import gradio as gr import os import glob import subprocess from pathlib import Path from datetime import datetime import json import sys import time import random from helpers import update_model_dropdown, handle_file_upload, clear_old_output, save_uploaded_file, update_file_list, clean_model from download import download_callback from model import get_model_config, MODEL_CONFIGS from processing import process_audio, auto_ensemble_process, ensemble_audio_fn, refresh_auto_output from assets.i18n.i18n import I18nAuto from config_manager import load_config, save_config, update_favorites, save_preset, delete_preset import logging from gradio_client import utils from inference import proc_folder # Set up logging for the patch logging.basicConfig(filename='gradio_schema.log', level=logging.DEBUG) logger = logging.getLogger('gradio_schema') # Patch gradio_client.utils._json_schema_to_python_type original_json_schema_to_python_type = utils._json_schema_to_python_type def patched_json_schema_to_python_type(schema: any, defs: dict | None = None) -> str: logger.debug(f"Parsing schema: {schema}") if isinstance(schema, bool): logger.info(f"Found boolean schema: {schema}, returning 'boolean'") return "boolean" if not isinstance(schema, dict): logger.warning(f"Unexpected schema type: {type(schema)}, returning 'Any'") return "Any" if "enum" in schema and schema.get("type") == "string": logger.info(f"Handling enum schema: {schema['enum']}") return f"Literal[{', '.join(repr(e) for e in schema['enum'])}]" try: return original_json_schema_to_python_type(schema, defs) except utils.APIInfoParseError as e: logger.error(f"Failed to parse schema {schema}: {e}") return "str" utils._json_schema_to_python_type = patched_json_schema_to_python_type # General logging setup logging.basicConfig(filename='sesa_gui.log', level=logging.DEBUG) # BASE_DIR tanımı BASE_DIR = os.path.dirname(os.path.abspath(__file__)) CONFIG_DIR = os.path.join(BASE_DIR, "assets") CONFIG_FILE = os.path.join(CONFIG_DIR, "config.json") URL_FILE = os.path.join(CONFIG_DIR, "last_url.txt") # Load user config at startup user_config = load_config() initial_settings = user_config["settings"] initial_favorites = user_config["favorites"] initial_presets = user_config["presets"] # Ensure auto_category is valid if "auto_category" not in initial_settings or initial_settings["auto_category"] not in MODEL_CONFIGS: initial_settings["auto_category"] = "Vocal Models" # Config dosyası yoksa oluştur if not os.path.exists(CONFIG_FILE): default_config = { "lang": {"override": False, "selected_lang": "auto"}, "sharing": { "method": "gradio", "ngrok_token": "", "port": random.randint(1000, 9000) # Random port instead of fixed } } os.makedirs(CONFIG_DIR, exist_ok=True) with open(CONFIG_FILE, "w", encoding="utf-8") as f: json.dump(default_config, f, indent=2) else: # If the file exists, load and update if necessary try: with open(CONFIG_FILE, "r", encoding="utf-8") as f: config = json.load(f) # Ensure 'lang' key exists if "lang" not in config: config["lang"] = {"override": False, "selected_lang": "auto"} # Add 'sharing' key if it doesn't exist if "sharing" not in config: config["sharing"] = { "method": "gradio", "ngrok_token": "", "port": random.randint(1000, 9000) # Random port instead of fixed } # Save the updated configuration with open(CONFIG_FILE, "w", encoding="utf-8") as f: json.dump(config, f, indent=2) except json.JSONDecodeError: # Handle corrupted JSON print("Warning: config.json is corrupted. Creating a new one.") default_config = { "lang": {"override": False, "selected_lang": "auto"}, "sharing": { "method": "gradio", "ngrok_token": "", "port": random.randint(1000, 9000) # Random port instead of fixed } } with open(CONFIG_FILE, "w", encoding="utf-8") as f: json.dump(default_config, f, indent=2) # I18nAuto örneği (arayüz başlamadan önce dil yüklenir) i18n = I18nAuto() # Çıktı