Spaces:
Build error
Build error
| import glob | |
| import re | |
| import subprocess | |
| from datetime import datetime | |
| import matplotlib | |
| matplotlib.use('Agg') | |
| from utils.hparams import hparams, set_hparams | |
| import random | |
| import sys | |
| import numpy as np | |
| import torch.distributed as dist | |
| from pytorch_lightning.loggers import TensorBoardLogger | |
| from utils.pl_utils import LatestModelCheckpoint, BaseTrainer, data_loader, DDP | |
| from torch import nn | |
| import torch.utils.data | |
| import utils | |
| import logging | |
| import os | |
| torch.multiprocessing.set_sharing_strategy(os.getenv('TORCH_SHARE_STRATEGY', 'file_system')) | |
| log_format = '%(asctime)s %(message)s' | |
| logging.basicConfig(stream=sys.stdout, level=logging.INFO, | |
| format=log_format, datefmt='%m/%d %I:%M:%S %p') | |
| class BaseDataset(torch.utils.data.Dataset): | |
| def __init__(self, shuffle): | |
| super().__init__() | |
| self.hparams = hparams | |
| self.shuffle = shuffle | |
| self.sort_by_len = hparams['sort_by_len'] | |
| self.sizes = None | |
| def _sizes(self): | |
| return self.sizes | |
| def __getitem__(self, index): | |
| raise NotImplementedError | |
| def collater(self, samples): | |
| raise NotImplementedError | |
| def __len__(self): | |
| return len(self._sizes) | |
| def num_tokens(self, index): | |
| return self.size(index) | |
| def size(self, index): | |
| """Return an example's size as a float or tuple. This value is used when | |
| filtering a dataset with ``--max-positions``.""" | |
| size = min(self._sizes[index], hparams['max_frames']) | |
| return size | |
| def ordered_indices(self): | |
| """Return an ordered list of indices. Batches will be constructed based | |
| on this order.""" | |
| if self.shuffle: | |
| indices = np.random.permutation(len(self)) | |
| if self.sort_by_len: | |
| indices = indices[np.argsort(np.array(self._sizes)[indices], kind='mergesort')] | |
| # 先random, 然后稳定排序, 保证排序后同长度的数据顺序是依照random permutation的 (被其随机打乱). | |
| else: | |
| indices = np.arange(len(self)) | |
| return indices | |
| def num_workers(self): | |
| return int(os.getenv('NUM_WORKERS', hparams['ds_workers'])) | |
| class BaseTask(nn.Module): | |
| def __init__(self, *args, **kwargs): | |
| # dataset configs | |
| super(BaseTask, self).__init__(*args, **kwargs) | |
| self.current_epoch = 0 | |
| self.global_step = 0 | |
| self.loaded_optimizer_states_dict = {} | |
| self.trainer = None | |
| self.logger = None | |
| self.on_gpu = False | |
| self.use_dp = False | |
| self.use_ddp = False | |
| self.example_input_array = None | |
| self.max_tokens = hparams['max_tokens'] | |
| self.max_sentences = hparams['max_sentences'] | |
| self.max_eval_tokens = hparams['max_eval_tokens'] | |
| if self.max_eval_tokens == -1: | |
| hparams['max_eval_tokens'] = self.max_eval_tokens = self.max_tokens | |
| self.max_eval_sentences = hparams['max_eval_sentences'] | |
| if self.max_eval_sentences == -1: | |
| hparams['max_eval_sentences'] = self.max_eval_sentences = self.max_sentences | |
| self.model = None | |
| self.training_losses_meter = None | |
| ########### | |
| # Training, validation and testing | |
| ########### | |
| def build_model(self): | |
| raise NotImplementedError | |
| def load_ckpt(self, ckpt_base_dir, current_model_name=None, model_name='model', force=True, strict=True): | |
| # This function is updated on 2021.12.13 | |
