Spaces:
Runtime error
Runtime error
gradio app
Browse files- app.py +29 -0
- demo_imgs/fake.jpg +0 -0
- requirements.txt +3 -0
app.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import torchvision
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
# load model
|
| 7 |
+
|
| 8 |
+
def predict(input_image):
|
| 9 |
+
pil_image = Image.fromarray(input_image.astype('uint8'), 'RGB')
|
| 10 |
+
# transform image to torch and do preprocessing
|
| 11 |
+
torch_image = torchvision.transforms.ToTensor()(pil_image)
|
| 12 |
+
# model predict
|
| 13 |
+
prediction = torch.rand(torch_image.shape)
|
| 14 |
+
# transform torch to image
|
| 15 |
+
predicted_pil_image = torchvision.transforms.ToPILImage()(prediction)
|
| 16 |
+
# return correct image
|
| 17 |
+
return predicted_pil_image
|
| 18 |
+
|
| 19 |
+
iface = gr.Interface(
|
| 20 |
+
fn=predict,
|
| 21 |
+
inputs=gr.Image(shape=(512,512)),
|
| 22 |
+
outputs=gr.Image(shape=(512,512)),
|
| 23 |
+
examples=[
|
| 24 |
+
["demo_imgs/fake.jpg"] # use real image
|
| 25 |
+
],
|
| 26 |
+
title="DTM Estimation",
|
| 27 |
+
description="This demo predict a DTM..."
|
| 28 |
+
)
|
| 29 |
+
iface.launch()
|
demo_imgs/fake.jpg
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
torch
|
| 3 |
+
torchvision
|