import gradio as gr
import os
import glob
import subprocess
from pathlib import Path
from datetime import datetime
import json
import sys
import time
import random
from helpers import update_model_dropdown, handle_file_upload, clear_old_output, save_uploaded_file, update_file_list, clean_model
from download import download_callback
from model import get_model_config, MODEL_CONFIGS
from processing import process_audio, auto_ensemble_process, ensemble_audio_fn, refresh_auto_output
from assets.i18n.i18n import I18nAuto
from config_manager import load_config, save_config, update_favorites, save_preset, delete_preset
import logging
from gradio_client import utils
from inference import proc_folder
# Set up logging for the patch
logging.basicConfig(filename='gradio_schema.log', level=logging.DEBUG)
logger = logging.getLogger('gradio_schema')
# Patch gradio_client.utils._json_schema_to_python_type
original_json_schema_to_python_type = utils._json_schema_to_python_type
def patched_json_schema_to_python_type(schema: any, defs: dict | None = None) -> str:
logger.debug(f"Parsing schema: {schema}")
if isinstance(schema, bool):
logger.info(f"Found boolean schema: {schema}, returning 'boolean'")
return "boolean"
if not isinstance(schema, dict):
logger.warning(f"Unexpected schema type: {type(schema)}, returning 'Any'")
return "Any"
if "enum" in schema and schema.get("type") == "string":
logger.info(f"Handling enum schema: {schema['enum']}")
return f"Literal[{', '.join(repr(e) for e in schema['enum'])}]"
try:
return original_json_schema_to_python_type(schema, defs)
except utils.APIInfoParseError as e:
logger.error(f"Failed to parse schema {schema}: {e}")
return "str"
utils._json_schema_to_python_type = patched_json_schema_to_python_type
# General logging setup
logging.basicConfig(filename='sesa_gui.log', level=logging.DEBUG)
# BASE_DIR tanımı
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
CONFIG_DIR = os.path.join(BASE_DIR, "assets")
CONFIG_FILE = os.path.join(CONFIG_DIR, "config.json")
URL_FILE = os.path.join(CONFIG_DIR, "last_url.txt")
# Load user config at startup
user_config = load_config()
initial_settings = user_config["settings"]
initial_favorites = user_config["favorites"]
initial_presets = user_config["presets"]
# Ensure auto_category is valid
if "auto_category" not in initial_settings or initial_settings["auto_category"] not in MODEL_CONFIGS:
initial_settings["auto_category"] = "Vocal Models"
# Config dosyası yoksa oluştur
if not os.path.exists(CONFIG_FILE):
default_config = {
"lang": {"override": False, "selected_lang": "auto"},
"sharing": {
"method": "gradio",
"ngrok_token": "",
"port": random.randint(1000, 9000) # Random port instead of fixed
}
}
os.makedirs(CONFIG_DIR, exist_ok=True)
with open(CONFIG_FILE, "w", encoding="utf-8") as f:
json.dump(default_config, f, indent=2)
else: # If the file exists, load and update if necessary
try:
with open(CONFIG_FILE, "r", encoding="utf-8") as f:
config = json.load(f)
# Ensure 'lang' key exists
if "lang" not in config:
config["lang"] = {"override": False, "selected_lang": "auto"}
# Add 'sharing' key if it doesn't exist
if "sharing" not in config:
config["sharing"] = {
"method": "gradio",
"ngrok_token": "",
"port": random.randint(1000, 9000) # Random port instead of fixed
}
# Save the updated configuration
with open(CONFIG_FILE, "w", encoding="utf-8") as f:
json.dump(config, f, indent=2)
except json.JSONDecodeError: # Handle corrupted JSON
print("Warning: config.json is corrupted. Creating a new one.")
