Spaces:
Build error
Build error
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torchlibrosa.stft import Spectrogram, LogmelFilterBank | |
| from torchlibrosa.augmentation import SpecAugmentation | |
| from audio_infer.pytorch.pytorch_utils import do_mixup, interpolate, pad_framewise_output | |
| import os | |
| import sys | |
| import math | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch.nn.parameter import Parameter | |
| from torchlibrosa.stft import Spectrogram, LogmelFilterBank | |
| from torchlibrosa.augmentation import SpecAugmentation | |
| from audio_infer.pytorch.pytorch_utils import do_mixup | |
| import torch.utils.checkpoint as checkpoint | |
| from timm.models.layers import DropPath, to_2tuple, trunc_normal_ | |
| import warnings | |
| from functools import partial | |
| #from mmdet.models.builder import BACKBONES | |
| from mmdet.utils import get_root_logger | |
| from mmcv.runner import load_checkpoint | |
| os.environ['TORCH_HOME'] = '../pretrained_models' | |
| from copy import deepcopy | |
| from timm.models.helpers import load_pretrained | |
| from torch.cuda.amp import autocast | |
| from collections import OrderedDict | |
| import io | |
| import re | |
| from mmcv.runner import _load_checkpoint, load_state_dict | |
| import mmcv.runner | |
| import copy | |
| import random | |
| from einops import rearrange | |
| from einops.layers.torch import Rearrange, Reduce | |
| from torch import nn, einsum | |
| def load_checkpoint(model, | |
| filename, | |
| map_location=None, | |
| strict=False, | |
| logger=None, | |
| revise_keys=[(r'^module\.', '')]): | |
| """Load checkpoint from a file or URI. | |
| Args: | |
| model (Module): Module to load checkpoint. | |
| filename (str): Accept local filepath, URL, ``torchvision://xxx``, | |
| ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for | |
| details. | |
| map_location (str): Same as :func:`torch.load`. | |
| strict (bool): Whether to allow different params for the model and | |
| checkpoint. | |
| logger (:mod:`logging.Logger` or None): The logger for error message. | |
| revise_keys (list): A list of customized keywords to modify the | |
| state_dict in checkpoint. Each item is a (pattern, replacement) | |
| pair of the regular expression operations. Default: strip | |
| the prefix 'module.' by [(r'^module\\.', '')]. | |
| Returns: | |
| dict or OrderedDict: The loaded checkpoint. | |
| """ | |
| checkpoint = _load_checkpoint(filename, map_location, logger) | |
| new_proj = torch.nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(4, 4), padding=(2, 2)) | |
| new_proj.weight = torch.nn.Parameter(torch.sum(checkpoint['patch_embed1.proj.weight'], dim=1).unsqueeze(1)) | |
| checkpoint['patch_embed1.proj.weight'] = new_proj.weight | |
| # OrderedDict is a subclass of dict | |
| if not isinstance(checkpoint, dict): | |
| raise RuntimeError( | |
| f'No state_dict found in checkpoint file {filename}') | |
| # get state_dict from checkpoint | |
| if 'state_dict' in checkpoint: | |
| state_dict = checkpoint['state_dict'] | |
| else: | |
| state_dict = checkpoint | |
| # strip prefix of state_dict | |
| metadata = getattr(state_dict, '_metadata', OrderedDict()) | |
| for p, r in revise_keys: | |
| state_dict = OrderedDict( | |
| {re.sub(p, r, k): v | |
| for k, v in state_dict.items()}) | |
| state_dict = OrderedDict({k.replace('backbone.',''):v for k,v in state_dict.items()}) | |
| # Keep metadata in state_dict | |
| state_dict._metadata = metadata | |
| # load state_dict | |
| load_state_dict(model, state_dict, strict, logger) | |
| return checkpoint | |
| def init_layer(layer): | |
| """Initialize a Linear or Convolutional layer. """ | |
| nn.init.xavier_uniform_(layer.weight) | |
| if hasattr(layer, 'bias'): | |
| if layer.bias is not None: | |
| layer.bias.data.fill_(0.) | |
| def init_bn(bn): | |
| """Initialize a Batchnorm layer. """ | |
| bn.bias.data.fill_(0.) | |
