Spaces:
Running
Running
| import os | |
| import cv2 | |
| import torch | |
| import argparse | |
| import numpy as np | |
| from tqdm import tqdm | |
| from torch.nn import functional as F | |
| import warnings | |
| import _thread | |
| import skvideo.io | |
| from queue import Queue, Empty | |
| from model.pytorch_msssim import ssim_matlab | |
| warnings.filterwarnings("ignore") | |
| def transferAudio(sourceVideo, targetVideo): | |
| import shutil | |
| import moviepy.editor | |
| tempAudioFileName = "./temp/audio.mkv" | |
| # split audio from original video file and store in "temp" directory | |
| if True: | |
| # clear old "temp" directory if it exits | |
| if os.path.isdir("temp"): | |
| # remove temp directory | |
| shutil.rmtree("temp") | |
| # create new "temp" directory | |
| os.makedirs("temp") | |
| # extract audio from video | |
| os.system('ffmpeg -y -i "{}" -c:a copy -vn {}'.format(sourceVideo, tempAudioFileName)) | |
| targetNoAudio = os.path.splitext(targetVideo)[0] + "_noaudio" + os.path.splitext(targetVideo)[1] | |
| os.rename(targetVideo, targetNoAudio) | |
| # combine audio file and new video file | |
| os.system('ffmpeg -y -i "{}" -i {} -c copy "{}"'.format(targetNoAudio, tempAudioFileName, targetVideo)) | |
| if os.path.getsize(targetVideo) == 0: # if ffmpeg failed to merge the video and audio together try converting the audio to aac | |
| tempAudioFileName = "./temp/audio.m4a" | |
| os.system('ffmpeg -y -i "{}" -c:a aac -b:a 160k -vn {}'.format(sourceVideo, tempAudioFileName)) | |
| os.system('ffmpeg -y -i "{}" -i {} -c copy "{}"'.format(targetNoAudio, tempAudioFileName, targetVideo)) | |
| if (os.path.getsize(targetVideo) == 0): # if aac is not supported by selected format | |
| os.rename(targetNoAudio, targetVideo) | |
| print("Audio transfer failed. Interpolated video will have no audio") | |
| else: | |
| print("Lossless audio transfer failed. Audio was transcoded to AAC (M4A) instead.") | |
| # remove audio-less video | |
| os.remove(targetNoAudio) | |
| else: | |
| os.remove(targetNoAudio) | |
| # remove temp directory | |
| shutil.rmtree("temp") | |
| parser = argparse.ArgumentParser(description='Interpolation for a pair of images') | |
| parser.add_argument('--video', dest='video', type=str, default=None) | |
| parser.add_argument('--output', dest='output', type=str, default=None) | |
| parser.add_argument('--img', dest='img', type=str, default=None) | |
| parser.add_argument('--montage', dest='montage', action='store_true', help='montage origin video') | |
| parser.add_argument('--model', dest='modelDir', type=str, default='train_log', help='directory with trained model files') | |
| parser.add_argument('--fp16', dest='fp16', action='store_true', help='fp16 mode for faster and more lightweight inference on cards with Tensor Cores') | |
| parser.add_argument('--UHD', dest='UHD', action='store_true', help='support 4k video') | |
| parser.add_argument('--scale', dest='scale', type=float, default=1.0, help='Try scale=0.5 for 4k video') | |
| parser.add_argument('--skip', dest='skip', action='store_true', help='whether to remove static frames before processing') | |
| parser.add_argument('--fps', dest='fps', type=int, default=None) | |
| parser.add_argument('--png', dest='png', action='store_true', help='whether to vid_out png format vid_outs') | |
| parser.add_argument('--ext', dest='ext', type=str, default='mp4', help='vid_out video extension') | |
| parser.add_argument('--exp', dest='exp', type=int, default=1) | |
| args = parser.parse_args() | |
| assert (not args.video is None or not args.img is None) | |
| if args.skip: | |
| print("skip flag is abandoned, please refer to issue #207.") | |
| if args.UHD and args.scale==1.0: | |
| args.scale = 0.5 | |