default_config = {
"lang": {"override": False, "selected_lang": "auto"},
"sharing": {
"method": "gradio",
"ngrok_token": "",
"port": random.randint(1000, 9000) # Random port instead of fixed
}
}
with open(CONFIG_FILE, "w", encoding="utf-8") as f:
json.dump(default_config, f, indent=2)
# I18nAuto örneği (arayüz başlamadan önce dil yüklenir)
i18n = I18nAuto()
# Çıktı formatları
OUTPUT_FORMATS = ['wav', 'flac', 'mp3', 'ogg', 'opus', 'm4a', 'aiff', 'ac3']
# Arayüz oluşturma fonksiyonu
def create_interface():
css = """
body {
background: linear-gradient(to bottom, rgba(45, 11, 11, 0.9), rgba(0, 0, 0, 0.8)), url('/content/logo.jpg') no-repeat center center fixed;
background-size: cover;
min-height: 100vh;
margin: 0;
padding: 1rem;
font-family: 'Poppins', sans-serif;
color: #C0C0C0;
overflow-x: hidden;
}
.header-text {
text-align: center;
padding: 100px 20px 20px;
color: #ff4040;
font-size: 3rem;
font-weight: 900;
text-shadow: 0 0 10px rgba(255, 64, 64, 0.5);
z-index: 1500;
animation: text-glow 2s infinite;
}
.header-subtitle {
text-align: center;
color: #C0C0C0;
font-size: 1.2rem;
font-weight: 300;
margin-top: -10px;
text-shadow: 0 0 5px rgba(255, 64, 64, 0.3);
}
.gr-tab {
background: rgba(128, 0, 0, 0.5) !important;
border-radius: 12px 12px 0 0 !important;
margin: 0 5px !important;
color: #C0C0C0 !important;
border: 1px solid #ff4040 !important;
z-index: 1500;
transition: background 0.3s ease, color 0.3s ease;
padding: 10px 20px !important;
font-size: 1.1rem !important;
}
button {
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important;
background: #800000 !important;
border: 1px solid #ff4040 !important;
color: #C0C0C0 !important;
border-radius: 8px !important;
padding: 8px 16px !important;
box-shadow: 0 2px 10px rgba(255, 64, 64, 0.3);
}
button:hover {
transform: scale(1.05) !important;
box-shadow: 0 10px 40px rgba(255, 64, 64, 0.7) !important;
background: #ff4040 !important;
}
.compact-upload.horizontal {
display: inline-flex !important;
align-items: center !important;
gap: 8px !important;
max-width: 400px !important;
height: 40px !important;
padding: 0 12px !important;
border: 1px solid #ff4040 !important;
background: rgba(128, 0, 0, 0.5) !important;
border-radius: 8px !important;
}
.compact-dropdown {
--padding: 8px 12px !important;
--radius: 10px !important;
border: 1px solid #ff4040 !important;
background: rgba(128, 0, 0, 0.5) !important;
color: #C0C0C0 !important;
}
#custom-progress {
margin-top: 10px;
padding: 10px;
background: rgba(128, 0, 0, 0.3);
border-radius: 8px;
border: 1px solid #ff4040;
}
#progress-bar {
height: 20px;
background: linear-gradient(to right, #6e8efb, #ff4040);
border-radius: 5px;
transition: width 0.5s ease-in-out;
max-width: 100% !important;
}
.gr-accordion {
background: rgba(128, 0, 0, 0.5) !important;
border-radius: 10px !important;
border: 1px solid #ff4040 !important;
}
.footer {
text-align: center;
padding: 20px;
color: #ff4040;
font-size: 14px;
margin-top: 40px;
background: rgba(128, 0, 0, 0.3);
border-top: 1px solid #ff4040;
}
#log-accordion {
max-height: 400px;
overflow-y: auto;
background: rgba(0, 0, 0, 0.7) !important;
padding: 10px;
border-radius: 8px;
}
@keyframes text-glow {
0% { text-shadow: 0 0 5px rgba(192, 192, 192, 0); }
50% { text-shadow: 0 0 15px rgba(192, 192, 192, 1); }
100% { text-shadow: 0 0 5px rgba(192, 192, 192, 0); }
}
"""
# Load user config at startup
user_config = load_config()
initial_settings = user_config["settings"]
initial_favorites = user_config["favorites"]
initial_presets = user_config["presets"]
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
current_lang = gr.State(value=i18n.language)
favorites_state = gr.State(value=initial_favorites)
presets_state = gr.State(value=initial_presets)
header_html = gr.HTML(
value=f"""
"""
)
with gr.Tabs():
with gr.Tab(i18n("audio_separation_tab"), id="separation_tab"):
with gr.Row(equal_height=True):
with gr.Column(scale=1, min_width=380):
with gr.Accordion(i18n("input_model"), open=True) as input_model_accordion:
with gr.Tabs():
with gr.Tab(i18n("upload")) as upload_tab:
input_audio_file = gr.File(