| bn.weight.data.fill_(1.) | |
| class TimeShift(nn.Module): | |
| def __init__(self, mean, std): | |
| super().__init__() | |
| self.mean = mean | |
| self.std = std | |
| def forward(self, x): | |
| if self.training: | |
| shift = torch.empty(1).normal_(self.mean, self.std).int().item() | |
| x = torch.roll(x, shift, dims=2) | |
| return x | |
| class LinearSoftPool(nn.Module): | |
| """LinearSoftPool | |
| Linear softmax, takes logits and returns a probability, near to the actual maximum value. | |
| Taken from the paper: | |
| A Comparison of Five Multiple Instance Learning Pooling Functions for Sound Event Detection with Weak Labeling | |
| https://arxiv.org/abs/1810.09050 | |
| """ | |
| def __init__(self, pooldim=1): | |
| super().__init__() | |
| self.pooldim = pooldim | |
| def forward(self, logits, time_decision): | |
| return (time_decision**2).sum(self.pooldim) / time_decision.sum( | |
| self.pooldim) | |
| class PVT(nn.Module): | |
| def __init__(self, sample_rate, window_size, hop_size, mel_bins, fmin, | |
| fmax, classes_num): | |
| super(PVT, self).__init__() | |
| window = 'hann' | |
| center = True | |
| pad_mode = 'reflect' | |
| ref = 1.0 | |
| amin = 1e-10 | |
| top_db = None | |
| # Spectrogram extractor | |
| self.spectrogram_extractor = Spectrogram(n_fft=window_size, hop_length=hop_size, | |
| win_length=window_size, window=window, center=center, pad_mode=pad_mode, | |
| freeze_parameters=True) | |
| # Logmel feature extractor | |
| self.logmel_extractor = LogmelFilterBank(sr=sample_rate, n_fft=window_size, | |
| n_mels=mel_bins, fmin=fmin, fmax=fmax, ref=ref, amin=amin, top_db=top_db, | |
| freeze_parameters=True) | |
| self.time_shift = TimeShift(0, 10) | |
| # Spec augmenter | |
| self.spec_augmenter = SpecAugmentation(time_drop_width=64, time_stripes_num=2, | |
| freq_drop_width=8, freq_stripes_num=2) | |
| self.bn0 = nn.BatchNorm2d(64) | |
| self.pvt_transformer = PyramidVisionTransformerV2(tdim=1001, | |
| fdim=64, | |
| patch_size=7, | |
| stride=4, | |
| in_chans=1, | |
| num_classes=classes_num, | |
| embed_dims=[64, 128, 320, 512], | |
| depths=[3, 4, 6, 3], | |
| num_heads=[1, 2, 5, 8], | |
| mlp_ratios=[8, 8, 4, 4], | |
| qkv_bias=True, | |
| qk_scale=None, | |
| drop_rate=0.0, | |
| drop_path_rate=0.1, | |
| sr_ratios=[8, 4, 2, 1], | |
| norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
| num_stages=4, | |
| #pretrained='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b2.pth' | |
| ) | |
| #self.temp_pool = LinearSoftPool() | |
| self.avgpool = nn.AdaptiveAvgPool1d(1) | |
| self.fc_audioset = nn.Linear(512, classes_num, bias=True) | |
| self.init_weights() | |
| def init_weights(self): | |
| init_bn(self.bn0) | |
| init_layer(self.fc_audioset) | |
| def forward(self, input, mixup_lambda=None): | |
| """Input: (batch_size, times_steps, freq_bins)""" | |
| interpolate_ratio = 32 | |
| x = self.spectrogram_extractor(input) # (batch_size, 1, time_steps, freq_bins) | |
| x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins) | |
| frames_num = x.shape[2] | |
| x = x.transpose(1, 3) | |
| x = self.bn0(x) | |
| x = x.transpose(1, 3) | |
| if self.training: | |
| x = self.time_shift(x) | |
| x = self.spec_augmenter(x) | |
| # Mixup on spectrogram | |
| if self.training and mixup_lambda is not None: | |
| x = do_mixup(x, mixup_lambda) | |
| #print(x.shape) #torch.Size([10, 1, 1001, 64]) | |
| x = self.pvt_transformer(x) | |
| #print(x.shape) #torch.Size([10, 800, 128]) | |
| x = torch.mean(x, dim=3) | |
| x = x.transpose(1, 2).contiguous() | |
| framewise_output = torch.sigmoid(self.fc_audioset(x)) | |
| #clipwise_output = torch.mean(framewise_output, dim=1) | |
| #clipwise_output = self.temp_pool(x, framewise_output).clamp(1e-7, 1.).squeeze(1) | |
| x = framewise_output.transpose(1, 2).contiguous() | |
| x = self.avgpool(x) | |
| clipwise_output = torch.flatten(x, 1) | |
| #print(framewise_output.shape) #torch.Size([10, 100, 17]) | |
