Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
chore: clean up app.py
Browse files- app.py +22 -122
- requirements.txt +2 -2
- src/envs.py +3 -3
- src/populate.py +3 -2
app.py
CHANGED
@@ -1,13 +1,9 @@
|
|
1 |
-
import subprocess
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
from huggingface_hub import snapshot_download
|
6 |
|
7 |
from src.about import (
|
8 |
-
CITATION_BUTTON_LABEL,
|
9 |
-
CITATION_BUTTON_TEXT,
|
10 |
-
EVALUATION_QUEUE_TEXT,
|
11 |
INTRODUCTION_TEXT,
|
12 |
LLM_BENCHMARKS_TEXT,
|
13 |
TITLE,
|
@@ -17,40 +13,40 @@ from src.display.utils import (
|
|
17 |
BENCHMARK_COLS,
|
18 |
COLS,
|
19 |
EVAL_COLS,
|
20 |
-
EVAL_TYPES,
|
21 |
NUMERIC_INTERVALS,
|
22 |
TYPES,
|
23 |
AutoEvalColumn,
|
24 |
ModelType,
|
25 |
fields,
|
26 |
-
WeightType,
|
27 |
Precision
|
28 |
)
|
29 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
30 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
31 |
-
from src.submission.submit import add_new_eval
|
32 |
|
33 |
|
34 |
def restart_space():
|
35 |
API.restart_space(repo_id=REPO_ID)
|
36 |
|
|
|
37 |
try:
|
38 |
print(EVAL_REQUESTS_PATH)
|
39 |
snapshot_download(
|
40 |
-
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
|
|
|
41 |
)
|
42 |
except Exception:
|
43 |
restart_space()
|
44 |
try:
|
45 |
print(EVAL_RESULTS_PATH)
|
46 |
snapshot_download(
|
47 |
-
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
|
|
|
48 |
)
|
49 |
except Exception:
|
50 |
restart_space()
|
51 |
|
52 |
-
|
53 |
-
|
54 |
leaderboard_df = original_df.copy()
|
55 |
|
56 |
(
|
@@ -62,13 +58,13 @@ leaderboard_df = original_df.copy()
|
|
62 |
|
63 |
# Searching and filtering
|
64 |
def update_table(
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
):
|
73 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
74 |
filtered_df = filter_queries(query, filtered_df)
|
@@ -87,8 +83,8 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
87 |
]
|
88 |
# We use COLS to maintain sorting
|
89 |
filtered_df = df[
|
90 |
-
always_here_cols + [c for c in COLS if c in df.columns and c in columns]
|
91 |
-
|
92 |
return filtered_df
|
93 |
|
94 |
|
@@ -112,7 +108,7 @@ def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
|
112 |
|
113 |
|
114 |
def filter_models(
|
115 |
-
|
116 |
) -> pd.DataFrame:
|
117 |
# Show all models
|
118 |
if show_deleted:
|
@@ -168,7 +164,7 @@ with demo:
|
|
168 |
value=False, label="Show gated/private/deleted models", interactive=True
|
169 |
)
|
170 |
with gr.Column(min_width=320):
|
171 |
-
#with gr.Box(elem_id="box-filter"):
|
172 |
filter_columns_type = gr.CheckboxGroup(
|
173 |
label="Model types",
|
174 |
choices=[t.to_str() for t in ModelType],
|
@@ -195,7 +191,7 @@ with demo:
|
|
195 |
value=leaderboard_df[
|
196 |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
197 |
+ shown_columns.value
|
198 |
-
|
199 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
200 |
datatype=TYPES,
|
201 |
elem_id="leaderboard-table",
|
@@ -223,7 +219,8 @@ with demo:
|
|
223 |
],
|
224 |
leaderboard_table,
|
225 |
)
|
226 |
-
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size,
|
|
|
227 |
selector.change(
|
228 |
update_table,
|
229 |
[
|
@@ -242,104 +239,7 @@ with demo:
|
|
242 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
243 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
244 |
|
245 |
-
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
246 |
-
with gr.Column():
|
247 |
-
with gr.Row():
|
248 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
249 |
-
|
250 |
-
with gr.Column():
|
251 |
-
with gr.Accordion(
|
252 |
-
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
253 |
-
open=False,
|
254 |
-
):
|
255 |
-
with gr.Row():
|
256 |
-
finished_eval_table = gr.components.Dataframe(
|
257 |
-
value=finished_eval_queue_df,
|
258 |
-
headers=EVAL_COLS,
|
259 |
-
datatype=EVAL_TYPES,
|
260 |
-
row_count=5,
|
261 |
-
)
|
262 |
-
with gr.Accordion(
|
263 |
-
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
264 |
-
open=False,
|
265 |
-
):
|
266 |
-
with gr.Row():
|
267 |
-
running_eval_table = gr.components.Dataframe(
|
268 |
-
value=running_eval_queue_df,