file_types=[".wav", ".mp3", ".m4a", ".mp4", ".mkv", ".flac"],
elem_classes=["compact-upload", "horizontal", "x-narrow"],
label=""
)
with gr.Tab(i18n("path")) as path_tab:
file_path_input = gr.Textbox(placeholder=i18n("path_placeholder"))
with gr.Row():
model_category = gr.Dropdown(
label=i18n("category"),
choices=[i18n(cat) for cat in MODEL_CONFIGS.keys()],
value=i18n(initial_settings["model_category"])
)
favorite_button = gr.Button(i18n("add_favorite"), variant="secondary", scale=0)
model_dropdown = gr.Dropdown(
label=i18n("model"),
choices=update_model_dropdown(i18n(initial_settings["model_category"]), favorites=initial_favorites)["choices"],
value=initial_settings["selected_model"]
)
with gr.Accordion(i18n("settings"), open=False) as settings_accordion:
with gr.Row():
with gr.Column(scale=1):
export_format = gr.Dropdown(
label=i18n("format"),
choices=['wav FLOAT', 'flac PCM_16', 'flac PCM_24'],
value=initial_settings["export_format"]
)
with gr.Column(scale=1):
chunk_size = gr.Dropdown(
label=i18n("chunk_size"),
choices=[352800, 485100],
value=initial_settings["chunk_size"],
info=i18n("chunk_size_info")
)
with gr.Row():
with gr.Column(scale=2):
overlap = gr.Slider(
minimum=2,
maximum=50,
step=1,
label=i18n("overlap"),
value=initial_settings["overlap"],
info=i18n("overlap_info")
)
with gr.Row():
with gr.Column(scale=1):
use_tta = gr.Checkbox(
label=i18n("tta_boost"),
info=i18n("tta_info"),
value=initial_settings["use_tta"]
)
with gr.Row():
with gr.Column(scale=1):
use_demud_phaseremix_inst = gr.Checkbox(
label=i18n("phase_fix"),
info=i18n("phase_fix_info"),
value=initial_settings["use_demud_phaseremix_inst"]
)
with gr.Column(scale=1):
extract_instrumental = gr.Checkbox(
label=i18n("instrumental"),
info=i18n("instrumental_info"),
value=initial_settings["extract_instrumental"]
)
with gr.Row():
use_apollo = gr.Checkbox(
label=i18n("enhance_with_apollo"),
value=initial_settings["use_apollo"],
info=i18n("apollo_enhancement_info")
)
with gr.Group(visible=initial_settings["use_apollo"]) as apollo_settings_group:
with gr.Row():
with gr.Column(scale=1):
apollo_chunk_size = gr.Slider(
label=i18n("apollo_chunk_size"),
minimum=3,
maximum=25,
step=1,
value=initial_settings["apollo_chunk_size"],
info=i18n("apollo_chunk_size_info"),
interactive=True
)
with gr.Column(scale=1):
apollo_overlap = gr.Slider(
label=i18n("apollo_overlap"),
minimum=2,
maximum=10,
step=1,
value=initial_settings["apollo_overlap"],
info=i18n("apollo_overlap_info"),
interactive=True
)
with gr.Row():
apollo_method = gr.Dropdown(
label=i18n("apollo_processing_method"),
choices=[i18n("normal_method"), i18n("mid_side_method")],
value=i18n(initial_settings["apollo_method"]),
interactive=True
)
with gr.Row(visible=initial_settings["apollo_method"] != "mid_side_method") as apollo_normal_model_row:
apollo_normal_model = gr.Dropdown(
label=i18n("apollo_normal_model"),
choices=["MP3 Enhancer", "Lew Vocal Enhancer", "Lew Vocal Enhancer v2 (beta)", "Apollo Universal Model"],
value=initial_settings["apollo_normal_model"],
interactive=True
)
with gr.Row(visible=initial_settings["apollo_method"] == "mid_side_method") as apollo_midside_model_row:
apollo_midside_model = gr.Dropdown(
label=i18n("apollo_mid_side_model"),
choices=["MP3 Enhancer", "Lew Vocal Enhancer", "Lew Vocal Enhancer v2 (beta)", "Apollo Universal Model"],
value=initial_settings["apollo_midside_model"],
interactive=True
)
with gr.Row():
use_matchering = gr.Checkbox(
label=i18n("apply_matchering"),
value=initial_settings.get("use_matchering", False),
info=i18n("matchering_info")
)
with gr.Group(visible=initial_settings.get("use_matchering", True)) as matchering_settings_group:
matchering_passes = gr.Slider(
label=i18n("matchering_passes"),
minimum=1,
maximum=5,
step=1,
value=initial_settings.get("matchering_passes", 1),
info=i18n("matchering_passes_info"),
interactive=True
)
with gr.Row():
process_btn = gr.Button(i18n("process"), variant="primary")
clear_old_output_btn = gr.Button(i18n("reset"), variant="secondary")
clear_old_output_status = gr.Textbox(label=i18n("status"), interactive=False)