| framewise_output = interpolate(framewise_output, interpolate_ratio) | |
| #framewise_output = framewise_output[:,:1000,:] | |
| #framewise_output = pad_framewise_output(framewise_output, frames_num) | |
| output_dict = {'framewise_output': framewise_output, | |
| 'clipwise_output': clipwise_output} | |
| return output_dict | |
| class PVT2(nn.Module): | |
| def __init__(self, sample_rate, window_size, hop_size, mel_bins, fmin, | |
| fmax, classes_num): | |
| super(PVT2, self).__init__() | |
| window = 'hann' | |
| center = True | |
| pad_mode = 'reflect' | |
| ref = 1.0 | |
| amin = 1e-10 | |
| top_db = None | |
| # Spectrogram extractor | |
| self.spectrogram_extractor = Spectrogram(n_fft=window_size, hop_length=hop_size, | |
| win_length=window_size, window=window, center=center, pad_mode=pad_mode, | |
| freeze_parameters=True) | |
| # Logmel feature extractor | |
| self.logmel_extractor = LogmelFilterBank(sr=sample_rate, n_fft=window_size, | |
| n_mels=mel_bins, fmin=fmin, fmax=fmax, ref=ref, amin=amin, top_db=top_db, | |
| freeze_parameters=True) | |
| self.time_shift = TimeShift(0, 10) | |
| # Spec augmenter | |
| self.spec_augmenter = SpecAugmentation(time_drop_width=64, time_stripes_num=2, | |
| freq_drop_width=8, freq_stripes_num=2) | |
| self.bn0 = nn.BatchNorm2d(64) | |
| self.pvt_transformer = PyramidVisionTransformerV2(tdim=1001, | |
| fdim=64, | |
| patch_size=7, | |
| stride=4, | |
| in_chans=1, | |
| num_classes=classes_num, | |
| embed_dims=[64, 128, 320, 512], | |
| depths=[3, 4, 6, 3], | |
| num_heads=[1, 2, 5, 8], | |
| mlp_ratios=[8, 8, 4, 4], | |
| qkv_bias=True, | |
| qk_scale=None, | |
| drop_rate=0.0, | |
| drop_path_rate=0.1, | |
| sr_ratios=[8, 4, 2, 1], | |
| norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
| num_stages=4, | |
| pretrained='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b2.pth' | |
| ) | |
| #self.temp_pool = LinearSoftPool() | |
| self.fc_audioset = nn.Linear(512, classes_num, bias=True) | |
| self.init_weights() | |
| def init_weights(self): | |
| init_bn(self.bn0) | |
| init_layer(self.fc_audioset) | |
| def forward(self, input, mixup_lambda=None): | |
| """Input: (batch_size, times_steps, freq_bins)""" | |
| interpolate_ratio = 32 | |
| x = self.spectrogram_extractor(input) # (batch_size, 1, time_steps, freq_bins) | |
| x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins) | |
| frames_num = x.shape[2] | |
| x = x.transpose(1, 3) | |
| x = self.bn0(x) | |
| x = x.transpose(1, 3) | |
| if self.training: | |
| #x = self.time_shift(x) | |
| x = self.spec_augmenter(x) | |
| # Mixup on spectrogram | |
| if self.training and mixup_lambda is not None: | |
| x = do_mixup(x, mixup_lambda) | |
| #print(x.shape) #torch.Size([10, 1, 1001, 64]) | |
| x = self.pvt_transformer(x) | |
| #print(x.shape) #torch.Size([10, 800, 128]) | |
| x = torch.mean(x, dim=3) | |
| x = x.transpose(1, 2).contiguous() | |
| framewise_output = torch.sigmoid(self.fc_audioset(x)) | |
| clipwise_output = torch.mean(framewise_output, dim=1) | |
| #clipwise_output = self.temp_pool(x, framewise_output).clamp(1e-7, 1.).squeeze(1) | |
| #print(framewise_output.shape) #torch.Size([10, 100, 17]) | |
| framewise_output = interpolate(framewise_output, interpolate_ratio) | |
| #framewise_output = framewise_output[:,:1000,:] | |
| #framewise_output = pad_framewise_output(framewise_output, frames_num) | |
| output_dict = {'framewise_output': framewise_output, | |
| 'clipwise_output': clipwise_output} | |
| return output_dict | |
| class PVT_2layer(nn.Module): | |
| def __init__(self, sample_rate, window_size, hop_size, mel_bins, fmin, | |
| fmax, classes_num): | |
| super(PVT_2layer, self).__init__() | |
| window = 'hann' | |
| center = True | |
| pad_mode = 'reflect' | |
| ref = 1.0 | |
| amin = 1e-10 | |
| top_db = None | |
| # Spectrogram extractor | |
| self.spectrogram_extractor = Spectrogram(n_fft=window_size, hop_length=hop_size, | |
