Spaces:
Running
on
Zero
Running
on
Zero
# coding: utf-8 | |
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/' | |
import argparse | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import yaml | |
import os | |
import soundfile as sf | |
from ml_collections import ConfigDict | |
from omegaconf import OmegaConf | |
from tqdm.auto import tqdm | |
from typing import Dict, List, Tuple, Any, Union | |
import loralib as lora | |
import gc # For garbage collection | |
import logging # Hata takibi için | |
# Log ayarları | |
logging.basicConfig(level=logging.INFO, filename='utils.log', format='%(asctime)s - %(message)s') | |
def load_config(model_type: str, config_path: str) -> Union[ConfigDict, OmegaConf]: | |
try: | |
with open(config_path, 'r') as f: | |
if model_type == 'htdemucs': | |
config = OmegaConf.load(config_path) | |
else: | |
config = ConfigDict(yaml.load(f, Loader=yaml.FullLoader)) | |
return config | |
except FileNotFoundError: | |
raise FileNotFoundError(f"Configuration file not found at {config_path}") | |
except Exception as e: | |
raise ValueError(f"Error loading configuration: {e}") | |
def get_model_from_config(model_type: str, config_path: str) -> Tuple: | |
""" | |
Load the model specified by the model type and configuration file. | |
Parameters: | |
---------- | |
model_type : str | |
The type of model to load (e.g., 'mdx23c', 'htdemucs', 'scnet', etc.). | |
config_path : str | |
The path to the configuration file (YAML or OmegaConf format). | |
Returns: | |
------- | |
model : nn.Module or None | |
The initialized model based on the `model_type`, or None if the model type is not recognized. | |
config : Any | |
The configuration used to initialize the model. This could be in different formats | |
depending on the model type (e.g., OmegaConf, ConfigDict). | |
Raises: | |
------ | |
ValueError: | |
If the `model_type` is unknown or an error occurs during model initialization. | |
""" | |
config = load_config(model_type, config_path) | |
if model_type == 'mdx23c': | |
from models.mdx23c_tfc_tdf_v3 import TFC_TDF_net | |
model = TFC_TDF_net(config) | |
elif model_type == 'htdemucs': | |
from models.demucs4ht import get_model | |
model = get_model(config) | |
elif model_type == 'segm_models': | |
from models.segm_models import Segm_Models_Net | |
model = Segm_Models_Net(config) | |
elif model_type == 'torchseg': | |
from models.torchseg_models import Torchseg_Net | |
model = Torchseg_Net(config) | |
elif model_type == 'mel_band_roformer': | |
from models.bs_roformer import MelBandRoformer | |
model = MelBandRoformer(**dict(config.model)) | |
elif model_type == 'bs_roformer': | |
from models.bs_roformer import BSRoformer | |
model = BSRoformer(**dict(config.model)) | |
elif model_type == 'swin_upernet': | |
from models.upernet_swin_transformers import Swin_UperNet_Model | |
model = Swin_UperNet_Model(config) | |
elif model_type == 'bandit': | |
from models.bandit.core.model import MultiMaskMultiSourceBandSplitRNNSimple | |
model = MultiMaskMultiSourceBandSplitRNNSimple(**config.model) | |
elif model_type == 'bandit_v2': | |
from models.bandit_v2.bandit import Bandit | |
model = Bandit(**config.kwargs) | |
elif model_type == 'scnet_unofficial': | |
from models.scnet_unofficial import SCNet | |
model = SCNet(**config.model) | |
elif model_type == 'scnet': | |
from models.scnet import SCNet | |
model = SCNet(**config.model) | |
elif model_type == 'apollo': | |
from models.look2hear.models import BaseModel | |
model = BaseModel.apollo(**config.model) | |