# Favorite handler
def update_favorite_button(model, favorites):
cleaned_model = clean_model(model) if model else None
is_favorited = cleaned_model in favorites if cleaned_model else False
return gr.update(value=i18n("remove_favorite") if is_favorited else i18n("add_favorite"))
def toggle_favorite(model, favorites):
if not model:
return favorites, gr.update(), gr.update()
cleaned_model = clean_model(model)
is_favorited = cleaned_model in favorites
new_favorites = update_favorites(favorites, cleaned_model, add=not is_favorited)
save_config(new_favorites, load_config()["settings"], load_config()["presets"])
category = model_category.value
return (
new_favorites,
gr.update(choices=update_model_dropdown(category, favorites=new_favorites)["choices"]),
gr.update(value=i18n("add_favorite") if is_favorited else i18n("remove_favorite"))
)
model_dropdown.change(
fn=update_favorite_button,
inputs=[model_dropdown, favorites_state],
outputs=favorite_button
)
favorite_button.click(
fn=toggle_favorite,
inputs=[model_dropdown, favorites_state],
outputs=[favorites_state, model_dropdown, favorite_button]
)
use_apollo.change(
fn=lambda x: gr.update(visible=x),
inputs=use_apollo,
outputs=apollo_settings_group
)
use_matchering.change(
fn=lambda x: gr.update(visible=x),
inputs=use_matchering,
outputs=matchering_settings_group
)
apollo_method.change(
fn=lambda x: [
gr.update(visible=x != i18n("mid_side_method")),
gr.update(visible=x == i18n("mid_side_method")),
"Apollo Universal Model" if x == i18n("mid_side_method") else None
],
inputs=apollo_method,
outputs=[apollo_normal_model_row, apollo_midside_model_row, apollo_normal_model]
)
with gr.Column(scale=2, min_width=800):
with gr.Tabs():
with gr.Tab(i18n("main_tab")) as main_tab:
with gr.Column():
original_audio = gr.Audio(label=i18n("original"), interactive=False)
with gr.Row():
vocals_audio = gr.Audio(label=i18n("vocals"), show_download_button=True, interactive=False)
instrumental_audio = gr.Audio(label=i18n("instrumental_output"), show_download_button=True, interactive=False)
other_audio = gr.Audio(label=i18n("other"), show_download_button=True, interactive=False)
with gr.Tab(i18n("details_tab")) as details_tab:
with gr.Column():
with gr.Row():
male_audio = gr.Audio(label=i18n("male"), interactive=False)
female_audio = gr.Audio(label=i18n("female"), interactive=False)
speech_audio = gr.Audio(label=i18n("speech"), interactive=False)
with gr.Row():
drum_audio = gr.Audio(label=i18n("drums"), interactive=False)
bass_audio = gr.Audio(label=i18n("bass"), interactive=False)
with gr.Row():
effects_audio = gr.Audio(label=i18n("effects"), interactive=False)
with gr.Tab(i18n("advanced_tab")) as advanced_tab:
with gr.Column():
with gr.Row():
phaseremix_audio = gr.Audio(label=i18n("phase_remix"), interactive=False)
dry_audio = gr.Audio(label=i18n("dry"), interactive=False)
with gr.Row():
music_audio = gr.Audio(label=i18n("music"), interactive=False)
karaoke_audio = gr.Audio(label=i18n("karaoke"), interactive=False)
bleed_audio = gr.Audio(label=i18n("bleed"), interactive=False)
separation_progress_html = gr.HTML(
value=f"""
{i18n("waiting_for_processing")}
"""
)
separation_process_status = gr.Textbox(
label=i18n("status"),
interactive=False,
placeholder=i18n("waiting_for_processing"),
visible=False
)
processing_tip = gr.Markdown(i18n("processing_tip"))
with gr.Tab(i18n("auto_ensemble_tab"), id="auto_ensemble_tab"):
with gr.Row():
with gr.Column():
with gr.Group():
auto_input_audio_file = gr.File(
file_types=[".wav", ".mp3", ".m4a", ".mp4", ".mkv", ".flac"],
label=i18n("upload_file")
)
auto_file_path_input = gr.Textbox(
label=i18n("enter_file_path"),
placeholder=i18n("file_path_placeholder"),
interactive=True
)
with gr.Accordion(i18n("advanced_settings"), open=False) as auto_settings_accordion:
with gr.Row():
auto_use_tta = gr.Checkbox(label=i18n("use_tta"), value=False)
auto_extract_instrumental = gr.Checkbox(label=i18n("instrumental_only"))
with gr.Row():
auto_overlap = gr.Slider(
label=i18n("auto_overlap"),
minimum=2,
maximum=50,
value=2,
step=1
)
auto_chunk_size = gr.Dropdown(
label=i18n("auto_chunk_size"),