| win_length=window_size, window=window, center=center, pad_mode=pad_mode, | |
| freeze_parameters=True) | |
| # Logmel feature extractor | |
| self.logmel_extractor = LogmelFilterBank(sr=sample_rate, n_fft=window_size, | |
| n_mels=mel_bins, fmin=fmin, fmax=fmax, ref=ref, amin=amin, top_db=top_db, | |
| freeze_parameters=True) | |
| self.time_shift = TimeShift(0, 10) | |
| # Spec augmenter | |
| self.spec_augmenter = SpecAugmentation(time_drop_width=64, time_stripes_num=2, | |
| freq_drop_width=8, freq_stripes_num=2) | |
| self.bn0 = nn.BatchNorm2d(64) | |
| self.pvt_transformer = PyramidVisionTransformerV2(tdim=1001, | |
| fdim=64, | |
| patch_size=7, | |
| stride=4, | |
| in_chans=1, | |
| num_classes=classes_num, | |
| embed_dims=[64, 128], | |
| depths=[3, 4], | |
| num_heads=[1, 2], | |
| mlp_ratios=[8, 8], | |
| qkv_bias=True, | |
| qk_scale=None, | |
| drop_rate=0.0, | |
| drop_path_rate=0.1, | |
| sr_ratios=[8, 4], | |
| norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
| num_stages=2, | |
| pretrained='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b2.pth' | |
| ) | |
| #self.temp_pool = LinearSoftPool() | |
| self.avgpool = nn.AdaptiveAvgPool1d(1) | |
| self.fc_audioset = nn.Linear(128, classes_num, bias=True) | |
| self.init_weights() | |
| def init_weights(self): | |
| init_bn(self.bn0) | |
| init_layer(self.fc_audioset) | |
| def forward(self, input, mixup_lambda=None): | |
| """Input: (batch_size, times_steps, freq_bins)""" | |
| interpolate_ratio = 8 | |
| x = self.spectrogram_extractor(input) # (batch_size, 1, time_steps, freq_bins) | |
| x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins) | |
| frames_num = x.shape[2] | |
| x = x.transpose(1, 3) | |
| x = self.bn0(x) | |
| x = x.transpose(1, 3) | |
| if self.training: | |
| x = self.time_shift(x) | |
| x = self.spec_augmenter(x) | |
| # Mixup on spectrogram | |
| if self.training and mixup_lambda is not None: | |
| x = do_mixup(x, mixup_lambda) | |
| #print(x.shape) #torch.Size([10, 1, 1001, 64]) | |
| x = self.pvt_transformer(x) | |
| #print(x.shape) #torch.Size([10, 800, 128]) | |
| x = torch.mean(x, dim=3) | |
| x = x.transpose(1, 2).contiguous() | |
| framewise_output = torch.sigmoid(self.fc_audioset(x)) | |
| #clipwise_output = torch.mean(framewise_output, dim=1) | |
| #clipwise_output = self.temp_pool(x, framewise_output).clamp(1e-7, 1.).squeeze(1) | |
| x = framewise_output.transpose(1, 2).contiguous() | |
| x = self.avgpool(x) | |
| clipwise_output = torch.flatten(x, 1) | |
| #print(framewise_output.shape) #torch.Size([10, 100, 17]) | |
| framewise_output = interpolate(framewise_output, interpolate_ratio) | |
| #framewise_output = framewise_output[:,:1000,:] | |
| #framewise_output = pad_framewise_output(framewise_output, frames_num) | |
| output_dict = {'framewise_output': framewise_output, | |
| 'clipwise_output': clipwise_output} | |
| return output_dict | |
| class PVT_lr(nn.Module): | |
| def __init__(self, sample_rate, window_size, hop_size, mel_bins, fmin, | |
| fmax, classes_num): | |
| super(PVT_lr, self).__init__() | |
| window = 'hann' | |
| center = True | |
| pad_mode = 'reflect' | |
| ref = 1.0 | |
| amin = 1e-10 | |
| top_db = None | |
| # Spectrogram extractor | |
| self.spectrogram_extractor = Spectrogram(n_fft=window_size, hop_length=hop_size, | |
| win_length=window_size, window=window, center=center, pad_mode=pad_mode, | |
| freeze_parameters=True) | |
| # Logmel feature extractor | |
| self.logmel_extractor = LogmelFilterBank(sr=sample_rate, n_fft=window_size, | |
| n_mels=mel_bins, fmin=fmin, fmax=fmax, ref=ref, amin=amin, top_db=top_db, | |
| freeze_parameters=True) | |
| self.time_shift = TimeShift(0, 10) | |
| # Spec augmenter | |
| self.spec_augmenter = SpecAugmentation(time_drop_width=64, time_stripes_num=2, | |
| freq_drop_width=8, freq_stripes_num=2) | |
| self.bn0 = nn.BatchNorm2d(64) | |
| self.pvt_transformer = PyramidVisionTransformerV2(tdim=1001, | |
