Spaces:
Build error
Build error
| import glob | |
| import logging | |
| import re | |
| import time | |
| from collections import defaultdict | |
| import os | |
| import sys | |
| import shutil | |
| import types | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| import torch.distributed as dist | |
| from torch import nn | |
| def tensors_to_scalars(metrics): | |
| new_metrics = {} | |
| for k, v in metrics.items(): | |
| if isinstance(v, torch.Tensor): | |
| v = v.item() | |
| if type(v) is dict: | |
| v = tensors_to_scalars(v) | |
| new_metrics[k] = v | |
| return new_metrics | |
| class AvgrageMeter(object): | |
| def __init__(self): | |
| self.reset() | |
| def reset(self): | |
| self.avg = 0 | |
| self.sum = 0 | |
| self.cnt = 0 | |
| def update(self, val, n=1): | |
| self.sum += val * n | |
| self.cnt += n | |
| self.avg = self.sum / self.cnt | |
| def collate_1d(values, pad_idx=0, left_pad=False, shift_right=False, max_len=None, shift_id=1): | |
| """Convert a list of 1d tensors into a padded 2d tensor.""" | |
| size = max(v.size(0) for v in values) if max_len is None else max_len | |
| res = values[0].new(len(values), size).fill_(pad_idx) | |
| def copy_tensor(src, dst): | |
| assert dst.numel() == src.numel() | |
| if shift_right: | |
| dst[1:] = src[:-1] | |
| dst[0] = shift_id | |
| else: | |
| dst.copy_(src) | |
| for i, v in enumerate(values): | |
| copy_tensor(v, res[i][size - len(v):] if left_pad else res[i][:len(v)]) | |
| return res | |
| def collate_2d(values, pad_idx=0, left_pad=False, shift_right=False, max_len=None): | |
| """Convert a list of 2d tensors into a padded 3d tensor.""" | |
| size = max(v.size(0) for v in values) if max_len is None else max_len | |
| res = values[0].new(len(values), size, values[0].shape[1]).fill_(pad_idx) | |
| def copy_tensor(src, dst): | |
| assert dst.numel() == src.numel() | |
| if shift_right: | |
| dst[1:] = src[:-1] | |
| else: | |
| dst.copy_(src) | |
| for i, v in enumerate(values): | |
| copy_tensor(v, res[i][size - len(v):] if left_pad else res[i][:len(v)]) | |
| return res | |
| def _is_batch_full(batch, num_tokens, max_tokens, max_sentences): | |
| if len(batch) == 0: | |
| return 0 | |
| if len(batch) == max_sentences: | |
| return 1 | |
| if num_tokens > max_tokens: | |
| return 1 | |
| return 0 | |
| def batch_by_size( | |
| indices, num_tokens_fn, max_tokens=None, max_sentences=None, | |
| required_batch_size_multiple=1, distributed=False | |
| ): | |
| """ | |
| Yield mini-batches of indices bucketed by size. Batches may contain | |
| sequences of different lengths. | |
| Args: | |
| indices (List[int]): ordered list of dataset indices | |
| num_tokens_fn (callable): function that returns the number of tokens at | |
| a given index | |
| max_tokens (int, optional): max number of tokens in each batch | |
| (default: None). | |
| max_sentences (int, optional): max number of sentences in each | |
| batch (default: None). | |
| required_batch_size_multiple (int, optional): require batch size to | |
| be a multiple of N (default: 1). | |
| """ | |
| max_tokens = max_tokens if max_tokens is not None else sys.maxsize | |
| max_sentences = max_sentences if max_sentences is not None else sys.maxsize | |
| bsz_mult = required_batch_size_multiple | |
| if isinstance(indices, types.GeneratorType): | |
| indices = np.fromiter(indices, dtype=np.int64, count=-1) | |
| sample_len = 0 | |
| sample_lens = [] | |
| batch = [] | |
| batches = [] | |
| for i in range(len(indices)): | |
| idx = indices[i] | |
| num_tokens = num_tokens_fn(idx) | |
| sample_lens.append(num_tokens) | |
| sample_len = max(sample_len, num_tokens) | |
| assert sample_len <= max_tokens, ( | |
| "sentence at index {} of size {} exceeds max_tokens " | |
| "limit of {}!".format(idx, sample_len, max_tokens) | |
| ) | |
| num_tokens = (len(batch) + 1) * sample_len | |
| if _is_batch_full(batch, num_tokens, max_tokens, max_sentences): | |