choices=[352800, 485100],
value=352800
)
export_format2 = gr.Dropdown(
label=i18n("output_format"),
choices=['wav FLOAT', 'flac PCM_16', 'flac PCM_24'],
value='wav FLOAT'
)
with gr.Row():
auto_use_apollo = gr.Checkbox(
label=i18n("enhance_with_apollo"),
value=False,
info=i18n("apollo_enhancement_info")
)
with gr.Group(visible=False) as auto_apollo_settings_group:
with gr.Row():
with gr.Column(scale=1):
auto_apollo_chunk_size = gr.Slider(
label=i18n("apollo_chunk_size"),
minimum=3,
maximum=25,
step=1,
value=19,
info=i18n("apollo_chunk_size_info"),
interactive=True
)
with gr.Column(scale=1):
auto_apollo_overlap = gr.Slider(
label=i18n("apollo_overlap"),
minimum=2,
maximum=10,
step=1,
value=2,
info=i18n("apollo_overlap_info"),
interactive=True
)
with gr.Row():
auto_apollo_method = gr.Dropdown(
label=i18n("apollo_processing_method"),
choices=[i18n("normal_method"), i18n("mid_side_method")],
value=i18n("normal_method"),
interactive=True
)
with gr.Row(visible=True) as auto_apollo_normal_model_row:
auto_apollo_normal_model = gr.Dropdown(
label=i18n("apollo_normal_model"),
choices=["MP3 Enhancer", "Lew Vocal Enhancer", "Lew Vocal Enhancer v2 (beta)", "Apollo Universal Model"],
value="Apollo Universal Model",
interactive=True
)
with gr.Row(visible=False) as auto_apollo_midside_model_row:
auto_apollo_midside_model = gr.Dropdown(
label=i18n("apollo_mid_side_model"),
choices=["MP3 Enhancer", "Lew Vocal Enhancer", "Lew Vocal Enhancer v2 (beta)", "Apollo Universal Model"],
value="Apollo Universal Model",
interactive=True
)
with gr.Row():
auto_use_matchering = gr.Checkbox(
label=i18n("apply_matchering"),
value=False,
info=i18n("matchering_info")
)
with gr.Group(visible=False) as auto_matchering_settings_group:
auto_matchering_passes = gr.Slider(
label=i18n("matchering_passes"),
minimum=1,
maximum=5,
step=1,
value=1,
info=i18n("matchering_passes_info"),
interactive=True
)
with gr.Group():
model_selection_header = gr.Markdown(f"### {i18n('model_selection')}")
with gr.Row():
auto_category_dropdown = gr.Dropdown(
label=i18n("model_category"),
choices=[i18n(cat) for cat in MODEL_CONFIGS.keys()],
value=i18n("Vocal Models")
)
selected_models = gr.Dropdown(
label=i18n("selected_models"),
choices=update_model_dropdown(i18n(initial_settings["auto_category"]), favorites=initial_favorites)["choices"],
value=initial_settings["selected_models"] or [],
multiselect=True
)
with gr.Row():
preset_dropdown = gr.Dropdown(
label=i18n("select_preset"),
choices=list(initial_presets.keys()),
value=None,
allow_custom_value=False,
interactive=True
)
with gr.Row():
preset_name_input = gr.Textbox(
label=i18n("preset_name"),
placeholder=i18n("enter_preset_name"),
interactive=True
)
save_preset_btn = gr.Button(i18n("save_preset"), variant="secondary", scale=0)
delete_preset_btn = gr.Button(i18n("delete_preset"), variant="secondary", scale=0)
refresh_presets_btn = gr.Button(i18n("refresh_presets"), variant="secondary", scale=0)
with gr.Group():
ensemble_settings_header = gr.Markdown(f"### {i18n('ensemble_settings')}")
with gr.Row():
auto_ensemble_type = gr.Dropdown(
label=i18n("method"),
choices=['avg_wave', 'median_wave', 'min_wave', 'max_wave',
'avg_fft', 'median_fft', 'min_fft', 'max_fft'],
value=initial_settings["auto_ensemble_type"]
)
ensemble_recommendation = gr.Markdown(i18n("recommendation"))
auto_process_btn = gr.Button(i18n("start_processing"), variant="primary")
def load_preset(preset_name, presets, category, favorites):
if preset_name and preset_name in presets:
preset = presets[preset_name]
favorite_models = [f"{model} ⭐" if model in favorites else model for model in preset["models"]]
preset_category = preset.get("auto_category_dropdown", category)
model_choices = update_model_dropdown(preset_category, favorites=favorites)["choices"]
logger.debug(f"Preset '{preset_name}' loaded with models: {favorite_models}, category: {preset_category}")
return (
gr.update(value=preset_category),
gr.update(choices=model_choices, value=favorite_models),
gr.update(value=preset["ensemble_method"])
)
logger.debug(f"Preset '{preset_name}' not found.")