| fdim=64, | |
| patch_size=7, | |
| stride=4, | |
| in_chans=1, | |
| num_classes=classes_num, | |
| embed_dims=[64, 128, 320, 512], | |
| depths=[3, 4, 6, 3], | |
| num_heads=[1, 2, 5, 8], | |
| mlp_ratios=[8, 8, 4, 4], | |
| qkv_bias=True, | |
| qk_scale=None, | |
| drop_rate=0.0, | |
| drop_path_rate=0.1, | |
| sr_ratios=[8, 4, 2, 1], | |
| norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
| num_stages=4, | |
| pretrained='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b2.pth' | |
| ) | |
| self.temp_pool = LinearSoftPool() | |
| self.fc_audioset = nn.Linear(512, classes_num, bias=True) | |
| self.init_weights() | |
| def init_weights(self): | |
| init_bn(self.bn0) | |
| init_layer(self.fc_audioset) | |
| def forward(self, input, mixup_lambda=None): | |
| """Input: (batch_size, times_steps, freq_bins)""" | |
| interpolate_ratio = 32 | |
| x = self.spectrogram_extractor(input) # (batch_size, 1, time_steps, freq_bins) | |
| x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins) | |
| frames_num = x.shape[2] | |
| x = x.transpose(1, 3) | |
| x = self.bn0(x) | |
| x = x.transpose(1, 3) | |
| if self.training: | |
| x = self.time_shift(x) | |
| x = self.spec_augmenter(x) | |
| # Mixup on spectrogram | |
| if self.training and mixup_lambda is not None: | |
| x = do_mixup(x, mixup_lambda) | |
| #print(x.shape) #torch.Size([10, 1, 1001, 64]) | |
| x = self.pvt_transformer(x) | |
| #print(x.shape) #torch.Size([10, 800, 128]) | |
| x = torch.mean(x, dim=3) | |
| x = x.transpose(1, 2).contiguous() | |
| framewise_output = torch.sigmoid(self.fc_audioset(x)) | |
| clipwise_output = self.temp_pool(x, framewise_output).clamp(1e-7, 1.).squeeze(1) | |
| #print(framewise_output.shape) #torch.Size([10, 100, 17]) | |
| framewise_output = interpolate(framewise_output, interpolate_ratio) | |
| #framewise_output = framewise_output[:,:1000,:] | |
| #framewise_output = pad_framewise_output(framewise_output, frames_num) | |
| output_dict = {'framewise_output': framewise_output, | |
| 'clipwise_output': clipwise_output} | |
| return output_dict | |
| class PVT_nopretrain(nn.Module): | |
| def __init__(self, sample_rate, window_size, hop_size, mel_bins, fmin, | |
| fmax, classes_num): | |
| super(PVT_nopretrain, self).__init__() | |
| window = 'hann' | |
| center = True | |
| pad_mode = 'reflect' | |
| ref = 1.0 | |
| amin = 1e-10 | |
| top_db = None | |
| # Spectrogram extractor | |
| self.spectrogram_extractor = Spectrogram(n_fft=window_size, hop_length=hop_size, | |
| win_length=window_size, window=window, center=center, pad_mode=pad_mode, | |
| freeze_parameters=True) | |
| # Logmel feature extractor | |
| self.logmel_extractor = LogmelFilterBank(sr=sample_rate, n_fft=window_size, | |
| n_mels=mel_bins, fmin=fmin, fmax=fmax, ref=ref, amin=amin, top_db=top_db, | |
| freeze_parameters=True) | |
| self.time_shift = TimeShift(0, 10) | |
| # Spec augmenter | |
| self.spec_augmenter = SpecAugmentation(time_drop_width=64, time_stripes_num=2, | |
| freq_drop_width=8, freq_stripes_num=2) | |
| self.bn0 = nn.BatchNorm2d(64) | |
| self.pvt_transformer = PyramidVisionTransformerV2(tdim=1001, | |
| fdim=64, | |
| patch_size=7, | |
| stride=4, | |
| in_chans=1, | |
| num_classes=classes_num, | |
| embed_dims=[64, 128, 320, 512], | |
| depths=[3, 4, 6, 3], | |
| num_heads=[1, 2, 5, 8], | |
| mlp_ratios=[8, 8, 4, 4], | |
| qkv_bias=True, | |
| qk_scale=None, | |
| drop_rate=0.0, | |
| drop_path_rate=0.1, | |
| sr_ratios=[8, 4, 2, 1], | |
| norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
| num_stages=4, | |
| #pretrained='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b2.pth' | |
| ) | |
| self.temp_pool = LinearSoftPool() | |
| self.fc_audioset = nn.Linear(512, classes_num, bias=True) | |
| self.init_weights() | |
| def init_weights(self): | |
| init_bn(self.bn0) | |
| init_layer(self.fc_audioset) | |
| def forward(self, input, mixup_lambda=None): | |
