Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	File size: 9,181 Bytes
			
			| 6efc863 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 | import sys
import numpy as np
import torch
from typing import TypeVar, Optional, Iterator
import logging
import pandas as pd
from ldm.data.joinaudiodataset_anylen import *
import glob
logger = logging.getLogger(f'main.{__name__}')
sys.path.insert(0, '.')  # nopep8
class JoinManifestSpecs(torch.utils.data.Dataset):
    def __init__(self, split, main_spec_dir_path,other_spec_dir_path, mel_num=80,mode='pad', spec_crop_len=1248,pad_value=-5,drop=0,**kwargs):
        super().__init__()
        self.split = split
        self.max_batch_len = spec_crop_len
        self.min_batch_len = 64
        self.min_factor = 4
        self.mel_num = mel_num
        self.drop = drop
        self.pad_value = pad_value
        assert mode in ['pad','tile']
        self.collate_mode = mode
        manifest_files = []
        for dir_path in main_spec_dir_path.split(','):
            manifest_files += glob.glob(f'{dir_path}/*.tsv')
        df_list = [pd.read_csv(manifest,sep='\t') for manifest in manifest_files]
        self.df_main = pd.concat(df_list,ignore_index=True)
        manifest_files = []
        for dir_path in other_spec_dir_path.split(','):
            manifest_files += glob.glob(f'{dir_path}/*.tsv')
        df_list = [pd.read_csv(manifest,sep='\t') for manifest in manifest_files]
        # import ipdb
        # ipdb.set_trace()
        self.df_other = pd.concat(df_list,ignore_index=True)
        self.df_other.reset_index(inplace=True)
        if split == 'train':
            self.dataset = self.df_main.iloc[100:]
        elif split == 'valid' or split == 'val':
            self.dataset = self.df_main.iloc[:100]
        elif split == 'test':
            self.df_main = self.add_name_num(self.df_main)
            self.dataset = self.df_main
        else:
            raise ValueError(f'Unknown split {split}')
        self.dataset.reset_index(inplace=True)
        print('dataset len:', len(self.dataset),"drop_rate",self.drop)
    def add_name_num(self,df):
        """each file may have different caption, we add num to filename to identify each audio-caption pair"""
        name_count_dict = {}
        change = []
        for t in df.itertuples():
            name = getattr(t,'name')
            if name in name_count_dict:
                name_count_dict[name] += 1
            else:
                name_count_dict[name] = 0
            change.append((t[0],name_count_dict[name]))
        for t in change:
            df.loc[t[0],'name'] = str(df.loc[t[0],'name']) + f'_{t[1]}'
        return df
    def ordered_indices(self):
        index2dur = self.dataset[['duration']].sort_values(by='duration')
        index2dur_other = self.df_other[['duration']].sort_values(by='duration')
        other_indices = list(index2dur_other.index)
        offset = len(self.dataset)
        other_indices = [x + offset for x in other_indices]
        return list(index2dur.index),other_indices
        # return list(index2dur.index)
    def collater(self,inputs):
        to_dict = {}
        for l in inputs:
            for k,v in l.items():
                if k in to_dict:
                    to_dict[k].append(v)
                else:
                    to_dict[k] = [v]
        if self.collate_mode == 'pad':
            to_dict['image'] = collate_1d_or_2d(to_dict['image'],pad_idx=self.pad_value,min_len = self.min_batch_len,max_len=self.max_batch_len,min_factor=self.min_factor)
        elif self.collate_mode == 'tile':
            to_dict['image'] = collate_1d_or_2d_tile(to_dict['image'],min_len = self.min_batch_len,max_len=self.max_batch_len,min_factor=self.min_factor)
        else:
            raise NotImplementedError
        to_dict['caption'] = {'ori_caption':[c['ori_caption'] for c in to_dict['caption']],
                              'struct_caption':[c['struct_caption'] for c in to_dict['caption']]}
        return to_dict
    def __getitem__(self, idx):
        if idx < len(self.dataset):
            data = self.dataset.iloc[idx]
        # p = np.random.uniform(0,1)
        # if p > self.drop:
            ori_caption = data['ori_cap']
            struct_caption = data['caption']
        # else:
        #     ori_caption = ""
        #     struct_caption = ""
        else:
            data = self.df_other.iloc[idx-len(self.dataset)]
            # p = np.random.uniform(0,1)
            # if p > self.drop:
            ori_caption = data['caption']
            struct_caption = f'<{ori_caption}& all>'
            # else:
            #     ori_caption = ""