return gr.update(), gr.update(), gr.update()
def sync_presets():
config = load_config()
return config["presets"], gr.update(choices=list(config["presets"].keys()), value=None)
preset_dropdown.change(
fn=load_preset,
inputs=[preset_dropdown, presets_state, auto_category_dropdown, favorites_state],
outputs=[auto_category_dropdown, selected_models, auto_ensemble_type]
)
def handle_save_preset(preset_name, models, ensemble_method, presets, favorites, auto_category_dropdown):
if not preset_name:
return gr.update(), presets, i18n("no_preset_name_provided")
if not models and not favorites:
return gr.update(), presets, i18n("no_models_selected_for_preset")
new_presets = save_preset(
presets,
preset_name,
models,
ensemble_method,
auto_category_dropdown=auto_category_dropdown
)
save_config(favorites, load_config()["settings"], new_presets)
logger.debug(f"Preset dropdown updated with choices: {list(new_presets.keys())}")
return gr.update(choices=list(new_presets.keys()), value=None), new_presets, i18n("preset_saved").format(preset_name)
save_preset_btn.click(
fn=handle_save_preset,
inputs=[preset_name_input, selected_models, auto_ensemble_type, presets_state, favorites_state, auto_category_dropdown],
outputs=[preset_dropdown, presets_state]
)
def handle_delete_preset(preset_name, presets):
if not preset_name or preset_name not in presets:
return gr.update(), presets
new_presets = delete_preset(presets, preset_name)
save_config(load_config()["favorites"], load_config()["settings"], new_presets)
return gr.update(choices=list(new_presets.keys()), value=None), new_presets
delete_preset_btn.click(
fn=handle_delete_preset,
inputs=[preset_dropdown, presets_state],
outputs=[preset_dropdown, presets_state]
)
refresh_presets_btn.click(
fn=sync_presets,
inputs=[],
outputs=[presets_state, preset_dropdown]
)
auto_use_apollo.change(
fn=lambda x: gr.update(visible=x),
inputs=auto_use_apollo,
outputs=auto_apollo_settings_group
)
auto_use_matchering.change(
fn=lambda x: gr.update(visible=x),
inputs=auto_use_matchering,
outputs=auto_matchering_settings_group
)
auto_apollo_method.change(
fn=lambda x: [
gr.update(visible=x != i18n("mid_side_method")),
gr.update(visible=x == i18n("mid_side_method")),
"Apollo Universal Model" if x == i18n("mid_side_method") else None
],
inputs=auto_apollo_method,
outputs=[auto_apollo_normal_model_row, auto_apollo_midside_model_row, auto_apollo_normal_model]
)
with gr.Column():
with gr.Tabs():
with gr.Tab(i18n("original_audio_tab")) as original_audio_tab:
original_audio2 = gr.Audio(
label=i18n("original_audio"),
interactive=False,
every=1,
elem_id="original_audio_player"
)
with gr.Tab(i18n("ensemble_result_tab")) as ensemble_result_tab:
auto_output_audio = gr.Audio(
label=i18n("output_preview"),
show_download_button=True,
interactive=False
)
refresh_output_btn = gr.Button(i18n("refresh_output"), variant="secondary")
ensemble_progress_html = gr.HTML(
value=f"""
{i18n("waiting_for_processing")}
"""
)
ensemble_process_status = gr.Textbox(
label=i18n("status"),
interactive=False,
placeholder=i18n("waiting_for_processing"),
visible=False
)
with gr.Tab(i18n("download_sources_tab"), id="download_tab"):
with gr.Row():
with gr.Column():
gr.Markdown(f"### {i18n('direct_links')}")
direct_url_input = gr.Textbox(label=i18n("audio_file_url"))
direct_download_btn = gr.Button(i18n("download_from_url"), variant="secondary")
direct_download_status = gr.Textbox(label=i18n("download_status"))
direct_download_output = gr.File(label=i18n("downloaded_file"), interactive=False)
with gr.Column():
gr.Markdown(f"### {i18n('cookie_management')}")
cookie_file = gr.File(
label=i18n("upload_cookies_txt"),
file_types=[".txt"],
interactive=True,
elem_id="cookie_upload"