| """Input: (batch_size, times_steps, freq_bins)""" | |
| interpolate_ratio = 32 | |
| x = self.spectrogram_extractor(input) # (batch_size, 1, time_steps, freq_bins) | |
| x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins) | |
| frames_num = x.shape[2] | |
| x = x.transpose(1, 3) | |
| x = self.bn0(x) | |
| x = x.transpose(1, 3) | |
| if self.training: | |
| x = self.time_shift(x) | |
| x = self.spec_augmenter(x) | |
| # Mixup on spectrogram | |
| if self.training and mixup_lambda is not None: | |
| x = do_mixup(x, mixup_lambda) | |
| #print(x.shape) #torch.Size([10, 1, 1001, 64]) | |
| x = self.pvt_transformer(x) | |
| #print(x.shape) #torch.Size([10, 800, 128]) | |
| x = torch.mean(x, dim=3) | |
| x = x.transpose(1, 2).contiguous() | |
| framewise_output = torch.sigmoid(self.fc_audioset(x)) | |
| clipwise_output = self.temp_pool(x, framewise_output).clamp(1e-7, 1.).squeeze(1) | |
| #print(framewise_output.shape) #torch.Size([10, 100, 17]) | |
| framewise_output = interpolate(framewise_output, interpolate_ratio) | |
| framewise_output = framewise_output[:,:1000,:] | |
| #framewise_output = pad_framewise_output(framewise_output, frames_num) | |
| output_dict = {'framewise_output': framewise_output, | |
| 'clipwise_output': clipwise_output} | |
| return output_dict | |
| class Mlp(nn.Module): | |
| def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., linear=False): | |
| super().__init__() | |
| out_features = out_features or in_features | |
| hidden_features = hidden_features or in_features | |
| self.fc1 = nn.Linear(in_features, hidden_features) | |
| self.dwconv = DWConv(hidden_features) | |
| self.act = act_layer() | |
| self.fc2 = nn.Linear(hidden_features, out_features) | |
| self.drop = nn.Dropout(drop) | |
| self.linear = linear | |
| if self.linear: | |
| self.relu = nn.ReLU() | |
| self.apply(self._init_weights) | |
| def _init_weights(self, m): | |
| if isinstance(m, nn.Linear): | |
| trunc_normal_(m.weight, std=.02) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| elif isinstance(m, nn.Conv2d): | |
| fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
| fan_out //= m.groups | |
| m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
| if m.bias is not None: | |
| m.bias.data.zero_() | |
| def forward(self, x, H, W): | |
| x = self.fc1(x) | |
| if self.linear: | |
| x = self.relu(x) | |
| x = self.dwconv(x, H, W) | |
| x = self.act(x) | |
| x = self.drop(x) | |
| x = self.fc2(x) | |
| x = self.drop(x) | |
| return x | |
| class Attention(nn.Module): | |
| def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1, linear=False): | |
| super().__init__() | |
| assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." | |
| self.dim = dim | |
| self.num_heads = num_heads | |
| head_dim = dim // num_heads | |
| self.scale = qk_scale or head_dim ** -0.5 | |
| self.q = nn.Linear(dim, dim, bias=qkv_bias) | |
| self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) | |
| self.attn_drop = nn.Dropout(attn_drop) | |
| self.proj = nn.Linear(dim, dim) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| self.linear = linear | |
| self.sr_ratio = sr_ratio | |
| if not linear: | |
| if sr_ratio > 1: | |
| self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) | |
| self.norm = nn.LayerNorm(dim) | |
| else: | |
| self.pool = nn.AdaptiveAvgPool2d(7) | |
| self.sr = nn.Conv2d(dim, dim, kernel_size=1, stride=1) | |
| self.norm = nn.LayerNorm(dim) | |
| self.act = nn.GELU() | |
| self.apply(self._init_weights) | |
| def _init_weights(self, m): | |
| if isinstance(m, nn.Linear): | |
| trunc_normal_(m.weight, std=.02) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| elif isinstance(m, nn.Conv2d): | |
| fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
| fan_out //= m.groups | |
| m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
| if m.bias is not None: | |
| m.bias.data.zero_() | |
| def forward(self, x, H, W): | |