| mod_len = max( | |
| bsz_mult * (len(batch) // bsz_mult), | |
| len(batch) % bsz_mult, | |
| ) | |
| batches.append(batch[:mod_len]) | |
| batch = batch[mod_len:] | |
| sample_lens = sample_lens[mod_len:] | |
| sample_len = max(sample_lens) if len(sample_lens) > 0 else 0 | |
| batch.append(idx) | |
| if len(batch) > 0: | |
| batches.append(batch) | |
| return batches | |
| def make_positions(tensor, padding_idx): | |
| """Replace non-padding symbols with their position numbers. | |
| Position numbers begin at padding_idx+1. Padding symbols are ignored. | |
| """ | |
| # The series of casts and type-conversions here are carefully | |
| # balanced to both work with ONNX export and XLA. In particular XLA | |
| # prefers ints, cumsum defaults to output longs, and ONNX doesn't know | |
| # how to handle the dtype kwarg in cumsum. | |
| mask = tensor.ne(padding_idx).int() | |
| return ( | |
| torch.cumsum(mask, dim=1).type_as(mask) * mask | |
| ).long() + padding_idx | |
| def softmax(x, dim): | |
| return F.softmax(x, dim=dim, dtype=torch.float32) | |
| def unpack_dict_to_list(samples): | |
| samples_ = [] | |
| bsz = samples.get('outputs').size(0) | |
| for i in range(bsz): | |
| res = {} | |
| for k, v in samples.items(): | |
| try: | |
| res[k] = v[i] | |
| except: | |
| pass | |
| samples_.append(res) | |
| return samples_ | |
| def load_ckpt(cur_model, ckpt_base_dir, prefix_in_ckpt='model', force=True, strict=True): | |
| if os.path.isfile(ckpt_base_dir): | |
| base_dir = os.path.dirname(ckpt_base_dir) | |
| checkpoint_path = [ckpt_base_dir] | |
| else: | |
| base_dir = ckpt_base_dir | |
| checkpoint_path = sorted(glob.glob(f'{base_dir}/model_ckpt_steps_*.ckpt'), key= | |
| lambda x: int(re.findall(f'{base_dir}/model_ckpt_steps_(\d+).ckpt', x)[0])) | |
| if len(checkpoint_path) > 0: | |
| checkpoint_path = checkpoint_path[-1] | |
| state_dict = torch.load(checkpoint_path, map_location="cpu")["state_dict"] | |
| state_dict = {k[len(prefix_in_ckpt) + 1:]: v for k, v in state_dict.items() | |
| if k.startswith(f'{prefix_in_ckpt}.')} | |
| if not strict: | |
| cur_model_state_dict = cur_model.state_dict() | |
| unmatched_keys = [] | |
| for key, param in state_dict.items(): | |
| if key in cur_model_state_dict: | |
| new_param = cur_model_state_dict[key] | |
| if new_param.shape != param.shape: | |
| unmatched_keys.append(key) | |
| print("| Unmatched keys: ", key, new_param.shape, param.shape) | |
| for key in unmatched_keys: | |
| del state_dict[key] | |
| cur_model.load_state_dict(state_dict, strict=strict) | |
| print(f"| load '{prefix_in_ckpt}' from '{checkpoint_path}'.") | |
| else: | |
| e_msg = f"| ckpt not found in {base_dir}." | |
| if force: | |
| assert False, e_msg | |
| else: | |
| print(e_msg) | |
| def remove_padding(x, padding_idx=0): | |
| if x is None: | |
| return None | |
| assert len(x.shape) in [1, 2] | |
| if len(x.shape) == 2: # [T, H] | |
| return x[np.abs(x).sum(-1) != padding_idx] | |
| elif len(x.shape) == 1: # [T] | |
| return x[x != padding_idx] | |
| class Timer: | |
| timer_map = {} | |
| def __init__(self, name, print_time=False): | |
| if name not in Timer.timer_map: | |
| Timer.timer_map[name] = 0 | |
| self.name = name | |
| self.print_time = print_time | |
| def __enter__(self): | |
| self.t = time.time() | |
| def __exit__(self, exc_type, exc_val, exc_tb): | |
| Timer.timer_map[self.name] += time.time() - self.t | |
| if self.print_time: | |
| print(self.name, Timer.timer_map[self.name]) | |
| def print_arch(model, model_name='model'): | |
| print(f"| {model_name} Arch: ", model) | |
| num_params(model, model_name=model_name) | |
| def num_params(model, print_out=True, model_name="model"): | |
| parameters = filter(lambda p: p.requires_grad, model.parameters()) | |
| parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000 | |
| if print_out: | |
| print(f'| {model_name} Trainable Parameters: %.3fM' % parameters) | |
| return parameters | |