elif model_type == 'bs_mamba2': | |
from models.ts_bs_mamba2 import Separator | |
model = Separator(**config.model) | |
elif model_type == 'experimental_mdx23c_stht': | |
from models.mdx23c_tfc_tdf_v3_with_STHT import TFC_TDF_net | |
model = TFC_TDF_net(config) | |
else: | |
raise ValueError(f"Unknown model type: {model_type}") | |
return model, config | |
def read_audio_transposed(path: str, instr: str = None, skip_err: bool = False) -> Tuple[np.ndarray, int]: | |
try: | |
mix, sr = sf.read(path) | |
if len(mix.shape) == 1: # Mono audio | |
mix = np.expand_dims(mix, axis=-1) | |
return mix.T, sr | |
except Exception as e: | |
if skip_err: | |
print(f"No stem {instr}: skip!") | |
return None, None | |
raise RuntimeError(f"Error reading the file at {path}: {e}") | |
def normalize_audio(audio: np.ndarray) -> Tuple[np.ndarray, Dict[str, float]]: | |
mono = audio.mean(0) | |
mean, std = mono.mean(), mono.std() | |
return (audio - mean) / (std + 1e-8), {"mean": mean, "std": std} | |
def denormalize_audio(audio: np.ndarray, norm_params: Dict[str, float]) -> np.ndarray: | |
return audio * norm_params["std"] + norm_params["mean"] | |
def apply_tta( | |
config, | |
model: nn.Module, | |
mix: torch.Tensor, | |
waveforms_orig: Dict[str, torch.Tensor], | |
device: str, | |
model_type: str, | |
progress=None # Gradio progress nesnesi | |
) -> Dict[str, torch.Tensor]: | |
track_proc_list = [mix[::-1].clone(), -mix.clone()] | |
total_steps = len(track_proc_list) | |
processed_steps = 0 | |
for i, augmented_mix in enumerate(track_proc_list): | |
# TTA adımı için ilerleme güncellemesi | |
processed_steps += 1 | |
progress_value = round((processed_steps / total_steps) * 50) # TTA için 0-50% aralığı | |
if progress is not None and callable(getattr(progress, '__call__', None)): | |
progress(progress_value / 100, desc=f"Applying TTA step {processed_steps}/{total_steps}") | |
update_progress_html(f"Applying TTA step {processed_steps}/{total_steps}", progress_value) | |
waveforms = demix(config, model, augmented_mix, device, model_type=model_type, pbar=False, progress=progress) | |
for el in waveforms: | |
if i == 0: | |
waveforms_orig[el] += waveforms[el][::-1].clone() | |
else: | |
waveforms_orig[el] -= waveforms[el] | |
del waveforms, augmented_mix | |
gc.collect() | |
if device.startswith('cuda'): | |
torch.cuda.empty_cache() | |
for el in waveforms_orig: | |
waveforms_orig[el] /= (len(track_proc_list) + 1) | |
# TTA tamamlandı | |
if progress is not None and callable(getattr(progress, '__call__', None)): | |
progress(0.5, desc="TTA completed") | |
update_progress_html("TTA completed", 50) | |
return waveforms_orig | |
def _getWindowingArray(window_size: int, fade_size: int) -> torch.Tensor: | |
fadein = torch.linspace(0, 1, fade_size) | |
fadeout = torch.linspace(1, 0, fade_size) | |
window = torch.ones(window_size) | |
window[-fade_size:] = fadeout | |
window[:fade_size] = fadein | |
return window | |
def demix( | |
config: ConfigDict, | |
model: nn.Module, | |
mix: torch.Tensor, | |
device: str, | |
model_type: str, | |
pbar: bool = False, | |
progress=None # Gradio progress nesnesi | |
) -> Dict[str, np.ndarray]: | |
logging.info(f"Starting demix for model_type: {model_type}, chunk_size: {config.audio.chunk_size}") | |
# CPU'da FP16 ile başla | |
mix = torch.tensor(mix, dtype=torch.float16, device='cpu') | |
mode = 'demucs' if model_type == 'htdemucs' else 'generic' | |
# İşlem parametreleri | |
if mode == 'demucs': | |
