File size: 10,671 Bytes
3978e51 24d9ef5 3978e51 24d9ef5 c1683bf 24d9ef5 c1683bf 3978e51 24d9ef5 c1683bf 24d9ef5 c1683bf 24d9ef5 c1683bf 24d9ef5 c1683bf 24d9ef5 c1683bf 24d9ef5 c1683bf 24d9ef5 c1683bf 24d9ef5 c1683bf 24d9ef5 3978e51 24d9ef5 3978e51 24d9ef5 c1683bf 24d9ef5 c1683bf 24d9ef5 c1683bf 24d9ef5 3978e51 24d9ef5 c1683bf 24d9ef5 c1683bf 24d9ef5 3978e51 24d9ef5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
# coding: utf-8
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/' # forked by jarredou
import os
import torch
import torchaudio
import soundfile as sf
import argparse
from pathlib import Path
def stft(wave, n_fft, hop_length):
"""
Compute STFT for stereo audio using PyTorch
:param wave: tensor of shape (channels, length)
:param n_fft: FFT size
:param hop_length: hop length
:return: complex spectrogram of shape (channels, freq_bins, time_frames)
"""
# Use torchaudio's STFT which handles multi-channel audio efficiently
spec = torch.stft(
wave,
n_fft=n_fft,
hop_length=hop_length,
window=torch.hann_window(n_fft, device=wave.device),
return_complex=True
)
return spec
def istft(spec, hop_length, length):
"""
Compute inverse STFT for stereo audio using PyTorch
:param spec: complex spectrogram of shape (channels, freq_bins, time_frames)
:param hop_length: hop length
:param length: target length
:return: waveform of shape (channels, length)
"""
# Use torchaudio's ISTFT which handles multi-channel audio efficiently
wave = torch.istft(
spec,
n_fft=(spec.shape[1] - 1) * 2,
hop_length=hop_length,
window=torch.hann_window((spec.shape[1] - 1) * 2, device=spec.device),
length=length
)
return wave
def absmax(a, *, dim):
"""Find values with maximum absolute value along dimension"""
abs_a = torch.abs(a)
indices = torch.argmax(abs_a, dim=dim, keepdim=True)
return torch.gather(a, dim, indices).squeeze(dim)
def absmin(a, *, dim):
"""Find values with minimum absolute value along dimension"""
abs_a = torch.abs(a)
indices = torch.argmin(abs_a, dim=dim, keepdim=True)
return torch.gather(a, dim, indices).squeeze(dim)
def lambda_max(arr, dim=None, key=None):
"""Find elements with maximum key value along dimension"""
if key is None:
key = lambda x: x
key_values = key(arr)
indices = torch.argmax(key_values, dim=dim, keepdim=True)
return torch.gather(arr, dim, indices).squeeze(dim)
def lambda_min(arr, dim=None, key=None):
"""Find elements with minimum key value along dimension"""
if key is None:
key = lambda x: x
key_values = key(arr)
indices = torch.argmin(key_values, dim=dim, keepdim=True)
return torch.gather(arr, dim, indices).squeeze(dim)
def match_tensor_shapes(tensor_1, tensor_2):
"""Match the time dimension of two tensors by padding or trimming"""
target_length = tensor_2.shape[-1]
current_length = tensor_1.shape[-1]
if current_length > target_length:
tensor_1 = tensor_1[..., :target_length]
elif current_length < target_length:
padding = target_length - current_length
tensor_1 = torch.nn.functional.pad(tensor_1, (0, padding), 'constant', 0)
return tensor_1
def average_waveforms(pred_track, weights, algorithm, n_fft, hop_length):
"""
:param pred_track: tensor of shape (num, channels, length)
:param weights: tensor of shape (num,)
:param algorithm: One of avg_wave, median_wave, min_wave, max_wave, avg_fft, median_fft, min_fft, max_fft
:param n_fft: FFT size for STFT operations
:param hop_length: hop length for STFT operations
:return: averaged waveform in shape (channels, length)
"""
pred_track = torch.stack(pred_track)
final_length = pred_track.shape[-1]
weights = torch.tensor(weights, dtype=pred_track.dtype, device=pred_track.device)
if algorithm in ['avg_wave', 'median_wave', 'min_wave', 'max_wave']:
# Waveform domain operations
if algorithm == 'avg_wave':
# Weighted average
weighted_tracks = pred_track * weights.view(-1, 1, 1)
result = torch.sum(weighted_tracks, dim=0) / torch.sum(weights)
elif algorithm == 'median_wave':
result = torch.median(pred_track, dim=0)[0]
elif algorithm == 'min_wave':
result = lambda_min(pred_track, dim=0, key=torch.abs)
elif algorithm == 'max_wave':
result = lambda_max(pred_track, dim=0, key=torch.abs)
elif algorithm in ['avg_fft', 'median_fft', 'min_fft', 'max_fft']:
# Frequency domain operations
# Convert all tracks to spectrograms
spec_tracks = []
for i in range(pred_track.shape[0]):
spec = stft(pred_track[i], n_fft, hop_length)
spec_tracks.append(spec)
spec_tracks = torch.stack(spec_tracks)
if algorithm == 'avg_fft':
# Weighted average in frequency domain
weighted_specs = spec_tracks * weights.view(-1, 1, 1, 1)
avg_spec = torch.sum(weighted_specs, dim=0) / torch.sum(weights)
result = istft(avg_spec, hop_length, final_length)
elif algorithm == 'median_fft':