|
269 |
-
headers=EVAL_COLS,
|
270 |
-
datatype=EVAL_TYPES,
|
271 |
-
row_count=5,
|
272 |
-
)
|
273 |
-
|
274 |
-
with gr.Accordion(
|
275 |
-
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
276 |
-
open=False,
|
277 |
-
):
|
278 |
-
with gr.Row():
|
279 |
-
pending_eval_table = gr.components.Dataframe(
|
280 |
-
value=pending_eval_queue_df,
|
281 |
-
headers=EVAL_COLS,
|
282 |
-
datatype=EVAL_TYPES,
|
283 |
-
row_count=5,
|
284 |
-
)
|
285 |
-
with gr.Row():
|
286 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
287 |
-
|
288 |
-
with gr.Row():
|
289 |
-
with gr.Column():
|
290 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
291 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
292 |
-
model_type = gr.Dropdown(
|
293 |
-
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
294 |
-
label="Model type",
|
295 |
-
multiselect=False,
|
296 |
-
value=None,
|
297 |
-
interactive=True,
|
298 |
-
)
|
299 |
-
|
300 |
-
with gr.Column():
|
301 |
-
precision = gr.Dropdown(
|
302 |
-
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
303 |
-
label="Precision",
|
304 |
-
multiselect=False,
|
305 |
-
value="float16",
|
306 |
-
interactive=True,
|
307 |
-
)
|
308 |
-
weight_type = gr.Dropdown(
|
309 |
-
choices=[i.value.name for i in WeightType],
|
310 |
-
label="Weights type",
|
311 |
-
multiselect=False,
|
312 |
-
value="Original",
|
313 |
-
interactive=True,
|
314 |
-
)
|
315 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
316 |
-
|
317 |
-
submit_button = gr.Button("Submit Eval")
|
318 |
-
submission_result = gr.Markdown()
|
319 |
-
submit_button.click(
|
320 |
-
add_new_eval,
|
321 |
-
[
|
322 |
-
model_name_textbox,
|
323 |
-
base_model_name_textbox,
|
324 |
-
revision_name_textbox,
|
325 |
-
precision,
|
326 |
-
weight_type,
|
327 |
-
model_type,
|
328 |
-
],
|
329 |
-
submission_result,
|
330 |
-
)
|
331 |
-
|
332 |
-
with gr.Row():
|
333 |
-
with gr.Accordion("📙 Citation", open=False):
|
334 |
-
citation_button = gr.Textbox(
|
335 |
-
value=CITATION_BUTTON_TEXT,
|
336 |
-
label=CITATION_BUTTON_LABEL,
|
337 |
-
lines=20,
|
338 |
-
elem_id="citation-button",
|
339 |
-
show_copy_button=True,
|
340 |
-
)
|
341 |
-
|
342 |
scheduler = BackgroundScheduler()
|
343 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
344 |
scheduler.start()
|
345 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
from apscheduler.schedulers.background import BackgroundScheduler
|
4 |
from huggingface_hub import snapshot_download
|
5 |
|
6 |
from src.about import (
|
|
|
|
|
|
|
7 |
INTRODUCTION_TEXT,
|
8 |
LLM_BENCHMARKS_TEXT,
|
9 |
TITLE,
|
|
|
13 |
BENCHMARK_COLS,
|
14 |
COLS,
|
15 |
EVAL_COLS,
|
|
|
16 |
NUMERIC_INTERVALS,
|
17 |
TYPES,
|
18 |
AutoEvalColumn,
|
19 |
ModelType,
|
20 |
fields,
|
|
|
21 |
Precision
|
22 |
)
|
23 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
24 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
|
|
25 |
|
26 |
|
27 |
def restart_space():
|
28 |
API.restart_space(repo_id=REPO_ID)
|
29 |
|
30 |
+
|
31 |
try:
|
32 |
print(EVAL_REQUESTS_PATH)
|
33 |
snapshot_download(
|
34 |
+
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
|
35 |
+
token=TOKEN
|
36 |
)
|
37 |
except Exception:
|
38 |
restart_space()
|
39 |
try:
|
40 |
print(EVAL_RESULTS_PATH)
|
41 |
snapshot_download(
|
42 |
+
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
|
43 |
+
token=TOKEN
|
44 |
)
|
45 |
except Exception:
|
46 |
restart_space()
|
47 |
|
48 |
+
raw_data, original_df = get_leaderboard_df(
|
49 |
+
EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
50 |
leaderboard_df = original_df.copy()
|
51 |
|
52 |
(
|
|
|
58 |
|
59 |
# Searching and filtering
|
60 |
def update_table(
|
61 |
+
hidden_df: pd.DataFrame,
|
62 |
+
columns: list,
|
63 |
+
type_query: list,
|
64 |
+
precision_query: str,
|
65 |
+
size_query: list,
|
66 |
+
show_deleted: bool,
|
67 |
+
query: str,
|
68 |
):
|
69 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
70 |
filtered_df = filter_queries(query, filtered_df)
|
|
|
83 |
]
|
84 |
# We use COLS to maintain sorting
|
85 |
filtered_df = df[
|
86 |
+
