import os import shutil import glob import re import subprocess import random import yaml from pathlib import Path import torch import gradio as gr import threading import time import librosa import soundfile as sf import numpy as np import requests import json import locale from datetime import datetime import yt_dlp import validators from pytube import YouTube from googleapiclient.discovery import build from googleapiclient.http import MediaIoBaseDownload import io import math import hashlib import gc import psutil import concurrent.futures from tqdm import tqdm from google.oauth2.credentials import Credentials import tempfile from urllib.parse import urlparse, quote import argparse from tqdm.auto import tqdm import torch.nn as nn from model import get_model_config, MODEL_CONFIGS from assets.i18n.i18n import I18nAuto import matchering as mg from scipy.signal import find_peaks i18n = I18nAuto() # Temel dizinler BASE_DIR = os.path.dirname(os.path.abspath(__file__)) INPUT_DIR = os.path.join(BASE_DIR, "input") OUTPUT_DIR = os.path.join(BASE_DIR, "output") OLD_OUTPUT_DIR = os.path.join(BASE_DIR, "old_output") AUTO_ENSEMBLE_TEMP = os.path.join(BASE_DIR, "auto_ensemble_temp") AUTO_ENSEMBLE_OUTPUT = os.path.join(BASE_DIR, "ensemble_folder") VIDEO_TEMP = os.path.join(BASE_DIR, "video_temp") ENSEMBLE_DIR = os.path.join(BASE_DIR, "ensemble") COOKIE_PATH = os.path.join(BASE_DIR, "cookies.txt") INFERENCE_SCRIPT_PATH = os.path.join(BASE_DIR, "inference.py") def extract_model_name_from_checkpoint(checkpoint_path): if not checkpoint_path: return "Unknown" base_name = os.path.basename(checkpoint_path) model_name = os.path.splitext(base_name)[0] print(f"Original checkpoint path: {checkpoint_path}, extracted model_name: {model_name}") return model_name.strip() for directory in [BASE_DIR, INPUT_DIR, OUTPUT_DIR, OLD_OUTPUT_DIR, AUTO_ENSEMBLE_TEMP, AUTO_ENSEMBLE_OUTPUT, VIDEO_TEMP, ENSEMBLE_DIR]: os.makedirs(directory, exist_ok=True) class IndentDumper(yaml.Dumper): def increase_indent(self, flow=False, indentless=False): return super(IndentDumper, self).increase_indent(flow, False) def tuple_constructor(loader, node): """YAML'dan bir tuple yükler.""" values = loader.construct_sequence(node) return tuple(values) yaml.SafeLoader.add_constructor('tag:yaml.org,2002:python/tuple', tuple_constructor) def clean_model(model): """ Cleans a model name by removing unwanted characters like ⭐ and extra whitespace. Args: model (str): The model name to clean. Returns: str: The cleaned model name, or None if input is invalid. """ if not model or not isinstance(model, str): return None # Remove ⭐ and extra whitespace cleaned = model.replace("⭐", "").strip() # Remove any additional unwanted characters if needed cleaned = cleaned.replace("\t", " ").replace("\n", " ") return cleaned def get_original_category(translated_category): for original_cat in MODEL_CONFIGS.keys(): if i18n(original_cat) == translated_category: return original_cat return None def clamp_percentage(value): """Clamp percentage values to the 0-100 range.""" try: return min(max(float(value), 0), 100) except (ValueError, TypeError): print(f"Warning: Invalid percentage value {value}, defaulting to 0") return 0 def update_model_dropdown(category, favorites=None): # Map translated category back to English eng_cat = next((k for k in MODEL_CONFIGS.keys() if i18n(k) == category), list(MODEL_CONFIGS.keys())[0]) models = MODEL_CONFIGS.get(eng_cat, []) choices = [] favorite_models = [] non_favorite_models = [] for model in models: model_name = f"{model} ⭐" if favorites and model in favorites else model if favorites and model in favorites: favorite_models.append(model_name) else: non_favorite_models.append(model_name) choices = favorite_models + non_favorite_models return {"choices": choices} def handle_file_upload(uploaded_file, file_path, is_auto_ensemble=False): clear_temp_folder("/tmp", exclude_items=["gradio", "config.json"]) clear_directory(INPUT_DIR) os.makedirs(INPUT_DIR, exist_ok=True) clear_directory(INPUT_DIR) if uploaded_file: target_path = save_uploaded_file(uploaded_file, is_input=True) return target_path, target_path elif file_path and os.path.exists(file_path): target_path = os.path.join(INPUT_DIR, os.path.basename(file_path)) shutil.copy(file_path, target_path) return target_path, target_path return None, None if torch.cuda.is_available(): torch.cuda.empty_cache() def clear_directory(directory): """Verilen dizindeki tüm dosyaları siler.""" files = glob.glob(os.path.join(directory, '*')) for f in files: try: os.remove(f) except Exception as e: print(i18n("file_deletion_error").format(f, e)) def clear_temp_folder(folder_path, exclude_items=None): """Dizinin içeriğini güvenli bir şekilde temizler ve belirtilen öğeleri korur.""" try: if not os.path.exists(folder_path): print(i18n("directory_not_exist_warning").format(folder_path)) return False if not os.path.isdir(folder_path): print(i18n("not_a_directory_warning").format(folder_path)) return False exclude_items = exclude_items or [] for item_name in os.listdir(folder_path): item_path = os.path.join(folder_path, item_name) if item_name in exclude_items: continue try: if os.path.isfile(item_path) or os.path.islink(item_path): os.unlink(item_path) elif os.path.isdir(item_path): shutil.rmtree(item_path) except Exception as e: print(i18n("item_deletion_error").format(item_path, e)) return True except Exception as e: print(i18n("critical_error").format(e)) return False def clear_old_output(): old_output_folder = os.path.join(BASE_DIR, 'old_output') try: if not os.path.exists(old_output_folder): return i18n("old_output_not_exist") shutil.rmtree(old_output_folder) os.makedirs(old_output_folder, exist_ok=True) return i18n("old_outputs_cleared") except Exception as e: return i18n("error").format(e) def shorten_filename(filename, max_length=30): """Dosya adını belirtilen maksimum uzunluğa kısaltır.""" base, ext = os.path.splitext(filename) if len(base) <= max_length: return filename return base[:15] + "..." + base[-10:] + ext def clean_filename(title): """Dosya adından özel karakterleri kaldırır.""" return re.sub(r'[^\w\-_\. ]', '', title).strip() def sanitize_filename(filename): base, ext = os.path.splitext(filename) base = re.sub(r'\.+', '_', base) base = re.sub(r'[#<>:"/\\|?*]', '_', base) base = re.sub(r'\s+', '_', base) base = re.sub(r'_+', '_', base) base = base.strip('_') return f"{base}{ext}" def convert_to_wav(file_path): """Ses dosyasını WAV formatına dönüştürür.""" original_filename = os.path.basename(file_path) filename, ext = os.path.splitext(original_filename) if ext.lower() == '.wav': return file_path wav_output = os.path.join(ENSEMBLE_DIR, f"{filename}.wav") try: command = [ 'ffmpeg', '-y', '-i', file_path, '-acodec', 'pcm_s16le', '-ar', '44100', wav_output ] subprocess.run(command, check=True, capture_output=True) return wav_output except subprocess.CalledProcessError as e: print(i18n("ffmpeg_error").format(e.returncode, e.stderr.decode())) return None def generate_random_port(): """Rastgele bir port numarası oluşturur.""" return random.randint(1000, 9000) def save_segment(audio, sr, path): """ Save audio segment to a file. Args: audio (np.ndarray): Audio data. sr (int): Sample rate. path (str): Output file path. """ sf.write(path, audio, sr) def run_matchering(reference_path, target_path, output_path, passes=1, bit_depth=24): """ Run Matchering to master the target audio using the reference audio. Args: reference_path (str): Path to the reference audio (clear segment). target_path (str): Path to the target audio to be mastered. output_path (str): Path for the mastered output. passes (int): Number of Matchering passes (1-4). bit_depth (int): Output bit depth (16 or 24). Returns: str: Path to the mastered output file. """ # Ensure inputs are WAV files ref_audio, sr = librosa.load(reference_path, sr=44100, mono=False) tgt_audio, sr = librosa.load(target_path, sr=44100, mono=False) # Save temporary WAV files temp_ref = os.path.join(tempfile.gettempdir(), "matchering_ref.wav") temp_tgt = os.path.join(tempfile.gettempdir(), "matchering_tgt.wav") save_segment(ref_audio.T if ref_audio.ndim > 1 else ref_audio, sr, temp_ref) save_segment(tgt_audio.T if tgt_audio.ndim > 1 else tgt_audio, sr, temp_tgt) # Configure Matchering with default settings config = mg.Config() # No parameters, use defaults # Select bit depth for output result_format = mg.pcm24 if bit_depth == 24 else mg.pcm16 # Run Matchering for multiple passes current_tgt = temp_tgt for i in range(passes): temp_out = os.path.join(tempfile.gettempdir(), f"matchering_out_pass_{i}.wav") mg.process( reference=temp_ref, target=current_tgt, results=[result_format(temp_out)], # Bit depth control config=config ) current_tgt = temp_out # Move final output to desired path shutil.move(current_tgt, output_path) # Clean up temporary files for temp_file in [temp_ref, temp_tgt] + [os.path.join(tempfile.gettempdir(), f"matchering_out_pass_{i}.wav") for i in range(passes-1)]: if os.path.exists(temp_file): os.remove(temp_file) return output_path def find_clear_segment(audio_path, segment_duration=15, sr=44100): """ Find the clearest (high-energy, low-noise) segment in an audio file. Args: audio_path (str): Path to the original audio file. segment_duration (float): Duration of the segment to extract (in seconds). sr (int): Sample rate for loading audio. Returns: tuple: (start_time, end_time, segment_audio) of the clearest segment. """ # Load audio audio, sr = librosa.load(audio_path, sr=sr, mono=True) # Compute RMS energy in windows window_size = int(5 * sr) # 5-second windows hop_length = window_size // 2 rms = librosa.feature.rms(y=audio, frame_length=window_size, hop_length=hop_length)[0] # Compute spectral flatness for noise detection flatness = librosa.feature.spectral_flatness(y=audio, n_fft=window_size, hop_length=hop_length)[0] # Combine metrics: high RMS and low flatness indicate clear, high-energy segments score = rms / (flatness + 1e-6) # Avoid division by zero # Find peaks in the score peaks, _ = find_peaks(score, height=np.mean(score), distance=5) if len(peaks) == 0: # Fallback: Use the middle of the track peak_idx = len(score) // 2 else: peak_idx = peaks[np.argmax(score[peaks])] # Calculate start and end times start_sample = peak_idx * hop_length end_sample = start_sample + int(segment_duration * sr) # Ensure the segment fits within the audio if end_sample > len(audio): end_sample = len(audio) start_sample = max(0, end_sample - int(segment_duration * sr)) start_time = start_sample / sr end_time = end_sample / sr segment_audio = audio[start_sample:end_sample] return start_time, end_time, segment_audio def update_file_list(): output_files = glob.glob(os.path.join(OUTPUT_DIR, "*.wav")) old_output_files = glob.glob(os.path.join(OLD_OUTPUT_DIR, "*.wav")) files = output_files + old_output_files return gr.Dropdown(choices=files) def save_uploaded_file(uploaded_file, is_input=False, target_dir=None): """Yüklenen dosyayı belirtilen dizine kaydeder.""" media_extensions = ['.mp3', '.wav', '.flac', '.aac', '.ogg', '.m4a', '.mp4'] target_dir = target_dir or (INPUT_DIR if is_input else OUTPUT_DIR) timestamp_patterns = [ r'_\d{8}_\d{6}_\d{6}$', r'_\d{14}$', r'_\d{10}$', r'_\d+$' ] if hasattr(uploaded_file, 'name'): original_filename = os.path.basename(uploaded_file.name) else: original_filename = os.path.basename(str(uploaded_file)) if is_input: base_filename = original_filename for pattern in timestamp_patterns: base_filename = re.sub(pattern, '', base_filename) for ext in media_extensions: base_filename = base_filename.replace(ext, '') file_ext = next( (ext for ext in media_extensions if original_filename.lower().endswith(ext)), '.wav' ) clean_filename = f"{base_filename.strip('_- ')}{file_ext}" else: clean_filename = original_filename target_path = os.path.join(target_dir, clean_filename) os.makedirs(target_dir, exist_ok=True) if os.path.exists(target_path): os.remove(target_path) if hasattr(uploaded_file, 'read'): with open(target_path, "wb") as f: f.write(uploaded_file.read()) else: shutil.copy(uploaded_file, target_path) print(i18n("file_saved_successfully").format(os.path.basename(target_path))) return target_path def move_old_files(output_folder): """Eski dosyaları old_output dizinine taşır.""" os.makedirs(OLD_OUTPUT_DIR, exist_ok=True) for filename in os.listdir(output_folder): file_path = os.path.join(output_folder, filename) if os.path.isfile(file_path): new_filename = f"{os.path.splitext(filename)[0]}_old{os.path.splitext(filename)[1]}" new_file_path = os.path.join(OLD_OUTPUT_DIR, new_filename) shutil.move(file_path, new_file_path)