| B, N, C = x.shape | |
| q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) | |
| if not self.linear: | |
| if self.sr_ratio > 1: | |
| x_ = x.permute(0, 2, 1).reshape(B, C, H, W) | |
| x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1) | |
| x_ = self.norm(x_) | |
| kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
| else: | |
| kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
| else: | |
| x_ = x.permute(0, 2, 1).reshape(B, C, H, W) | |
| x_ = self.sr(self.pool(x_)).reshape(B, C, -1).permute(0, 2, 1) | |
| x_ = self.norm(x_) | |
| x_ = self.act(x_) | |
| kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
| k, v = kv[0], kv[1] | |
| attn = (q @ k.transpose(-2, -1)) * self.scale | |
| attn = attn.softmax(dim=-1) | |
| attn = self.attn_drop(attn) | |
| x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
| x = self.proj(x) | |
| x = self.proj_drop(x) | |
| return x | |
| class Pooling(nn.Module): | |
| """ | |
| Implementation of pooling for PoolFormer | |
| --pool_size: pooling size | |
| """ | |
| def __init__(self, pool_size=3): | |
| super().__init__() | |
| self.pool = nn.AvgPool2d( | |
| pool_size, stride=1, padding=pool_size//2, count_include_pad=False) | |
| def forward(self, x): | |
| return self.pool(x) - x | |
| class Block(nn.Module): | |
| def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
| drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1, linear=False): | |
| super().__init__() | |
| self.norm1 = norm_layer(dim) | |
| self.attn = Attention( | |
| dim, | |
| num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
| attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio, linear=linear) | |
| #self.norm3 = norm_layer(dim) | |
| #self.token_mixer = Pooling(pool_size=3) | |
| # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
| self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| self.norm2 = norm_layer(dim) | |
| mlp_hidden_dim = int(dim * mlp_ratio) | |
| self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, linear=linear) | |
| self.apply(self._init_weights) | |
| def _init_weights(self, m): | |
| if isinstance(m, nn.Linear): | |
| trunc_normal_(m.weight, std=.02) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| elif isinstance(m, nn.Conv2d): | |
| fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
| fan_out //= m.groups | |
| m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
| if m.bias is not None: | |
| m.bias.data.zero_() | |
| def forward(self, x, H, W): | |
| x = x + self.drop_path(self.attn(self.norm1(x), H, W)) | |
| x = x + self.drop_path(self.mlp(self.norm2(x), H, W)) | |
| return x | |
| class OverlapPatchEmbed(nn.Module): | |
| """ Image to Patch Embedding | |
| """ | |
| def __init__(self, tdim, fdim, patch_size=7, stride=4, in_chans=3, embed_dim=768): | |
| super().__init__() | |
| img_size = (tdim, fdim) | |
| patch_size = to_2tuple(patch_size) | |
| self.img_size = img_size | |
| self.patch_size = patch_size | |
| self.H, self.W = img_size[0] // stride, img_size[1] // stride | |
| self.num_patches = self.H * self.W | |
| self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride, | |
| padding=(patch_size[0] // 3, patch_size[1] // 3)) | |
| self.norm = nn.LayerNorm(embed_dim) | |
| self.apply(self._init_weights) | |
| def _init_weights(self, m): | |
| if isinstance(m, nn.Linear): | |
| trunc_normal_(m.weight, std=.02) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| elif isinstance(m, nn.Conv2d): | |
| fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
| fan_out //= m.groups | |
| m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
| if m.bias is not None: | |
| m.bias.data.zero_() | |
| def forward(self, x): | |
| x = self.proj(x) | |
| _, _, H, W = x.shape | |
| x = x.flatten(2).transpose(1, 2) | |
| x = self.norm(x) | |
| return x, H, W | |
| class PyramidVisionTransformerV2(nn.Module): | |
| def __init__(self, tdim=1001, fdim=64, patch_size=16, stride=4, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512], | |
