_size: int, fade_size: int) -> torch.Tensor: fadein = torch.linspace(0, 1, fade_size) fadeout = torch.linspace(1, 0, fade_size) window = torch.ones(window_size) window[-fade_size:] = fadeout window[:fade_size] = fadein return window def demix( config: ConfigDict, model: nn.Module, mix: torch.Tensor, device: str, model_type: str, pbar: bool = False, progress=None # Gradio progress nesnesi ) -> Dict[str, np.ndarray]: logging.info(f"Starting demix for model_type: {model_type}, chunk_size: {config.audio.chunk_size}") # CPU'da FP16 ile başla mix = torch.tensor(mix, dtype=torch.float16, device='cpu') mode = 'demucs' if model_type == 'htdemucs' else 'generic' # İşlem parametreleri if mode == 'demucs': chunk_size = config.training.samplerate * config.training.segment num_instruments = len(config.training.instruments) num_overlap = config.inference.num_overlap step = chunk_size // num_overlap else: chunk_size = config.audio.chunk_size num_instruments = len(prefer_target_instrument(config)) num_overlap = config.inference.num_overlap fade_size = chunk_size // 10 step = chunk_size // num_overlap border = chunk_size - step length_init = mix.shape[-1] windowing_array = _getWindowingArray(chunk_size, fade_size).to('cpu', dtype=torch.float16) if length_init > 2 * border and border > 0: mix = nn.functional.pad(mix, (border, border), mode="reflect") batch_size = getattr(config.inference, 'batch_size', 1) # Düşük bellek için varsayılan 1 # Modeli cihaza taşı (ZeroGPU için cuda:0) model = model.to(device) model.eval() # Toplam chunk sayısını hesapla total_chunks = (mix.shape[1] + step - 1) // step processed_chunks = 0 with torch.no_grad(): # Çıkarım için gradyan yok with torch.cuda.amp.autocast(enabled=device.startswith('cuda'), dtype=torch.float16): req_shape = (num_instruments,) + mix.shape result = torch.zeros(req_shape, dtype=torch.float16, device='cpu') counter = torch.zeros(req_shape, dtype=torch.float16, device='cpu') i = 0 batch_data = [] batch_locations = [] start_time = time.time() while i < mix.shape[1]: part = mix[:, i:i + chunk_size] chunk_len = part.shape[-1] pad_mode = "reflect" if mode == "generic" and chunk_len > chunk_size // 2 else "constant" part = nn.functional.pad(part, (0, chunk_size - chunk_len), mode=pad_mode, value=0) batch_data.append(part) batch_locations.append((i, chunk_len)) i += step if len(batch_data) >= batch_size or i >= mix.shape[1]: # Veriyi GPU'ya taşı arr = torch.stack(batch_data, dim=0).to(device, non_blocking=True) x = model(arr) # Model çıkarımı GPU'da # Sonuçları hemen CPU'ya taşı x = x.cpu() if mode == "generic": window = windowing_array.clone() if i - step == 0: window[:fade_size] = 1 elif i >= mix.shape[1]: window[-fade_size:] = 1 for j, (start, seg_len) in enumerate(batch_locations): if mode == "generic": result[..., start:start + seg_len] += (x[j, ..., :seg_len] * window[..., :seg_len]) counter[..., start:start + seg_len] += window[..., :seg_len] else: result[..., start:start + seg_len] += x[j, ..., :seg_len] counter[..., start:start + seg_len] += 1.0 # İlerleme güncellemesi processed_chunks += len(batch_data) progress_value = min(round((processed_chunks / total_chunks) * 100), 100) # %1 hassasiyet if progress is not None and callable(getattr(progress, '__call__', None)): progress(progress_value / 100, desc=f"Processing chunk {processed_chunks}/{total_chunks}") update_progress_html(f"Processing chunk {processed_chunks}/{total_chunks}", progress_value) del arr, x batch_data.clear() batch_locations.clear() gc.collect() if device.startswith('cuda'): torch.cuda.empty_cache() logging.info("Cleared CUDA cache") elapsed_time = time.time() - start_time logging.info(f"Demix completed in {elapsed_time:.2f} seconds") estimated_sources = result / (counter + 1e-8) estimated_sources = estimated_sources.numpy().astype(np.float32) np.nan_to_num(estimated_sources, copy=False, nan=0.0) if mode == "generic" and length_init > 2 * border and border > 0: estimated_sources = estimated_sources[..., border:-border] instruments = config.training.instruments if mode == "demucs" else prefer_target_instrument(config) ret_data = {k: v for k, v in zip(instruments, estimated_sources)} logging.info("Demix completed successfully") # Son ilerleme güncellemesi if progress is not None and callable(getattr(progress, '__call__', None)): progress(1.0, desc="Demix completed") update_progress_html("Demix completed", 100) return ret_data def prefer_target_instrument(config: ConfigDict) -> List[str]: return [config.training.target_instrument] if getattr(config.training, 'target_instrument', None) else config.training.instruments def load_not_compatible_weights(model: nn.Module, weights: str, verbose: bool = False) -> None: new_model = model.state_dict() old_model = torch.load(weights, map_location='cpu') if 'state' in old_model: old_model = old_model['state'] if 'state_dict' in old_model: old_model = old_model['state_dict'] for el in new_model: if el in old_model and new_model[el].shape == old_model[el].shape: new_model[el] = old_model[el] model.load_state_dict(new_model) def load_lora_weights(model: nn.Module, lora_path: str, device: str = 'cpu') -> None: lora_state_dict = torch.load(lora_path, map_location=device) model.load_state_dict(lora_state_dict, strict=False) def load_start_checkpoint(args: argparse.Namespace, model: nn.Module, type_='train') -> None: print(f'Start from checkpoint: {args.start_check_point}') device = 'cpu' state_dict = torch.load(args.start_check_point, map_location=device, weights_only=True) if args.model_type in ['htdemucs', 'apollo'] and isinstance(state_dict, dict): state_dict = state_dict.get('state', state_dict.get('state_dict', state_dict)) model.load_state_dict(state_dict) if args.lora_checkpoint: print(f"Loading LoRA weights from: {args.lora_checkpoint}") load_lora_weights(model, args.lora_checkpoint, device) def bind_lora_to_model(config: Dict[str, Any], model: nn.Module) -> nn.Module: if 'lora' not in config: raise ValueError("Configuration must contain the 'lora' key with parameters for LoRA.") replaced_layers = 0 for name, module in model.named_modules(): hierarchy = name.split('.') layer_name = hierarchy[-1] if isinstance(module, nn.Linear): try: parent_module = model for submodule_name in hierarchy[:-1]: parent_module = getattr(parent_module, submodule_name) setattr( parent_module, layer_name, lora.MergedLinear( in_features=module.in_features, out_features=module.out_features, bias=module.bias is not None, **config['lora'] ) ) replaced_layers += 1 except Exception as e: print(f"Error replacing layer {name}: {e}") print(f"Number of layers replaced with LoRA: {replaced_layers}") return model def draw_spectrogram(waveform, sample_rate, length, output_file): import librosa.display x = waveform[:int(length * sample_rate), :] X = librosa.stft(x.mean(axis=-1)) Xdb = librosa.amplitude_to_db(np.abs(X), ref=np.max) fig, ax = plt.subplots() img = librosa.display.specshow( Xdb, cmap='plasma', sr=sample_rate, x_axis='time', y_axis='linear', ax=ax ) ax.set(title='File: ' + os.path.basename(output_file)) fig.colorbar(img, ax=ax, format="%+2.f dB") if output_file: plt.savefig(output_file) plt.close()