formatları OUTPUT_FORMATS = ['wav', 'flac', 'mp3', 'ogg', 'opus', 'm4a', 'aiff', 'ac3'] # Arayüz oluşturma fonksiyonu def create_interface(): css = """ body { background: linear-gradient(to bottom, rgba(45, 11, 11, 0.9), rgba(0, 0, 0, 0.8)), url('/content/logo.jpg') no-repeat center center fixed; background-size: cover; min-height: 100vh; margin: 0; padding: 1rem; font-family: 'Poppins', sans-serif; color: #C0C0C0; overflow-x: hidden; } .header-text { text-align: center; padding: 100px 20px 20px; color: #ff4040; font-size: 3rem; font-weight: 900; text-shadow: 0 0 10px rgba(255, 64, 64, 0.5); z-index: 1500; animation: text-glow 2s infinite; } .header-subtitle { text-align: center; color: #C0C0C0; font-size: 1.2rem; font-weight: 300; margin-top: -10px; text-shadow: 0 0 5px rgba(255, 64, 64, 0.3); } .gr-tab { background: rgba(128, 0, 0, 0.5) !important; border-radius: 12px 12px 0 0 !important; margin: 0 5px !important; color: #C0C0C0 !important; border: 1px solid #ff4040 !important; z-index: 1500; transition: background 0.3s ease, color 0.3s ease; padding: 10px 20px !important; font-size: 1.1rem !important; } button { transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important; background: #800000 !important; border: 1px solid #ff4040 !important; color: #C0C0C0 !important; border-radius: 8px !important; padding: 8px 16px !important; box-shadow: 0 2px 10px rgba(255, 64, 64, 0.3); } button:hover { transform: scale(1.05) !important; box-shadow: 0 10px 40px rgba(255, 64, 64, 0.7) !important; background: #ff4040 !important; } .compact-upload.horizontal { display: inline-flex !important; align-items: center !important; gap: 8px !important; max-width: 400px !important; height: 40px !important; padding: 0 12px !important; border: 1px solid #ff4040 !important; background: rgba(128, 0, 0, 0.5) !important; border-radius: 8px !important; } .compact-dropdown { --padding: 8px 12px !important; --radius: 10px !important; border: 1px solid #ff4040 !important; background: rgba(128, 0, 0, 0.5) !important; color: #C0C0C0 !important; } #custom-progress { margin-top: 10px; padding: 10px; background: rgba(128, 0, 0, 0.3); border-radius: 8px; border: 1px solid #ff4040; } #progress-bar { height: 20px; background: linear-gradient(to right, #6e8efb, #ff4040); border-radius: 5px; transition: width 0.5s ease-in-out; max-width: 100% !important; } .gr-accordion { background: rgba(128, 0, 0, 0.5) !important; border-radius: 10px !important; border: 1px solid #ff4040 !important; } .footer { text-align: center; padding: 20px; color: #ff4040; font-size: 14px; margin-top: 40px; background: rgba(128, 0, 0, 0.3); border-top: 1px solid #ff4040; } #log-accordion { max-height: 400px; overflow-y: auto; background: rgba(0, 0, 0, 0.7) !important; padding: 10px; border-radius: 8px; } @keyframes text-glow { 0% { text-shadow: 0 0 5px rgba(192, 192, 192, 0); } 50% { text-shadow: 0 0 15px rgba(192, 192, 192, 1); } 100% { text-shadow: 0 0 5px rgba(192, 192, 192, 0); } } """ # Load user config at startup user_config = load_config() initial_settings = user_config["settings"] initial_favorites = user_config["favorites"] initial_presets = user_config["presets"] with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: current_lang = gr.State(value=i18n.language) favorites_state = gr.State(value=initial_favorites) presets_state = gr.State(value=initial_presets) header_html = gr.HTML( value=f"""
{i18n("SESA Audio Separation")}
{i18n("ultimate_audio_separation")}
