AMfeta99's picture
Rename app.py to app_test.py
7d9aaec verified
from huggingface_hub import InferenceClient
from langchain_community.tools import DuckDuckGoSearchResults
from langchain.agents import create_react_agent, AgentExecutor
from langchain_core.tools import BaseTool
from pydantic import Field
from PIL import Image, ImageDraw, ImageFont
from functools import lru_cache
import gradio as gr
from io import BytesIO
import os
# === Setup Inference Clients ===
# Use your Hugging Face token if necessary:
# client = InferenceClient(repo_id="model", token="YOUR_HF_TOKEN")
image_client = InferenceClient("m-ric/text-to-image")
text_client = InferenceClient("Qwen/Qwen2.5-72B-Instruct")
# === LangChain wrapper using InferenceClient for text generation ===
class InferenceClientLLM(BaseTool):
name: str = "inference_text_generator"
description: str = "Generate text using HF Inference API."
client: InferenceClient = Field(default=text_client, exclude=True)
def _run(self, prompt: str) -> str:
print(f"[LLM] Generating text for prompt: {prompt}")
response = self.client.text_generation(prompt)
# response is usually a dict with 'generated_text'
return response.get("generated_text", "")
def _arun(self, prompt: str):
raise NotImplementedError("Async not supported.")
# === Image generation tool ===
class TextToImageTool(BaseTool):
name: str = "text_to_image"
description: str = "Generate an image from a text prompt."
client: InferenceClient = Field(default=image_client, exclude=True)
def _run(self, prompt: str) -> Image.Image:
print(f"[Image Tool] Generating image for prompt: {prompt}")
image_bytes = self.client.text_to_image(prompt)
return Image.open(BytesIO(image_bytes))
def _arun(self, prompt: str):
raise NotImplementedError("Async not supported.")
# === Initialize tools ===
text_to_image_tool = TextToImageTool()
text_gen_tool = InferenceClientLLM()
search_tool = DuckDuckGoSearchResults()
# === Create agent ===
agent = create_react_agent(llm=text_gen_tool, tools=[text_to_image_tool, search_tool])
agent_executor = AgentExecutor(agent=agent, tools=[text_to_image_tool, search_tool], verbose=True)
# === Image labeling ===
def add_label_to_image(image, label):
draw = ImageDraw.Draw(image)
font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
try:
font = ImageFont.truetype(font_path, 30)
except:
font = ImageFont.load_default()
text_width, text_height = draw.textsize(label, font=font)
position = (image.width - text_width - 20, image.height - text_height - 20)
rect_position = [position[0] - 10, position[1] - 10, position[0] + text_width + 10, position[1] + text_height + 10]
draw.rectangle(rect_position, fill=(0, 0, 0, 128))
draw.text(position, label, fill="white", font=font)
return image
# === Prompt generation with caching ===
@lru_cache(maxsize=128)
def generate_prompts_for_object(object_name):
return {
"past": f"Show an old version of a {object_name} from its early days.",
"present": f"Show a {object_name} with current features/design/technology.",
"future": f"Show a futuristic version of a {object_name}, predicting future features/designs.",
}
# === Cache generated images ===
@lru_cache(maxsize=64)
def generate_image_for_prompt(prompt, label):
img = text_to_image_tool._run(prompt)
return add_label_to_image(img, label)
# === Main generation function ===
def generate_object_history(object_name: str):
prompts = generate_prompts_for_object(object_name)
images = []
file_paths = []
for period, prompt in prompts.items():
label = f"{object_name} - {period.capitalize()}"
labeled_image = generate_image_for_prompt(prompt, label)
file_path = f"/tmp/{object_name}_{period}.png"
labeled_image.save(file_path)
images.append((file_path, label))
file_paths.append(file_path)
# Create GIF
gif_path = f"/tmp/{object_name}_evolution.gif"
pil_images = [Image.open(p) for p in file_paths]
pil_images[0].save(gif_path, save_all=True, append_images=pil_images[1:], duration=1000, loop=0)
return images, gif_path
# === Gradio UI ===
def create_gradio_interface():
with gr.Blocks() as demo:
gr.Markdown("# TimeMetamorphy: Evolution Visualizer")
with gr.Row():
with gr.Column():
object_input = gr.Textbox(label="Enter Object (e.g., car, phone)")
generate_button = gr.Button("Generate Evolution")
gallery = gr.Gallery(label="Generated Images").style(grid=3)
gif_display = gr.Image(label="Generated GIF")
generate_button.click(fn=generate_object_history, inputs=object_input, outputs=[gallery, gif_display])
return demo
# === Launch app ===
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch(share=True)