            #     struct_caption = ""
        item = {}
        try:
            spec = np.load(data['mel_path']) # mel spec [80, T]
            if spec.shape[1] > self.max_batch_len:
                spec = spec[:,:self.max_batch_len]
        except:
            mel_path = data['mel_path']
            print(f'corrupted:{mel_path}')
            spec = np.ones((self.mel_num,self.min_batch_len)).astype(np.float32)*self.pad_value
        
        item['image'] = spec
        item["caption"] = {"ori_caption":ori_caption,"struct_caption":struct_caption}
        if self.split == 'test':
            item['f_name'] = data['name']
        return item
    def __len__(self):
        return len(self.dataset) + len(self.df_other)
        # return len(self.dataset)
class JoinSpecsTrain(JoinManifestSpecs):
    def __init__(self, specs_dataset_cfg):
        super().__init__('train', **specs_dataset_cfg)
class JoinSpecsValidation(JoinManifestSpecs):
    def __init__(self, specs_dataset_cfg):
        super().__init__('valid', **specs_dataset_cfg)
class JoinSpecsTest(JoinManifestSpecs):
    def __init__(self, specs_dataset_cfg):
        super().__init__('test', **specs_dataset_cfg)
class DDPIndexBatchSampler(Sampler):# 让长度相似的音频的indices合到一个batch中以避免过长的pad
    def __init__(self, main_indices,other_indices,batch_size, num_replicas: Optional[int] = None,
    # def __init__(self, main_indices,batch_size, num_replicas: Optional[int] = None,
                 rank: Optional[int] = None, shuffle: bool = True,
                 seed: int = 0, drop_last: bool = False) -> None:
        if num_replicas is None:
            if not dist.is_initialized():
                # raise RuntimeError("Requires distributed package to be available")
                print("Not in distributed mode")
                num_replicas = 1
            else:
                num_replicas = dist.get_world_size()
        if rank is None:
            if not dist.is_initialized():
                # raise RuntimeError("Requires distributed package to be available")
                rank = 0
            else:
                rank = dist.get_rank()
        if rank >= num_replicas or rank < 0:
            raise ValueError(
                "Invalid rank {}, rank should be in the interval"
                " [0, {}]".format(rank, num_replicas - 1))
        self.main_indices = main_indices
        self.other_indices = other_indices
        self.max_index = max(self.other_indices)
        self.num_replicas = num_replicas
        self.rank = rank
        self.epoch = 0
        self.drop_last = drop_last
        self.batch_size = batch_size
        self.shuffle = shuffle
        self.batches = self.build_batches()
        self.seed = seed
    def set_epoch(self,epoch):
        # print("!!!!!!!!!!!set epoch is called!!!!!!!!!!!!!!")
        self.epoch = epoch
        if self.shuffle:
            np.random.seed(self.seed+self.epoch)
            self.batches = self.build_batches()
    def build_batches(self):
        batches,batch = [],[]
        for index in self.main_indices:
            batch.append(index)
            if len(batch) == self.batch_size:
                batches.append(batch)
                batch = []
        if not self.drop_last and len(batch) > 0:
            batches.append(batch)
        selected_others = np.random.choice(len(self.other_indices),len(batches),replace=False)
        for index in selected_others:
            if index + self.batch_size > len(self.other_indices):
                index = len(self.other_indices) - self.batch_size
            batch = [self.other_indices[index + i] for i in range(self.batch_size)]
            batches.append(batch)
        self.batches = batches
        if self.shuffle:
            self.batches = np.random.permutation(self.batches)
        if self.rank == 0:
            print(f"rank: {self.rank}, batches_num {len(self.batches)}")
        if self.drop_last and len(self.batches) % self.num_replicas != 0:
            self.batches = self.batches[:len(self.batches)//self.num_replicas*self.num_replicas]
        if len(self.batches) >= self.num_replicas: 
            self.batches = self.batches[self.rank::self.num_replicas]
        else: # may happen in sanity checking
            self.batches = [self.batches[0]]
        if self.rank == 0:
            print(f"after split batches_num {len(self.batches)}")
        return self.batches
    def __iter__(self) -> Iterator[List[int]]:
        print(f"len(self.batches):{len(self.batches)}")
        for batch in self.batches:
            yield batch
    def __len__(self) -> int:
        return len(self.batches)
 |