""" ) with gr.Tabs(): with gr.Tab(i18n("audio_separation_tab"), id="separation_tab"): with gr.Row(equal_height=True): with gr.Column(scale=1, min_width=380): with gr.Accordion(i18n("input_model"), open=True) as input_model_accordion: with gr.Tabs(): with gr.Tab(i18n("upload")) as upload_tab: input_audio_file = gr.File( file_types=[".wav", ".mp3", ".m4a", ".mp4", ".mkv", ".flac"], elem_classes=["compact-upload", "horizontal", "x-narrow"], label="" ) with gr.Tab(i18n("path")) as path_tab: file_path_input = gr.Textbox(placeholder=i18n("path_placeholder")) with gr.Row(): model_category = gr.Dropdown( label=i18n("category"), choices=[i18n(cat) for cat in MODEL_CONFIGS.keys()], value=i18n(initial_settings["model_category"]) ) favorite_button = gr.Button(i18n("add_favorite"), variant="secondary", scale=0) model_dropdown = gr.Dropdown( label=i18n("model"), choices=update_model_dropdown(i18n(initial_settings["model_category"]), favorites=initial_favorites)["choices"], value=initial_settings["selected_model"] ) with gr.Accordion(i18n("settings"), open=False) as settings_accordion: with gr.Row(): with gr.Column(scale=1): export_format = gr.Dropdown( label=i18n("format"), choices=['wav FLOAT', 'flac PCM_16', 'flac PCM_24'], value=initial_settings["export_format"] ) with gr.Column(scale=1): chunk_size = gr.Dropdown( label=i18n("chunk_size"), choices=[352800, 485100], value=initial_settings["chunk_size"], info=i18n("chunk_size_info") ) with gr.Row(): with gr.Column(scale=2): overlap = gr.Slider( minimum=2, maximum=50, step=1, label=i18n("overlap"), value=initial_settings["overlap"], info=i18n("overlap_info") ) with gr.Row(): with gr.Column(scale=1): use_tta = gr.Checkbox( label=i18n("tta_boost"), info=i18n("tta_info"), value=initial_settings["use_tta"] ) with gr.Row(): with gr.Column(scale=1): use_demud_phaseremix_inst = gr.Checkbox( label=i18n("phase_fix"), info=i18n("phase_fix_info"), value=initial_settings["use_demud_phaseremix_inst"] ) with gr.Column(scale=1): extract_instrumental = gr.Checkbox( label=i18n("instrumental"), info=i18n("instrumental_info"), value=initial_settings["extract_instrumental"] ) with gr.Row(): use_apollo = gr.Checkbox( label=i18n("enhance_with_apollo"), value=initial_settings["use_apollo"], info=i18n("apollo_enhancement_info") ) with gr.Group(visible=initial_settings["use_apollo"]) as apollo_settings_group: with gr.Row(): with gr.Column(scale=1): apollo_chunk_size = gr.Slider( label=i18n("apollo_chunk_size"), minimum=3, maximum=25, step=1, value=initial_settings["apollo_chunk_size"], info=i18n("apollo_chunk_size_info"), interactive=True ) with gr.Column(scale=1): apollo_overlap = gr.Slider( label=i18n("apollo_overlap"), minimum=2, maximum=10, step=1, value=initial_settings["apollo_overlap"], info=i18n("apollo_overlap_info"), interactive=True ) with gr.Row(): apollo_method = gr.Dropdown( label=i18n("apollo_processing_method"), choices=[i18n("normal_method"), i18n("mid_side_method")], value=i18n(initial_settings["apollo_method"]), interactive=True ) with gr.Row(visible=initial_settings["apollo_method"] != "mid_side_method") as apollo_normal_model_row: apollo_normal_model = gr.Dropdown( label=i18n("apollo_normal_model"), choices=["MP3 Enhancer", "Lew Vocal Enhancer", "Lew Vocal Enhancer v2 (beta)", "Apollo Universal Model"], value=initial_settings["apollo_normal_model"], interactive=True ) with gr.Row(visible=initial_settings["apollo_method"] == "mid_side_method") as apollo_midside_model_row: apollo_midside_model = gr.Dropdown( label=i18n("apollo_mid_side_model"), choices=["MP3 Enhancer", "Lew Vocal Enhancer", "Lew Vocal Enhancer v2 (beta)", "Apollo Universal Model"], value=initial_settings["apollo_midside_model"], interactive=True ) with gr.Row(): use_matchering = gr.Checkbox( label=i18n("apply_matchering"), value=initial_settings.get("use_matchering", False), info=i18n("matchering_info") ) with gr.Group(visible=initial_settings.get("use_matchering", True)) as matchering_settings_group: matchering_passes = gr.Slider( label=i18n("matchering_passes"), minimum=1, maximum=5, step=1, value=initial_settings.get("matchering_passes", 1), info=i18n("matchering_passes_info"), interactive=True ) with gr.Row(): process_btn = gr.Button(i18n("process"), variant="primary") clear_old_output_btn = gr.Button(i18n("reset"), variant="secondary") clear_old_output_status = gr.Textbox(label=i18n("status"), interactive=False) # Favorite handler def update_favorite_button(model, favorites): cleaned_model = clean_model(model) if model else None is_favorited = cleaned_model in favorites if cleaned_model else False return gr.update(value=i18n("remove_favorite") if is_favorited else i18n("add_favorite")) def toggle_favorite(model, favorites): if not model: return favorites, gr.update(), gr.update() cleaned_model = clean_model(model) is_favorited = cleaned_model in favorites new_favorites = update_favorites(favorites, cleaned_model, add=not is_favorited) save_config(new_favorites, load_config()["settings"], load_config()["presets"]) category = model_category.value return ( new_favorites, gr.update(choices=update_model_dropdown(category, favorites=new_favorites)["choices"]), gr.update(value=i18n("add_favorite") if is_favorited else i18n("remove_favorite")) ) model_dropdown.change( fn=update_favorite_button, inputs=[model_dropdown, favorites_state], outputs=favorite_button ) favorite_button.click( fn=toggle_favorite, inputs=[model_dropdown, favorites_state], outputs=[favorites_state, model_dropdown, favorite_button] ) use_apollo.change( fn=lambda x: gr.update(visible=x), inputs=use_apollo, outputs=apollo_settings_group ) use_matchering.change( fn=lambda x: gr.update(visible=x), inputs=use_matchering, outputs=matchering_settings_group ) apollo_method.change( fn=lambda x: [ gr.update(visible=x != i18n("mid_side_method")), gr.update(visible=x == i18n("mid_side_method")), "Apollo Universal Model" if x == i18n("mid_side_method") else None ], inputs=apollo_method, outputs=[apollo_normal_model_row, apollo_midside_model_row, apollo_normal_model] ) with gr.Column(scale=2, min_width=800): with gr.Tabs(): with gr.Tab(i18n("main_tab")) as main_tab: with gr.Column(): original_audio = gr.Audio(label=i18n("original"), interactive=False) with gr.Row(): vocals_audio = gr.Audio(label=i18n("vocals"), show_download_button=True, interactive=False) instrumental_audio = gr.Audio(label=i18n("instrumental_output"), show_download_button=True, interactive=False) other_audio = gr.Audio(label=i18n("other"), show_download_button=True, interactive=False) with gr.Tab(i18n("details_tab")) as details_tab: with gr.Column(): with gr.Row(): male_audio = gr.Audio(label=i18n("male"), interactive=False) female_audio = gr.Audio(label=i18n("female"), interactive=False) speech_audio = gr.Audio(label=i18n("speech"), interactive=False) with gr.Row(): drum_audio = gr.Audio(label=i18n("drums"), interactive=False) bass_audio = gr.Audio(label=i18n("bass"), interactive=False) with gr.Row(): effects_audio = gr.Audio(label=i18n("effects"), interactive=False) with gr.Tab(i18n("advanced_tab")) as advanced_tab: with gr.Column(): with gr.Row(): phaseremix_audio = gr.Audio(label=i18n("phase_remix"), interactive=False) dry_audio = gr.Audio(label=i18n("dry"), interactive=False) with gr.Row(): music_audio = gr.Audio(label=i18n("music"), interactive=False) karaoke_audio = gr.Audio(label=i18n("karaoke"), interactive=False) bleed_audio = gr.Audio(label=i18n("bleed"), interactive=False) separation_progress_html = gr.HTML( value=f"""
{i18n("waiting_for_processing")}
""" ) separation_process_status = gr.Textbox( label=i18n("status"), interactive=False, placeholder=i18n("waiting_for_processing"), visible=False ) processing_tip = gr.Markdown(i18n("processing_tip")) with gr.Tab(i18n("auto_ensemble_tab"), id="auto_ensemble_tab"): with gr.Row(): with gr.Column(): with gr.Group(): auto_input_audio_file = gr.File( file_types=[".wav", ".mp3", ".m4a", ".mp4", ".mkv", ".flac"], label=i18n("upload_file") ) auto_file_path_input = gr.Textbox( label=i18n("enter_file_path"), placeholder=i18n("file_path_placeholder"), interactive=True ) with gr.Accordion(i18n("advanced_settings"), open=False) as