| assert args.scale in [0.25, 0.5, 1.0, 2.0, 4.0] | |
| if not args.img is None: | |
| args.png = True | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| torch.set_grad_enabled(False) | |
| if torch.cuda.is_available(): | |
| torch.backends.cudnn.enabled = True | |
| torch.backends.cudnn.benchmark = True | |
| if(args.fp16): | |
| torch.set_default_tensor_type(torch.cuda.HalfTensor) | |
| try: | |
| try: | |
| try: | |
| from model.RIFE_HDv2 import Model | |
| model = Model() | |
| model.load_model(args.modelDir, -1) | |
| print("Loaded v2.x HD model.") | |
| except: | |
| from train_log.RIFE_HDv3 import Model | |
| model = Model() | |
| model.load_model(args.modelDir, -1) | |
| print("Loaded v3.x HD model.") | |
| except: | |
| from model.RIFE_HD import Model | |
| model = Model() | |
| model.load_model(args.modelDir, -1) | |
| print("Loaded v1.x HD model") | |
| except: | |
| from model.RIFE import Model | |
| model = Model() | |
| model.load_model(args.modelDir, -1) | |
| print("Loaded ArXiv-RIFE model") | |
| model.eval() | |
| model.device() | |
| if not args.video is None: | |
| videoCapture = cv2.VideoCapture(args.video) | |
| fps = videoCapture.get(cv2.CAP_PROP_FPS) | |
| tot_frame = videoCapture.get(cv2.CAP_PROP_FRAME_COUNT) | |
| videoCapture.release() | |
| if args.fps is None: | |
| fpsNotAssigned = True | |
| args.fps = fps * (2 ** args.exp) | |
| else: | |
| fpsNotAssigned = False | |
| videogen = skvideo.io.vreader(args.video) | |
| lastframe = next(videogen) | |
| fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v') | |
| video_path_wo_ext, ext = os.path.splitext(args.video) | |
| print('{}.{}, {} frames in total, {}FPS to {}FPS'.format(video_path_wo_ext, args.ext, tot_frame, fps, args.fps)) | |
| if args.png == False and fpsNotAssigned == True: | |
| print("The audio will be merged after interpolation process") | |
| else: | |
| print("Will not merge audio because using png or fps flag!") | |
| else: | |
| videogen = [] | |
| for f in os.listdir(args.img): | |
| if 'png' in f: | |
| videogen.append(f) | |
| tot_frame = len(videogen) | |
| videogen.sort(key= lambda x:int(x[:-4])) | |
| lastframe = cv2.imread(os.path.join(args.img, videogen[0]), cv2.IMREAD_UNCHANGED)[:, :, ::-1].copy() | |
| videogen = videogen[1:] | |
| h, w, _ = lastframe.shape | |
| vid_out_name = None | |
| vid_out = None | |
| if args.png: | |
| if not os.path.exists('vid_out'): | |
| os.mkdir('vid_out') | |
| else: | |
| if args.output is not None: | |
| vid_out_name = args.output | |
| else: | |
| vid_out_name = '{}_{}X_{}fps.{}'.format(video_path_wo_ext, (2 ** args.exp), int(np.round(args.fps)), args.ext) | |
| vid_out = cv2.VideoWriter(vid_out_name, fourcc, args.fps, (w, h)) | |
| def clear_write_buffer(user_args, write_buffer): | |
| cnt = 0 | |
| while True: | |
| item = write_buffer.get() | |
| if item is None: | |
| break | |
| if user_args.png: | |
| cv2.imwrite('vid_out/{:0>7d}.png'.format(cnt), item[:, :, ::-1]) | |
| cnt += 1 | |
| else: | |
| vid_out.write(item[:, :, ::-1]) | |
| def build_read_buffer(user_args, read_buffer, videogen): | |
| try: | |
| for frame in videogen: | |
| if not user_args.img is None: | |
| frame = cv2.imread(os.path.join(user_args.img, frame), cv2.IMREAD_UNCHANGED)[:, :, ::-1].copy() | |
| if user_args.montage: | |
| frame = frame[:, left: left + w] | |
| read_buffer.put(frame) | |
| except: | |
| pass | |
| read_buffer.put(None) | |
| def make_inference(I0, I1, n): | |
| global model | |
| middle = model.inference(I0, I1, args.scale) | |
| if n == 1: | |
| return [middle] | |
| first_half = make_inference(I0, middle, n=n//2) | |
| second_half = make_inference(middle, I1, n=n//2) | |
| if n%2: | |
| return [*first_half, middle, *second_half] | |
| else: | |