| num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0., | |
| attn_drop_rate=0., drop_path_rate=0.1, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], | |
| sr_ratios=[8, 4, 2, 1], num_stages=2, linear=False, pretrained=None): | |
| super().__init__() | |
| # self.num_classes = num_classes | |
| self.depths = depths | |
| self.num_stages = num_stages | |
| self.linear = linear | |
| dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule | |
| cur = 0 | |
| for i in range(num_stages): | |
| patch_embed = OverlapPatchEmbed(tdim=tdim if i == 0 else tdim // (2 ** (i + 1)), | |
| fdim=fdim if i == 0 else tdim // (2 ** (i + 1)), | |
| patch_size=7 if i == 0 else 3, | |
| stride=stride if i == 0 else 2, | |
| in_chans=in_chans if i == 0 else embed_dims[i - 1], | |
| embed_dim=embed_dims[i]) | |
| block = nn.ModuleList([Block( | |
| dim=embed_dims[i], num_heads=num_heads[i], mlp_ratio=mlp_ratios[i], qkv_bias=qkv_bias, | |
| qk_scale=qk_scale, | |
| drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + j], norm_layer=norm_layer, | |
| sr_ratio=sr_ratios[i], linear=linear) | |
| for j in range(depths[i])]) | |
| norm = norm_layer(embed_dims[i]) | |
| cur += depths[i] | |
| setattr(self, f"patch_embed{i + 1}", patch_embed) | |
| setattr(self, f"block{i + 1}", block) | |
| setattr(self, f"norm{i + 1}", norm) | |
| #self.n = nn.Linear(125, 250, bias=True) | |
| # classification head | |
| # self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity() | |
| self.apply(self._init_weights) | |
| self.init_weights(pretrained) | |
| def _init_weights(self, m): | |
| if isinstance(m, nn.Linear): | |
| trunc_normal_(m.weight, std=.02) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| elif isinstance(m, nn.Conv2d): | |
| fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
| fan_out //= m.groups | |
| m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
| if m.bias is not None: | |
| m.bias.data.zero_() | |
| def init_weights(self, pretrained=None): | |
| if isinstance(pretrained, str): | |
| logger = get_root_logger() | |
| load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger) | |
| def freeze_patch_emb(self): | |
| self.patch_embed1.requires_grad = False | |
| def no_weight_decay(self): | |
| return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'} # has pos_embed may be better | |
| def get_classifier(self): | |
| return self.head | |
| def reset_classifier(self, num_classes, global_pool=''): | |
| self.num_classes = num_classes | |
| self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
| def forward_features(self, x): | |
| B = x.shape[0] | |
| for i in range(self.num_stages): | |
| patch_embed = getattr(self, f"patch_embed{i + 1}") | |
| block = getattr(self, f"block{i + 1}") | |
| norm = getattr(self, f"norm{i + 1}") | |
| x, H, W = patch_embed(x) | |
| #print(x.shape) | |
| for blk in block: | |
| x = blk(x, H, W) | |
| #print(x.shape) | |
| x = norm(x) | |
| #if i != self.num_stages - 1: | |
| x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() | |
| #print(x.shape) | |
| return x | |
| def forward(self, x): | |
| x = self.forward_features(x) | |
| # x = self.head(x) | |
| return x | |
| class DWConv(nn.Module): | |
| def __init__(self, dim=768): | |
| super(DWConv, self).__init__() | |
| self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim) | |
| def forward(self, x, H, W): | |
| B, N, C = x.shape | |
| x = x.transpose(1, 2).view(B, C, H, W) | |
| x = self.dwconv(x) | |
| x = x.flatten(2).transpose(1, 2) | |
| return x | |
| def _conv_filter(state_dict, patch_size=16): | |
| """ convert patch embedding weight from manual patchify + linear proj to conv""" | |
| out_dict = {} | |
| for k, v in state_dict.items(): | |
| if 'patch_embed.proj.weight' in k: | |
| v = v.reshape((v.shape[0], 3, patch_size, patch_size)) | |
| out_dict[k] = v | |
| return out_dict | |