auto_settings_accordion: with gr.Row(): auto_use_tta = gr.Checkbox(label=i18n("use_tta"), value=False) auto_extract_instrumental = gr.Checkbox(label=i18n("instrumental_only")) with gr.Row(): auto_overlap = gr.Slider( label=i18n("auto_overlap"), minimum=2, maximum=50, value=2, step=1 ) auto_chunk_size = gr.Dropdown( label=i18n("auto_chunk_size"), choices=[352800, 485100], value=352800 ) export_format2 = gr.Dropdown( label=i18n("output_format"), choices=['wav FLOAT', 'flac PCM_16', 'flac PCM_24'], value='wav FLOAT' ) with gr.Row(): auto_use_apollo = gr.Checkbox( label=i18n("enhance_with_apollo"), value=False, info=i18n("apollo_enhancement_info") ) with gr.Group(visible=False) as auto_apollo_settings_group: with gr.Row(): with gr.Column(scale=1): auto_apollo_chunk_size = gr.Slider( label=i18n("apollo_chunk_size"), minimum=3, maximum=25, step=1, value=19, info=i18n("apollo_chunk_size_info"), interactive=True ) with gr.Column(scale=1): auto_apollo_overlap = gr.Slider( label=i18n("apollo_overlap"), minimum=2, maximum=10, step=1, value=2, info=i18n("apollo_overlap_info"), interactive=True ) with gr.Row(): auto_apollo_method = gr.Dropdown( label=i18n("apollo_processing_method"), choices=[i18n("normal_method"), i18n("mid_side_method")], value=i18n("normal_method"), interactive=True ) with gr.Row(visible=True) as auto_apollo_normal_model_row: auto_apollo_normal_model = gr.Dropdown( label=i18n("apollo_normal_model"), choices=["MP3 Enhancer", "Lew Vocal Enhancer", "Lew Vocal Enhancer v2 (beta)", "Apollo Universal Model"], value="Apollo Universal Model", interactive=True ) with gr.Row(visible=False) as auto_apollo_midside_model_row: auto_apollo_midside_model = gr.Dropdown( label=i18n("apollo_mid_side_model"), choices=["MP3 Enhancer", "Lew Vocal Enhancer", "Lew Vocal Enhancer v2 (beta)", "Apollo Universal Model"], value="Apollo Universal Model", interactive=True ) with gr.Row(): auto_use_matchering = gr.Checkbox( label=i18n("apply_matchering"), value=False, info=i18n("matchering_info") ) with gr.Group(visible=False) as auto_matchering_settings_group: auto_matchering_passes = gr.Slider( label=i18n("matchering_passes"), minimum=1, maximum=5, step=1, value=1, info=i18n("matchering_passes_info"), interactive=True ) with gr.Group(): model_selection_header = gr.Markdown(f"### {i18n('model_selection')}") with gr.Row(): auto_category_dropdown = gr.Dropdown( label=i18n("model_category"), choices=[i18n(cat) for cat in MODEL_CONFIGS.keys()], value=i18n("Vocal Models") ) selected_models = gr.Dropdown( label=i18n("selected_models"), choices=update_model_dropdown(i18n(initial_settings["auto_category"]), favorites=initial_favorites)["choices"], value=initial_settings["selected_models"] or [], multiselect=True ) with gr.Row(): preset_dropdown = gr.Dropdown( label=i18n("select_preset"), choices=list(initial_presets.keys()), value=None, allow_custom_value=False, interactive=True ) with gr.Row(): preset_name_input = gr.Textbox( label=i18n("preset_name"), placeholder=i18n("enter_preset_name"), interactive=True ) save_preset_btn = gr.Button(i18n("save_preset"), variant="secondary", scale=0) delete_preset_btn = gr.Button(i18n("delete_preset"), variant="secondary", scale=0) refresh_presets_btn = gr.Button(i18n("refresh_presets"), variant="secondary", scale=0) with gr.Group(): ensemble_settings_header = gr.Markdown(f"### {i18n('ensemble_settings')}") with gr.Row(): auto_ensemble_type = gr.Dropdown( label=i18n("method"), choices=['avg_wave', 'median_wave', 'min_wave', 'max_wave', 'avg_fft', 'median_fft', 'min_fft', 'max_fft'], value=initial_settings["auto_ensemble_type"] ) ensemble_recommendation = gr.Markdown(i18n("recommendation")) auto_process_btn = gr.Button(i18n("start_processing"), variant="primary") def load_preset(preset_name, presets, category, favorites): if preset_name and preset_name in presets: preset = presets[preset_name] favorite_models = [f"{model} ⭐" if model in favorites else model for model in preset["models"]] preset_category = preset.get("auto_category_dropdown", category) model_choices = update_model_dropdown(preset_category, favorites=favorites)["choices"] logger.debug(f"Preset '{preset_name}' loaded with models: {favorite_models}, category: {preset_category}") return ( gr.update(value=preset_category), gr.update(choices=model_choices, value=favorite_models), gr.update(value=preset["ensemble_method"]) ) logger.debug(f"Preset '{preset_name}' not found.") return gr.update(), gr.update(), gr.update() def sync_presets(): config = load_config() return config["presets"], gr.update(choices=list(config["presets"].keys()), value=None) preset_dropdown.change( fn=load_preset, inputs=[preset_dropdown, presets_state, auto_category_dropdown, favorites_state], outputs=[auto_category_dropdown, selected_models, auto_ensemble_type] ) def handle_save_preset(preset_name, models, ensemble_method, presets, favorites, auto_category_dropdown): if not preset_name: return gr.update(), presets, i18n("no_preset_name_provided") if not models and not favorites: return gr.update(), presets, i18n("no_models_selected_for_preset") new_presets = save_preset( presets, preset_name, models, ensemble_method, auto_category_dropdown=auto_category_dropdown ) save_config(favorites, load_config()["settings"], new_presets) logger.debug(f"Preset dropdown updated with choices: {list(new_presets.keys())}") return gr.update(choices=list(new_presets.keys()), value=None), new_presets, i18n("preset_saved").format(preset_name) save_preset_btn.click( fn=handle_save_preset, inputs=[preset_name_input, selected_models, auto_ensemble_type, presets_state, favorites_state, auto_category_dropdown], outputs=[preset_dropdown, presets_state] ) def handle_delete_preset(preset_name, presets): if not preset_name or preset_name not in presets: return gr.update(), presets new_presets = delete_preset(presets, preset_name) save_config(load_config()["favorites"], load_config()["settings"], new_presets) return gr.update(choices=list(new_presets.keys()), value=None), new_presets delete_preset_btn.click( fn=handle_delete_preset, inputs=[preset_dropdown, presets_state], outputs=[preset_dropdown, presets_state] ) refresh_presets_btn.click( fn=sync_presets, inputs=[], outputs=[presets_state, preset_dropdown] ) auto_use_apollo.change( fn=lambda x: gr.update(visible=x), inputs=auto_use_apollo, outputs=auto_apollo_settings_group ) auto_use_matchering.change( fn=lambda x: gr.update(visible=x), inputs=auto_use_matchering, outputs=auto_matchering_settings_group ) auto_apollo_method.change( fn=lambda x: [ gr.update(visible=x != i18n("mid_side_method")), gr.update(visible=x == i18n("mid_side_method")), "Apollo Universal Model" if x == i18n("mid_side_method") else None ], inputs=auto_apollo_method, outputs=[auto_apollo_normal_model_row, auto_apollo_midside_model_row, auto_apollo_normal_model] ) with gr.Column(): with gr.Tabs(): with gr.Tab(i18n("original_audio_tab")) as original_audio_tab: original_audio2 = gr.Audio( label=i18n("original_audio"), interactive=False, every=1, elem_id="original_audio_player" ) with gr.Tab(i18n("ensemble_result_tab")) as ensemble_result_tab: auto_output_audio = gr.Audio( label=i18n("output_preview"), show_download_button=True, interactive=False ) refresh_output_btn = gr.Button(i18n("refresh_output"), variant="secondary") ensemble_progress_html = gr.HTML( value=f"""
{i18n("waiting_for_processing")}