# Median in frequency domain (using magnitude and phase separately)
median_spec = torch.median(spec_tracks, dim=0)[0]
result = istft(median_spec, hop_length, final_length)
elif algorithm == 'min_fft':
min_spec = lambda_min(spec_tracks, dim=0, key=torch.abs)
result = istft(min_spec, hop_length, final_length)
elif algorithm == 'max_fft':
max_spec = absmax(spec_tracks, dim=0)
result = istft(max_spec, hop_length, final_length)
return result
def save_audio(waveform, sample_rate, output_path):
"""Save audio with support for different formats and bit depths using soundfile"""
output_path = Path(output_path)
# Ensure waveform is in the right format (channels, samples)
if waveform.dim() == 1:
waveform = waveform.unsqueeze(0)
# Convert to CPU numpy array if on GPU
if waveform.is_cuda:
waveform = waveform.cpu()
# Convert to numpy and transpose to (samples, channels) for soundfile
audio_np = waveform.numpy().T
# Handle different output formats
if output_path.suffix.lower() == '.flac':
# For FLAC, convert to 24-bit
# Normalize to prevent clipping
max_val = torch.max(torch.abs(waveform))
if max_val > 0:
print(f"Clipping detected : {max_val}")
audio_np = audio_np / max_val.numpy()
# Save as FLAC with 24-bit depth
sf.write(str(output_path), audio_np, sample_rate, subtype='PCM_24')
else:
# Default to float32 for WAV and other formats
sf.write(str(output_path), audio_np, sample_rate, subtype='FLOAT')
def ensemble_files(args):
parser = argparse.ArgumentParser(description="Audio ensemble tool using PyTorch")
parser.add_argument("--files", type=str, required=True, nargs='+',
help="Path to all audio-files to ensemble")
parser.add_argument("--type", type=str, default='avg_wave',
help="One of avg_wave, median_wave, min_wave, max_wave, avg_fft, median_fft, min_fft, max_fft")
parser.add_argument("--weights", type=float, nargs='+',
help="Weights to create ensemble. Number of weights must be equal to number of files")
parser.add_argument("--output", default="res.wav", type=str,
help="Path to output file (supports .wav, .flac)")
parser.add_argument("--n_fft", type=int, default=2048,
help="FFT size for STFT operations (default: 2048)")
parser.add_argument("--hop_length", type=int, default=1024,
help="Hop length for STFT operations (default: 1024)")
parser.add_argument("--device", type=str, default="auto",
help="Device to use: 'cpu', 'cuda', or 'auto' (default: auto)")
parser.add_argument("--trim_to_shortest", action="store_true",
help="Trim output to shortest input file length to avoid padding artifacts")
if args is None:
args = parser.parse_args()
else:
args = parser.parse_args(args)
# Set device
if args.device == "auto":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
else:
device = torch.device(args.device)
print(f'Using device: {device}')
print(f'Ensemble type: {args.type}')
print(f'Number of input files: {len(args.files)}')
print(f'N_FFT: {args.n_fft}, Hop length: {args.hop_length}')
if args.weights is not None:
if len(args.weights) != len(args.files):
raise ValueError("Number of weights must match number of files")
weights = args.weights
else:
weights = [1.0] * len(args.files)
print(f'Weights: {weights}')
print(f'Output file: {args.output}')
data = []
max_len = 0
min_len = float('inf')
sample_rate = None
for f in args.files:
if not os.path.isfile(f):
print(f'Error. Can\'t find file: {f}. Check paths.')
exit(1)
print(f'Reading file: {f}')
wav, sr = torchaudio.load(f)
if sample_rate is None:
sample_rate = sr
elif sample_rate != sr:
print(f'Warning: Sample rate mismatch. Expected {sample_rate}, got {sr}. Resampling...')
resampler = torchaudio.transforms.Resample(sr, sample_rate)
wav = resampler(wav)
# Ensure stereo (2 channels)
if wav.shape[0] == 1:
print("Mono detected. Converting to stereo by duplication.")
wav = wav.repeat(2, 1)
elif wav.shape[0] > 2:
print(f"Multi-channel audio detected ({wav.shape[0]} channels). Using first 2 channels.")
wav = wav[:2]
# Move to device
wav = wav.to(device)
print(f"Waveform shape: {wav.shape} sample rate: {sr}")
data.append(wav)
max_len = max(max_len, wav.shape[1])
min_len = min(min_len, wav.shape[1])
# Choose target length based on argument
target_len = min_len if args.trim_to_shortest else max_len
target_tensor = torch.zeros(2, target_len, device=device)
data = [match_tensor_shapes(wav, target_tensor) for wav in data]
print(f"Target length: {target_len} ({'shortest' if args.trim_to_shortest else 'longest'} input file)")
print("Starting ensemble processing...")
result = average_waveforms(data, weights, args.type, args.n_fft, args.hop_length)
print(f'Result shape: {result.shape}')
# Save the result
save_audio(result, sample_rate, args.output)
print(f'Ensemble saved to: {args.output}')
if __name__ == "__main__":
ensemble_files(None) |