)
cookie_info = gr.Markdown(i18n("cookie_info"))
with gr.Tab(i18n("manual_ensemble_tab"), id="manual_ensemble_tab"):
with gr.Row(equal_height=True):
with gr.Column(scale=1, min_width=400):
with gr.Accordion(i18n("input_sources"), open=True) as input_sources_accordion:
with gr.Row():
refresh_btn = gr.Button(i18n("refresh"), variant="secondary", size="sm")
ensemble_type = gr.Dropdown(
label=i18n("ensemble_algorithm"),
choices=['avg_wave', 'median_wave', 'min_wave', 'max_wave',
'avg_fft', 'median_fft', 'min_fft', 'max_fft'],
value='avg_wave'
)
file_dropdown_header = gr.Markdown(f"### {i18n('select_audio_files')}")
file_path = os.path.join(Path.home(), 'Music-Source-Separation', 'output')
initial_files = glob.glob(f"{file_path}/*.wav") + glob.glob(os.path.join(BASE_DIR, 'Music-Source-Separation-Training', 'old_output', '*.wav'))
file_dropdown = gr.Dropdown(
choices=initial_files,
label=i18n("available_files"),
multiselect=True,
interactive=True,
elem_id="file-dropdown"
)
weights_input = gr.Textbox(
label=i18n("custom_weights"),
placeholder=i18n("custom_weights_placeholder"),
info=i18n("custom_weights_info")
)
with gr.Column(scale=2, min_width=800):
with gr.Tabs():
with gr.Tab(i18n("result_preview_tab")) as result_preview_tab:
ensemble_output_audio = gr.Audio(
label=i18n("ensembled_output"),
interactive=False,
show_download_button=True,
elem_id="output-audio"
)
with gr.Tab(i18n("processing_log_tab")) as processing_log_tab:
with gr.Accordion(i18n("processing_details"), open=True, elem_id="log-accordion"):
ensemble_status = gr.Textbox(
label="",
interactive=False,
placeholder=i18n("processing_log_placeholder"),
lines=10,
max_lines=20,
elem_id="log-box"
)
with gr.Row():
ensemble_process_btn = gr.Button(
i18n("process_ensemble"),
variant="primary",
size="sm",
elem_id="process-btn"
)
def save_settings_on_process(*args):
apollo_method_value = args[11]
backend_apollo_method = "mid_side_method" if apollo_method_value == i18n("mid_side_method") else "normal_method"
cleaned_model = clean_model(args[1]) if args[1] else None
settings = {
"chunk_size": args[2],
"overlap": args[3],
"export_format": args[4],
"use_tta": args[5],
"use_demud_phaseremix_inst": args[6],
"extract_instrumental": args[7],
"use_apollo": args[8],
"apollo_chunk_size": args[9],
"apollo_overlap": args[10],
"apollo_method": backend_apollo_method,
"apollo_normal_model": args[12],
"apollo_midside_model": args[13],
"use_matchering": args[14],
"matchering_passes": args[15],
"model_category": args[16],
"selected_model": cleaned_model,
"auto_ensemble_type": args[17]
}
save_config(load_config()["favorites"], settings, load_config()["presets"])
modified_args = list(args)
modified_args[1] = cleaned_model
modified_args[17] = cleaned_model
return process_audio(*modified_args)
def save_auto_ensemble_settings(*args):
settings = load_config()["settings"]
settings["auto_ensemble_type"] = args[7]
settings["use_matchering"] = args[14]
settings["matchering_passes"] = args[15]
save_config(load_config()["favorites"], settings, load_config()["presets"])
output_audio, status, progress_html = None, i18n("waiting_for_processing"), ensemble_progress_html.value
for update in auto_ensemble_process(*args):
if isinstance(update, tuple) and len(update) == 3:
output_audio, status, progress_html = update
return output_audio, status, progress_html
def update_category_dropdowns(cat):
logging.debug(f"Input category: {cat}")
eng_cat = next((k for k in MODEL_CONFIGS.keys() if i18n(k) == cat), list(MODEL_CONFIGS.keys())[0])
logging.debug(f"Using English category: {eng_cat}")
choices = update_model_dropdown(eng_cat, favorites=load_config()["favorites"])["choices"]
logging.debug(f"Model choices: {choices}")