""" ) ensemble_process_status = gr.Textbox( label=i18n("status"), interactive=False, placeholder=i18n("waiting_for_processing"), visible=False ) with gr.Tab(i18n("download_sources_tab"), id="download_tab"): with gr.Row(): with gr.Column(): gr.Markdown(f"### {i18n('direct_links')}") direct_url_input = gr.Textbox(label=i18n("audio_file_url")) direct_download_btn = gr.Button(i18n("download_from_url"), variant="secondary") direct_download_status = gr.Textbox(label=i18n("download_status")) direct_download_output = gr.File(label=i18n("downloaded_file"), interactive=False) with gr.Column(): gr.Markdown(f"### {i18n('cookie_management')}") cookie_file = gr.File( label=i18n("upload_cookies_txt"), file_types=[".txt"], interactive=True, elem_id="cookie_upload" ) cookie_info = gr.Markdown(i18n("cookie_info")) with gr.Tab(i18n("manual_ensemble_tab"), id="manual_ensemble_tab"): with gr.Row(equal_height=True): with gr.Column(scale=1, min_width=400): with gr.Accordion(i18n("input_sources"), open=True) as input_sources_accordion: with gr.Row(): refresh_btn = gr.Button(i18n("refresh"), variant="secondary", size="sm") ensemble_type = gr.Dropdown( label=i18n("ensemble_algorithm"), choices=['avg_wave', 'median_wave', 'min_wave', 'max_wave', 'avg_fft', 'median_fft', 'min_fft', 'max_fft'], value='avg_wave' ) file_dropdown_header = gr.Markdown(f"### {i18n('select_audio_files')}") file_path = os.path.join(Path.home(), 'Music-Source-Separation', 'output') initial_files = glob.glob(f"{file_path}/*.wav") + glob.glob(os.path.join(BASE_DIR, 'Music-Source-Separation-Training', 'old_output', '*.wav')) file_dropdown = gr.Dropdown( choices=initial_files, label=i18n("available_files"), multiselect=True, interactive=True, elem_id="file-dropdown" ) weights_input = gr.Textbox( label=i18n("custom_weights"), placeholder=i18n("custom_weights_placeholder"), info=i18n("custom_weights_info") ) with gr.Column(scale=2, min_width=800): with gr.Tabs(): with gr.Tab(i18n("result_preview_tab")) as result_preview_tab: ensemble_output_audio = gr.Audio( label=i18n("ensembled_output"), interactive=False, show_download_button=True, elem_id="output-audio" ) with gr.Tab(i18n("processing_log_tab")) as processing_log_tab: with gr.Accordion(i18n("processing_details"), open=True, elem_id="log-accordion"): ensemble_status = gr.Textbox( label="", interactive=False, placeholder=i18n("processing_log_placeholder"), lines=10, max_lines=20, elem_id="log-box" ) with gr.Row(): ensemble_process_btn = gr.Button( i18n("process_ensemble"), variant="primary", size="sm", elem_id="process-btn" ) def save_settings_on_process(*args): apollo_method_value = args[11] backend_apollo_method = "mid_side_method" if apollo_method_value == i18n("mid_side_method") else "normal_method" cleaned_model = clean_model(args[1]) if args[1] else None settings = { "chunk_size": args[2], "overlap": args[3], "export_format": args[4], "use_tta": args[5], "use_demud_phaseremix_inst": args[6], "extract_instrumental": args[7], "use_apollo": args[8], "apollo_chunk_size": args[9], "apollo_overlap": args[10], "apollo_method": backend_apollo_method, "apollo_normal_model": args[12], "apollo_midside_model": args[13], "use_matchering": args[14], "matchering_passes": args[15], "model_category": args[16], "selected_model": cleaned_model, "auto_ensemble_type": args[17] } save_config(load_config()["favorites"], settings, load_config()["presets"]) modified_args = list(args) modified_args[1] = cleaned_model modified_args[17] = cleaned_model return process_audio(*modified_args) def save_auto_ensemble_settings(*args): settings = load_config()["settings"] settings["auto_ensemble_type"] = args[7] settings["use_matchering"] = args[14] settings["matchering_passes"] = args[15] save_config(load_config()["favorites"], settings, load_config()["presets"]) output_audio, status, progress_html = None, i18n("waiting_for_processing"), ensemble_progress_html.value for update in auto_ensemble_process(*args): if isinstance(update, tuple) and len(update) == 3: output_audio, status, progress_html = update return output_audio, status, progress_html def update_category_dropdowns(cat): logging.debug(f"Input category: {cat}") eng_cat = next((k for k in MODEL_CONFIGS.keys() if i18n(k) == cat), list(MODEL_CONFIGS.keys())[0]) logging.debug(f"Using