|
|
|
from PIL import Image, ImageDraw, ImageFont |
|
import tempfile |
|
import gradio as gr |
|
from smolagents import CodeAgent, InferenceClientModel |
|
from smolagents import HfApiModel, DuckDuckGoSearchTool |
|
|
|
|
|
|
|
|
|
def add_label_to_image(image, label): |
|
|
|
draw = ImageDraw.Draw(image) |
|
|
|
|
|
font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf" |
|
font_size = 30 |
|
try: |
|
font = ImageFont.truetype(font_path, font_size) |
|
except: |
|
font = ImageFont.load_default() |
|
|
|
|
|
text_bbox = draw.textbbox((0, 0), label, font=font) |
|
text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1] |
|
position = (image.width - text_width - 20, image.height - text_height - 20) |
|
|
|
|
|
rect_margin = 10 |
|
rect_position = [ |
|
position[0] - rect_margin, |
|
position[1] - rect_margin, |
|
position[0] + text_width + rect_margin, |
|
position[1] + text_height + rect_margin, |
|
] |
|
draw.rectangle(rect_position, fill=(0, 0, 0, 128)) |
|
draw.text(position, label, fill="white", font=font) |
|
return image |
|
|
|
|
|
|
|
def plot_and_save_agent_image(agent_image, label, save_path=None): |
|
|
|
pil_image = agent_image.to_raw() |
|
|
|
|
|
labeled_image = add_label_to_image(pil_image, label) |
|
|
|
|
|
labeled_image.show() |
|
|
|
|
|
if save_path: |
|
labeled_image.save(save_path) |
|
print(f"Image saved to {save_path}") |
|
else: |
|
print("No save path provided. Image not saved.") |
|
|
|
|
|
def generate_prompts_for_object(object_name): |
|
prompts = { |
|
"past": f"Show an old version of a {object_name} from its early days.", |
|
"present": f"Show a {object_name} with current features/design/technology.", |
|
"future": f"Show a futuristic version of a {object_name}, by predicting advanced features and futuristic design." |
|
} |
|
return prompts |
|
|
|
|
|
def generate_object_history(object_name): |
|
images = [] |
|
|
|
|
|
prompts = generate_prompts_for_object(object_name) |
|
labels = { |
|
"past": f"{object_name} - Past", |
|
"present": f"{object_name} - Present", |
|
"future": f"{object_name} - Future" |
|
} |
|
|
|
|
|
for time_period, frame in prompts.items(): |
|
print(f"Generating {time_period} frame: {frame}") |
|
result = agent.run(frame) |
|
|
|
|
|
images.append(result.to_raw()) |
|
|
|
|
|
image_filename = f"{object_name}_{time_period}.png" |
|
plot_and_save_agent_image(result, labels[time_period], save_path=image_filename) |
|
|
|
|
|
gif_path = f"{object_name}_evolution.gif" |
|
images[0].save( |
|
gif_path, |
|
save_all=True, |
|
append_images=images[1:], |
|
duration=1000, |
|
loop=0 |
|
) |
|
|
|
|
|
return images, gif_path |
|
|
|
|
|
|
|
from smolagents.tools import Tool, load_tool |
|
|
|
''' |
|
image_generation_tool = Tool.from_space( |
|
space_id="m-ric/text-to-image", |
|
name="image_generator", |
|
description="Generate an image from a prompt" |
|
) |
|
''' |
|
|
|
from smolagents import load_tool |
|
|
|
image_generation_tool = load_tool( |
|
repo_id="m-ric/text-to-image", |
|
trust_remote_code=True, |
|
cache=False |
|
) |
|
|
|
''' |
|
class WrappedTextToImageTool(Tool): |
|
name = "text_to_image" |
|
description = "Generates an image from a text prompt using the m-ric/text-to-image tool." |
|
inputs = ["prompt"] # Optional: only if smolagents uses this |
|
|
|
def run(self, prompt: str) -> str: |
|
return image_generation_tool(prompt) |
|
|
|
image_generation_tool = WrappedTextToImageTool() |
|
''' |
|
|
|
|
|
|
|
|
|
search_tool = DuckDuckGoSearchTool() |
|
|
|
|
|
|
|
|
|
llm_engine= InferenceClientModel("Qwen/Qwen2.5-72B-Instruct") |
|
|
|
|
|
|
|
agent = CodeAgent(tools=[image_generation_tool, search_tool], model=llm_engine) |
|
|
|
|
|
def create_gradio_interface(): |
|
with gr.Blocks() as demo: |
|
gr.Markdown("# TimeMetamorphy: an object Evolution Generator") |
|
|
|
|
|
gr.Markdown(""" |
|
## Unlocking the secrets of time! |
|
This app unveils these mysteries by offering a unique/magic lens that allows us "time travel". |
|
Powered by AI agents equipped with cutting-edge tools, it provides the superpower to explore the past, witness the present, and dream up the future like never before. |
|
|
|
This system allows you to generate visualizations of how an object/concept, like a bicycle or a car, may have evolved over time. |
|
It generates images of the object in the past, present, and future based on your input. |
|
|
|
### Default Example: Evolution of a Car |
|
Below, you can see a precomputed example of a "car" evolution. Enter another object to generate its evolution. |
|
""") |
|
|
|
|
|
default_images = [ |
|
("car_past.png", "Car - Past"), |
|
("car_present.png", "Car - Present"), |
|
("car_future.png", "Car - Future") |
|
] |
|
default_gif_path = "car_evolution.gif" |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
|
|
object_name_input = gr.Textbox(label="Enter an object name (e.g., bicycle, phone)", |
|
placeholder="Enter an object name", |
|
lines=1) |
|
|
|
|
|
generate_button = gr.Button("Generate Evolution") |
|
|
|
|
|
image_gallery = gr.Gallery(label="Generated Images", show_label=True, columns=3, rows=1, value=default_images) |
|
|
|
|
|
gif_output = gr.Image(label="Generated GIF", show_label=True, value=default_gif_path) |
|
|
|
|
|
generate_button.click(fn=generate_object_history, inputs=[object_name_input], outputs=[image_gallery, gif_output]) |
|
|
|
return demo |
|
|
|
|
|
demo = create_gradio_interface() |
|
demo.launch(share=True) |