| return [*first_half, *second_half] | |
| def pad_image(img): | |
| if(args.fp16): | |
| return F.pad(img, padding).half() | |
| else: | |
| return F.pad(img, padding) | |
| if args.montage: | |
| left = w // 4 | |
| w = w // 2 | |
| tmp = max(32, int(32 / args.scale)) | |
| ph = ((h - 1) // tmp + 1) * tmp | |
| pw = ((w - 1) // tmp + 1) * tmp | |
| padding = (0, pw - w, 0, ph - h) | |
| pbar = tqdm(total=tot_frame) | |
| if args.montage: | |
| lastframe = lastframe[:, left: left + w] | |
| write_buffer = Queue(maxsize=500) | |
| read_buffer = Queue(maxsize=500) | |
| _thread.start_new_thread(build_read_buffer, (args, read_buffer, videogen)) | |
| _thread.start_new_thread(clear_write_buffer, (args, write_buffer)) | |
| I1 = torch.from_numpy(np.transpose(lastframe, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255. | |
| I1 = pad_image(I1) | |
| temp = None # save lastframe when processing static frame | |
| while True: | |
| if temp is not None: | |
| frame = temp | |
| temp = None | |
| else: | |
| frame = read_buffer.get() | |
| if frame is None: | |
| break | |
| I0 = I1 | |
| I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255. | |
| I1 = pad_image(I1) | |
| I0_small = F.interpolate(I0, (32, 32), mode='bilinear', align_corners=False) | |
| I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False) | |
| ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3]) | |
| break_flag = False | |
| if ssim > 0.996: | |
| frame = read_buffer.get() # read a new frame | |
| if frame is None: | |
| break_flag = True | |
| frame = lastframe | |
| else: | |
| temp = frame | |
| I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255. | |
| I1 = pad_image(I1) | |
| I1 = model.inference(I0, I1, args.scale) | |
| I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False) | |
| ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3]) | |
| frame = (I1[0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w] | |
| if ssim < 0.2: | |
| output = [] | |
| for i in range((2 ** args.exp) - 1): | |
| output.append(I0) | |
| ''' | |
| output = [] | |
| step = 1 / (2 ** args.exp) | |
| alpha = 0 | |
| for i in range((2 ** args.exp) - 1): | |
| alpha += step | |
| beta = 1-alpha | |
| output.append(torch.from_numpy(np.transpose((cv2.addWeighted(frame[:, :, ::-1], alpha, lastframe[:, :, ::-1], beta, 0)[:, :, ::-1].copy()), (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.) | |
| ''' | |
| else: | |
| output = make_inference(I0, I1, 2**args.exp-1) if args.exp else [] | |
| if args.montage: | |
| write_buffer.put(np.concatenate((lastframe, lastframe), 1)) | |
| for mid in output: | |
| mid = (((mid[0] * 255.).byte().cpu().numpy().transpose(1, 2, 0))) | |
| write_buffer.put(np.concatenate((lastframe, mid[:h, :w]), 1)) | |
| else: | |
| write_buffer.put(lastframe) | |
| for mid in output: | |
| mid = (((mid[0] * 255.).byte().cpu().numpy().transpose(1, 2, 0))) | |
| write_buffer.put(mid[:h, :w]) | |
| pbar.update(1) | |
| lastframe = frame | |
| if break_flag: | |
| break | |
| if args.montage: | |
| write_buffer.put(np.concatenate((lastframe, lastframe), 1)) | |
| else: | |
| write_buffer.put(lastframe) | |
| write_buffer.put(None) | |
| import time | |
| while(not write_buffer.empty()): | |
| time.sleep(0.1) | |
| pbar.close() | |
| if not vid_out is None: | |
| vid_out.release() | |
| # move audio to new video file if appropriate | |
| if args.png == False and fpsNotAssigned == True and not args.video is None: | |
| try: | |
| transferAudio(args.video, vid_out_name) | |
| except: | |
| print("Audio transfer failed. Interpolated video will have no audio") | |
| targetNoAudio = os.path.splitext(vid_out_name)[0] + "_noaudio" + os.path.splitext(vid_out_name)[1] | |
| os.rename(targetNoAudio, vid_out_name) | |