English category: {eng_cat}") choices = update_model_dropdown(eng_cat, favorites=load_config()["favorites"])["choices"] logging.debug(f"Model choices: {choices}") return gr.update(choices=choices), gr.update(choices=choices) model_category.change( fn=update_category_dropdowns, inputs=model_category, outputs=[model_dropdown, selected_models] ) clear_old_output_btn.click(fn=clear_old_output, outputs=clear_old_output_status) input_audio_file.upload( fn=lambda x, y: handle_file_upload(x, y, is_auto_ensemble=False), inputs=[input_audio_file, file_path_input], outputs=[input_audio_file, original_audio] ) file_path_input.change( fn=lambda x, y: handle_file_upload(x, y, is_auto_ensemble=False), inputs=[input_audio_file, file_path_input], outputs=[input_audio_file, original_audio] ) auto_input_audio_file.upload( fn=lambda x, y: handle_file_upload(x, y, is_auto_ensemble=True), inputs=[auto_input_audio_file, auto_file_path_input], outputs=[auto_input_audio_file, original_audio2] ) auto_file_path_input.change( fn=lambda x, y: handle_file_upload(x, y, is_auto_ensemble=True), inputs=[auto_input_audio_file, auto_file_path_input], outputs=[auto_input_audio_file, original_audio2] ) auto_category_dropdown.change( fn=lambda cat: gr.update(choices=update_model_dropdown(next((k for k in MODEL_CONFIGS.keys() if i18n(k) == cat), list(MODEL_CONFIGS.keys())[0]), favorites=load_config()["favorites"])["choices"]), inputs=auto_category_dropdown, outputs=selected_models ) def debug_inputs(*args): input_names = [ "input_audio_file", "model_dropdown", "chunk_size", "overlap", "export_format", "use_tta", "use_demud_phaseremix_inst", "extract_instrumental", "use_apollo", "apollo_chunk_size", "apollo_overlap", "apollo_method", "apollo_normal_model", "apollo_midside_model", "use_matchering", "matchering_passes", "model_category", "selected_model" ] cleaned_args = list(args) cleaned_args[1] = clean_model(cleaned_args[1]) if cleaned_args[1] else None cleaned_args[17] = clean_model(cleaned_args[17]) if cleaned_args[17] else None for name, value in zip(input_names, cleaned_args): logger.debug(f"UI Input - {name}: {value}") return args process_btn.click( fn=lambda *args: save_settings_on_process(*debug_inputs(*args)), inputs=[ input_audio_file, model_dropdown, chunk_size, overlap, export_format, use_tta, use_demud_phaseremix_inst, extract_instrumental, use_apollo, apollo_chunk_size, apollo_overlap, apollo_method, apollo_normal_model, apollo_midside_model, use_matchering, matchering_passes, model_category, model_dropdown ], outputs=[ vocals_audio, instrumental_audio, phaseremix_audio, drum_audio, karaoke_audio, other_audio, bass_audio, effects_audio, speech_audio, bleed_audio, music_audio, dry_audio, male_audio, female_audio, separation_process_status, separation_progress_html ] ) auto_process_btn.click( fn=save_auto_ensemble_settings, inputs=[ auto_input_audio_file, selected_models, auto_chunk_size, auto_overlap, export_format2, auto_use_tta, auto_extract_instrumental, auto_ensemble_type, gr.State(None), auto_use_apollo, auto_apollo_normal_model, auto_apollo_chunk_size, auto_apollo_overlap, auto_apollo_method, auto_use_matchering, auto_matchering_passes, auto_apollo_midside_model ], outputs=[auto_output_audio, ensemble_process_status, ensemble_progress_html] ) direct_download_btn.click( fn=download_callback, inputs=[direct_url_input, gr.State('direct'), cookie_file], outputs=[direct_download_output, direct_download_status, input_audio_file, auto_input_audio_file, original_audio, original_audio2] ) refresh_output_btn.click( fn=refresh_auto_output, inputs=[], outputs=[auto_output_audio, ensemble_process_status] ) refresh_btn.click(fn=update_file_list, outputs=file_dropdown) ensemble_process_btn.click(fn=ensemble_audio_fn, inputs=[file_dropdown, ensemble_type, weights_input], outputs=[ensemble_output_audio, ensemble_status]) return demo