chunk_size = config.training.samplerate * config.training.segment | |
num_instruments = len(config.training.instruments) | |
num_overlap = config.inference.num_overlap | |
step = chunk_size // num_overlap | |
else: | |
chunk_size = config.audio.chunk_size | |
num_instruments = len(prefer_target_instrument(config)) | |
num_overlap = config.inference.num_overlap | |
fade_size = chunk_size // 10 | |
step = chunk_size // num_overlap | |
border = chunk_size - step | |
length_init = mix.shape[-1] | |
windowing_array = _getWindowingArray(chunk_size, fade_size).to('cpu', dtype=torch.float16) | |
if length_init > 2 * border and border > 0: | |
mix = nn.functional.pad(mix, (border, border), mode="reflect") | |
batch_size = getattr(config.inference, 'batch_size', 1) # Düşük bellek için varsayılan 1 | |
# Modeli cihaza taşı (ZeroGPU için cuda:0) | |
model = model.to(device) | |
model.eval() | |
# Toplam chunk sayısını hesapla | |
total_chunks = (mix.shape[1] + step - 1) // step | |
processed_chunks = 0 | |
with torch.no_grad(): # Çıkarım için gradyan yok | |
with torch.cuda.amp.autocast(enabled=device.startswith('cuda'), dtype=torch.float16): | |
req_shape = (num_instruments,) + mix.shape | |
result = torch.zeros(req_shape, dtype=torch.float16, device='cpu') | |
counter = torch.zeros(req_shape, dtype=torch.float16, device='cpu') | |
i = 0 | |
batch_data = [] | |
batch_locations = [] | |
start_time = time.time() | |
while i < mix.shape[1]: | |
part = mix[:, i:i + chunk_size] | |
chunk_len = part.shape[-1] | |
pad_mode = "reflect" if mode == "generic" and chunk_len > chunk_size // 2 else "constant" | |
part = nn.functional.pad(part, (0, chunk_size - chunk_len), mode=pad_mode, value=0) | |
batch_data.append(part) | |
batch_locations.append((i, chunk_len)) | |
i += step | |
if len(batch_data) >= batch_size or i >= mix.shape[1]: | |
# Veriyi GPU'ya taşı | |
arr = torch.stack(batch_data, dim=0).to(device, non_blocking=True) | |
x = model(arr) # Model çıkarımı GPU'da | |
# Sonuçları hemen CPU'ya taşı | |
x = x.cpu() | |
if mode == "generic": | |
window = windowing_array.clone() | |
if i - step == 0: | |
window[:fade_size] = 1 | |
elif i >= mix.shape[1]: | |
window[-fade_size:] = 1 | |
for j, (start, seg_len) in enumerate(batch_locations): | |
if mode == "generic": | |
result[..., start:start + seg_len] += (x[j, ..., :seg_len] * window[..., :seg_len]) | |
counter[..., start:start + seg_len] += window[..., :seg_len] | |
else: | |
result[..., start:start + seg_len] += x[j, ..., :seg_len] | |
counter[..., start:start + seg_len] += 1.0 | |
# İlerleme güncellemesi | |
processed_chunks += len(batch_data) | |
progress_value = min(round((processed_chunks / total_chunks) * 100), 100) # %1 hassasiyet | |
if progress is not None and callable(getattr(progress, '__call__', None)): | |
progress(progress_value / 100, desc=f"Processing chunk {processed_chunks}/{total_chunks}") | |
update_progress_html(f"Processing chunk {processed_chunks}/{total_chunks}", progress_value) | |
del arr, x | |
batch_data.clear() | |
batch_locations.clear() | |
gc.collect() | |
if device.startswith('cuda'): | |
torch.cuda.empty_cache() | |
logging.info("Cleared CUDA cache") | |
elapsed_time = time.time() - start_time | |
logging.info(f"Demix completed in {elapsed_time:.2f} seconds") | |
estimated_sources = result / (counter + 1e-8) | |
estimated_sources = estimated_sources.numpy().astype(np.float32) | |
np.nan_to_num(estimated_sources, copy=False, nan=0.0) | |
if mode == "generic" and length_init > 2 * border and border > 0: | |
