|
import os
|
|
import cv2
|
|
import ast
|
|
import torch
|
|
import numpy as np
|
|
import random
|
|
from torch.utils.data import DataLoader, Dataset
|
|
|
|
cv2.setNumThreads(1)
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
class VimeoDataset(Dataset):
|
|
def __init__(self, dataset_name, batch_size=32):
|
|
self.batch_size = batch_size
|
|
self.dataset_name = dataset_name
|
|
self.h = 256
|
|
self.w = 448
|
|
self.data_root = 'vimeo_triplet'
|
|
self.image_root = os.path.join(self.data_root, 'sequences')
|
|
train_fn = os.path.join(self.data_root, 'tri_trainlist.txt')
|
|
test_fn = os.path.join(self.data_root, 'tri_testlist.txt')
|
|
with open(train_fn, 'r') as f:
|
|
self.trainlist = f.read().splitlines()
|
|
with open(test_fn, 'r') as f:
|
|
self.testlist = f.read().splitlines()
|
|
self.load_data()
|
|
|
|
def __len__(self):
|
|
return len(self.meta_data)
|
|
|
|
def load_data(self):
|
|
cnt = int(len(self.trainlist) * 0.95)
|
|
if self.dataset_name == 'train':
|
|
self.meta_data = self.trainlist[:cnt]
|
|
elif self.dataset_name == 'test':
|
|
self.meta_data = self.testlist
|
|
else:
|
|
self.meta_data = self.trainlist[cnt:]
|
|
|
|
def crop(self, img0, gt, img1, h, w):
|
|
ih, iw, _ = img0.shape
|
|
x = np.random.randint(0, ih - h + 1)
|
|
y = np.random.randint(0, iw - w + 1)
|
|
img0 = img0[x:x+h, y:y+w, :]
|
|
img1 = img1[x:x+h, y:y+w, :]
|
|
gt = gt[x:x+h, y:y+w, :]
|
|
return img0, gt, img1
|
|
|
|
def getimg(self, index):
|
|
imgpath = os.path.join(self.image_root, self.meta_data[index])
|
|
imgpaths = [imgpath + '/im1.png', imgpath + '/im2.png', imgpath + '/im3.png']
|
|
|
|
|
|
img0 = cv2.imread(imgpaths[0])
|
|
gt = cv2.imread(imgpaths[1])
|
|
img1 = cv2.imread(imgpaths[2])
|
|
timestep = 0.5
|
|
return img0, gt, img1, timestep
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __getitem__(self, index):
|
|
img0, gt, img1, timestep = self.getimg(index)
|
|
if self.dataset_name == 'train':
|
|
img0, gt, img1 = self.crop(img0, gt, img1, 224, 224)
|
|
if random.uniform(0, 1) < 0.5:
|
|
img0 = img0[:, :, ::-1]
|
|
img1 = img1[:, :, ::-1]
|
|
gt = gt[:, :, ::-1]
|
|
if random.uniform(0, 1) < 0.5:
|
|
img0 = img0[::-1]
|
|
img1 = img1[::-1]
|
|
gt = gt[::-1]
|
|
if random.uniform(0, 1) < 0.5:
|
|
img0 = img0[:, ::-1]
|
|
img1 = img1[:, ::-1]
|
|
gt = gt[:, ::-1]
|
|
if random.uniform(0, 1) < 0.5:
|
|
tmp = img1
|
|
img1 = img0
|
|
img0 = tmp
|
|
timestep = 1 - timestep
|
|
|
|
p = random.uniform(0, 1)
|
|
if p < 0.25:
|
|
img0 = cv2.rotate(img0, cv2.ROTATE_90_CLOCKWISE)
|
|
gt = cv2.rotate(gt, cv2.ROTATE_90_CLOCKWISE)
|
|
img1 = cv2.rotate(img1, cv2.ROTATE_90_CLOCKWISE)
|
|
elif p < 0.5:
|
|
img0 = cv2.rotate(img0, cv2.ROTATE_180)
|
|
gt = cv2.rotate(gt, cv2.ROTATE_180)
|
|
img1 = cv2.rotate(img1, cv2.ROTATE_180)
|
|
elif p < 0.75:
|
|
img0 = cv2.rotate(img0, cv2.ROTATE_90_COUNTERCLOCKWISE)
|
|
gt = cv2.rotate(gt, cv2.ROTATE_90_COUNTERCLOCKWISE)
|
|
img1 = cv2.rotate(img1, cv2.ROTATE_90_COUNTERCLOCKWISE)
|
|
img0 = torch.from_numpy(img0.copy()).permute(2, 0, 1)
|
|
img1 = torch.from_numpy(img1.copy()).permute(2, 0, 1)
|
|
gt = torch.from_numpy(gt.copy()).permute(2, 0, 1)
|
|
timestep = torch.tensor(timestep).reshape(1, 1, 1)
|
|
return torch.cat((img0, img1, gt), 0), timestep
|
|
|