return gr.update(choices=choices), gr.update(choices=choices)
model_category.change(
fn=update_category_dropdowns,
inputs=model_category,
outputs=[model_dropdown, selected_models]
)
clear_old_output_btn.click(fn=clear_old_output, outputs=clear_old_output_status)
input_audio_file.upload(
fn=lambda x, y: handle_file_upload(x, y, is_auto_ensemble=False),
inputs=[input_audio_file, file_path_input],
outputs=[input_audio_file, original_audio]
)
file_path_input.change(
fn=lambda x, y: handle_file_upload(x, y, is_auto_ensemble=False),
inputs=[input_audio_file, file_path_input],
outputs=[input_audio_file, original_audio]
)
auto_input_audio_file.upload(
fn=lambda x, y: handle_file_upload(x, y, is_auto_ensemble=True),
inputs=[auto_input_audio_file, auto_file_path_input],
outputs=[auto_input_audio_file, original_audio2]
)
auto_file_path_input.change(
fn=lambda x, y: handle_file_upload(x, y, is_auto_ensemble=True),
inputs=[auto_input_audio_file, auto_file_path_input],
outputs=[auto_input_audio_file, original_audio2]
)
auto_category_dropdown.change(
fn=lambda cat: gr.update(choices=update_model_dropdown(next((k for k in MODEL_CONFIGS.keys() if i18n(k) == cat), list(MODEL_CONFIGS.keys())[0]), favorites=load_config()["favorites"])["choices"]),
inputs=auto_category_dropdown,
outputs=selected_models
)
def debug_inputs(*args):
input_names = [
"input_audio_file", "model_dropdown", "chunk_size", "overlap", "export_format",
"use_tta", "use_demud_phaseremix_inst", "extract_instrumental",
"use_apollo", "apollo_chunk_size", "apollo_overlap",
"apollo_method", "apollo_normal_model", "apollo_midside_model",
"use_matchering", "matchering_passes", "model_category", "selected_model"
]
cleaned_args = list(args)
cleaned_args[1] = clean_model(cleaned_args[1]) if cleaned_args[1] else None
cleaned_args[17] = clean_model(cleaned_args[17]) if cleaned_args[17] else None
for name, value in zip(input_names, cleaned_args):
logger.debug(f"UI Input - {name}: {value}")
return args
process_btn.click(
fn=lambda *args: save_settings_on_process(*debug_inputs(*args)),
inputs=[
input_audio_file, model_dropdown, chunk_size, overlap, export_format,
use_tta, use_demud_phaseremix_inst, extract_instrumental,
use_apollo, apollo_chunk_size, apollo_overlap,
apollo_method, apollo_normal_model, apollo_midside_model,
use_matchering, matchering_passes, model_category, model_dropdown
],
outputs=[
vocals_audio, instrumental_audio, phaseremix_audio, drum_audio, karaoke_audio,
other_audio, bass_audio, effects_audio, speech_audio, bleed_audio, music_audio,
dry_audio, male_audio, female_audio,
separation_process_status, separation_progress_html
]
)
auto_process_btn.click(
fn=save_auto_ensemble_settings,
inputs=[
auto_input_audio_file,
selected_models,
auto_chunk_size,
auto_overlap,
export_format2,
auto_use_tta,
auto_extract_instrumental,
auto_ensemble_type,
gr.State(None),
auto_use_apollo,
auto_apollo_normal_model,
auto_apollo_chunk_size,
auto_apollo_overlap,
auto_apollo_method,
auto_use_matchering,
auto_matchering_passes,
auto_apollo_midside_model
],
outputs=[auto_output_audio, ensemble_process_status, ensemble_progress_html]
)
direct_download_btn.click(
fn=download_callback,
inputs=[direct_url_input, gr.State('direct'), cookie_file],
outputs=[direct_download_output, direct_download_status, input_audio_file, auto_input_audio_file, original_audio, original_audio2]
)
refresh_output_btn.click(
fn=refresh_auto_output,
inputs=[],
outputs=[auto_output_audio, ensemble_process_status]
)
refresh_btn.click(fn=update_file_list, outputs=file_dropdown)
ensemble_process_btn.click(fn=ensemble_audio_fn, inputs=[file_dropdown, ensemble_type, weights_input], outputs=[ensemble_output_audio, ensemble_status])
return demo