estimated_sources = estimated_sources[..., border:-border] | |
instruments = config.training.instruments if mode == "demucs" else prefer_target_instrument(config) | |
ret_data = {k: v for k, v in zip(instruments, estimated_sources)} | |
logging.info("Demix completed successfully") | |
# Son ilerleme güncellemesi | |
if progress is not None and callable(getattr(progress, '__call__', None)): | |
progress(1.0, desc="Demix completed") | |
update_progress_html("Demix completed", 100) | |
return ret_data | |
def prefer_target_instrument(config: ConfigDict) -> List[str]: | |
return [config.training.target_instrument] if getattr(config.training, 'target_instrument', None) else config.training.instruments | |
def load_not_compatible_weights(model: nn.Module, weights: str, verbose: bool = False) -> None: | |
new_model = model.state_dict() | |
old_model = torch.load(weights, map_location='cpu') | |
if 'state' in old_model: | |
old_model = old_model['state'] | |
if 'state_dict' in old_model: | |
old_model = old_model['state_dict'] | |
for el in new_model: | |
if el in old_model and new_model[el].shape == old_model[el].shape: | |
new_model[el] = old_model[el] | |
model.load_state_dict(new_model) | |
def load_lora_weights(model: nn.Module, lora_path: str, device: str = 'cpu') -> None: | |
lora_state_dict = torch.load(lora_path, map_location=device) | |
model.load_state_dict(lora_state_dict, strict=False) | |
def load_start_checkpoint(args: argparse.Namespace, model: nn.Module, type_='train') -> None: | |
print(f'Start from checkpoint: {args.start_check_point}') | |
device = 'cpu' | |
state_dict = torch.load(args.start_check_point, map_location=device, weights_only=True) | |
if args.model_type in ['htdemucs', 'apollo'] and isinstance(state_dict, dict): | |
state_dict = state_dict.get('state', state_dict.get('state_dict', state_dict)) | |
model.load_state_dict(state_dict) | |
if args.lora_checkpoint: | |
print(f"Loading LoRA weights from: {args.lora_checkpoint}") | |
load_lora_weights(model, args.lora_checkpoint, device) | |
def bind_lora_to_model(config: Dict[str, Any], model: nn.Module) -> nn.Module: | |
if 'lora' not in config: | |
raise ValueError("Configuration must contain the 'lora' key with parameters for LoRA.") | |
replaced_layers = 0 | |
for name, module in model.named_modules(): | |
hierarchy = name.split('.') | |
layer_name = hierarchy[-1] | |
if isinstance(module, nn.Linear): | |
try: | |
parent_module = model | |
for submodule_name in hierarchy[:-1]: | |
parent_module = getattr(parent_module, submodule_name) | |
setattr( | |
parent_module, | |
layer_name, | |
lora.MergedLinear( | |
in_features=module.in_features, | |
out_features=module.out_features, | |
bias=module.bias is not None, | |
**config['lora'] | |
) | |
) | |
replaced_layers += 1 | |
except Exception as e: | |
print(f"Error replacing layer {name}: {e}") | |
print(f"Number of layers replaced with LoRA: {replaced_layers}") | |
return model | |
def draw_spectrogram(waveform, sample_rate, length, output_file): | |
import librosa.display | |
x = waveform[:int(length * sample_rate), :] | |
X = librosa.stft(x.mean(axis=-1)) | |
Xdb = librosa.amplitude_to_db(np.abs(X), ref=np.max) | |
fig, ax = plt.subplots() | |
img = librosa.display.specshow( | |
Xdb, cmap='plasma', sr=sample_rate, x_axis='time', y_axis='linear', ax=ax | |
) | |
ax.set(title='File: ' + os.path.basename(output_file)) | |
fig.colorbar(img, ax=ax, format="%+2.f dB") | |
if output_file: | |
plt.savefig(output_file) | |
plt.close() |