always_here_cols + [c for c in COLS if c in df.columns and c in columns]
|
87 |
+
]
|
88 |
return filtered_df
|
89 |
|
90 |
|
|
|
108 |
|
109 |
|
110 |
def filter_models(
|
111 |
+
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
112 |
) -> pd.DataFrame:
|
113 |
# Show all models
|
114 |
if show_deleted:
|
|
|
164 |
value=False, label="Show gated/private/deleted models", interactive=True
|
165 |
)
|
166 |
with gr.Column(min_width=320):
|
167 |
+
# with gr.Box(elem_id="box-filter"):
|
168 |
filter_columns_type = gr.CheckboxGroup(
|
169 |
label="Model types",
|
170 |
choices=[t.to_str() for t in ModelType],
|
|
|
191 |
value=leaderboard_df[
|
192 |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
193 |
+ shown_columns.value
|
194 |
+
],
|
195 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
196 |
datatype=TYPES,
|
197 |
elem_id="leaderboard-table",
|
|
|
219 |
],
|
220 |
leaderboard_table,
|
221 |
)
|
222 |
+
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size,
|
223 |
+
deleted_models_visibility]:
|
224 |
selector.change(
|
225 |
update_table,
|
226 |
[
|
|
|
239 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
240 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
scheduler = BackgroundScheduler()
|
243 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
244 |
scheduler.start()
|
245 |
+
demo.queue(default_concurrency_limit=40).launch()
|
requirements.txt
CHANGED
@@ -13,6 +13,6 @@ requests==2.28.2
|
|
13 |
tqdm==4.65.0
|
14 |
transformers==4.35.2
|
15 |
tokenizers>=0.15.0
|
16 |
-
git+https://github.com/EleutherAI/lm-evaluation-harness.git@b281b0921b636bc36ad05c0b0b0763bd6dd43463#egg=lm-eval
|
17 |
accelerate==0.24.1
|
18 |
-
sentencepiece
|
|
|
|
13 |
tqdm==4.65.0
|
14 |
transformers==4.35.2
|
15 |
tokenizers>=0.15.0
|
|
|
16 |
accelerate==0.24.1
|
17 |
+
sentencepiece
|
18 |
+
socksio==1.0.0
|
src/envs.py
CHANGED
@@ -4,9 +4,9 @@ from huggingface_hub import HfApi
|
|
4 |
|
5 |
# Info to change for your repository
|
6 |
# ----------------------------------
|
7 |
-
TOKEN = os.environ.get("TOKEN")
|
8 |
|
9 |
-
OWNER = "
|
10 |
# ----------------------------------
|
11 |
|
12 |
REPO_ID = f"{OWNER}/leaderboard"
|
@@ -14,7 +14,7 @@ QUEUE_REPO = f"{OWNER}/requests"
|
|
14 |
RESULTS_REPO = f"{OWNER}/results"
|
15 |
|
16 |
# If you setup a cache later, just change HF_HOME
|
17 |
-
CACHE_PATH=os.getenv("HF_HOME", ".")
|
18 |
|
19 |
# Local caches
|
20 |
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
|
|
4 |
|
5 |
# Info to change for your repository
|
6 |
# ----------------------------------
|
7 |
+
TOKEN = os.environ.get("TOKEN") # A read/write token for your org
|
8 |
|
9 |
+
OWNER = "nan" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
10 |
# ----------------------------------
|
11 |
|
12 |
REPO_ID = f"{OWNER}/leaderboard"
|
|
|
14 |
RESULTS_REPO = f"{OWNER}/results"
|
15 |
|
16 |
# If you setup a cache later, just change HF_HOME
|
17 |
+
CACHE_PATH = os.getenv("HF_HOME", ".")
|
18 |
|
19 |
# Local caches
|
20 |
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
src/populate.py
CHANGED
@@ -5,10 +5,11 @@ import pandas as pd
|
|
5 |
|
6 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
7 |
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
8 |
-
from src.leaderboard.read_evals import get_raw_eval_results
|
|
|
9 |
|
10 |
|
11 |
-
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
12 |
"""Creates a dataframe from all the individual experiment results"""
|
13 |
raw_data = get_raw_eval_results(results_path, requests_path)
|
14 |
all_data_json = [v.to_dict() for v in raw_data]
|
|
|
5 |
|
6 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
7 |
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
8 |
+
from src.leaderboard.read_evals import get_raw_eval_results, EvalResult
|
9 |
+
from typing import Tuple
|
10 |
|
11 |
|
12 |
+
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> Tuple[list[EvalResult], pd.DataFrame]:
|
13 |
"""Creates a dataframe from all the individual experiment results"""
|
14 |
raw_data = get_raw_eval_results(results_path, requests_path)
|
15 |
all_data_json = [v.to_dict() for v in raw_data]
|