| if current_model_name is None: | |
| current_model_name = model_name | |
| utils.load_ckpt(self.__getattr__(current_model_name), ckpt_base_dir, current_model_name, force, strict) | |
| def on_epoch_start(self): | |
| self.training_losses_meter = {'total_loss': utils.AvgrageMeter()} | |
| def _training_step(self, sample, batch_idx, optimizer_idx): | |
| """ | |
| :param sample: | |
| :param batch_idx: | |
| :return: total loss: torch.Tensor, loss_log: dict | |
| """ | |
| raise NotImplementedError | |
| def training_step(self, sample, batch_idx, optimizer_idx=-1): | |
| loss_ret = self._training_step(sample, batch_idx, optimizer_idx) | |
| self.opt_idx = optimizer_idx | |
| if loss_ret is None: | |
| return {'loss': None} | |
| total_loss, log_outputs = loss_ret | |
| log_outputs = utils.tensors_to_scalars(log_outputs) | |
| for k, v in log_outputs.items(): | |
| if k not in self.training_losses_meter: | |
| self.training_losses_meter[k] = utils.AvgrageMeter() | |
| if not np.isnan(v): | |
| self.training_losses_meter[k].update(v) | |
| self.training_losses_meter['total_loss'].update(total_loss.item()) | |
| try: | |
| log_outputs['lr'] = self.scheduler.get_lr() | |
| if isinstance(log_outputs['lr'], list): | |
| log_outputs['lr'] = log_outputs['lr'][0] | |
| except: | |
| pass | |
| # log_outputs['all_loss'] = total_loss.item() | |
| progress_bar_log = log_outputs | |
| tb_log = {f'tr/{k}': v for k, v in log_outputs.items()} | |
| return { | |
| 'loss': total_loss, | |
| 'progress_bar': progress_bar_log, | |
| 'log': tb_log | |
| } | |
| def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx): | |
| optimizer.step() | |
| optimizer.zero_grad() | |
| if self.scheduler is not None: | |
| self.scheduler.step(self.global_step // hparams['accumulate_grad_batches']) | |
| def on_epoch_end(self): | |
| loss_outputs = {k: round(v.avg, 4) for k, v in self.training_losses_meter.items()} | |
| print(f"\n==============\n " | |
| f"Epoch {self.current_epoch} ended. Steps: {self.global_step}. {loss_outputs}" | |
| f"\n==============\n") | |
| def validation_step(self, sample, batch_idx): | |
| """ | |
| :param sample: | |
| :param batch_idx: | |
| :return: output: dict | |
| """ | |
| raise NotImplementedError | |
| def _validation_end(self, outputs): | |
| """ | |
| :param outputs: | |
| :return: loss_output: dict | |
| """ | |
| raise NotImplementedError | |
| def validation_end(self, outputs): | |
| loss_output = self._validation_end(outputs) | |
| print(f"\n==============\n " | |
| f"valid results: {loss_output}" | |
| f"\n==============\n") | |
| return { | |
| 'log': {f'val/{k}': v for k, v in loss_output.items()}, | |
| 'val_loss': loss_output['total_loss'] | |
| } | |
| def build_scheduler(self, optimizer): | |
| raise NotImplementedError | |
| def build_optimizer(self, model): | |
| raise NotImplementedError | |
| def configure_optimizers(self): | |
| optm = self.build_optimizer(self.model) | |
| self.scheduler = self.build_scheduler(optm) | |
| return [optm] | |
| def test_start(self): | |
| pass | |
| def test_step(self, sample, batch_idx): | |
| return self.validation_step(sample, batch_idx) | |
| def test_end(self, outputs): | |
| return self.validation_end(outputs) | |
| ########### | |
| # Running configuration | |
| ########### | |
| def start(cls): | |
| set_hparams() | |
| os.environ['MASTER_PORT'] = str(random.randint(15000, 30000)) | |
| random.seed(hparams['seed']) | |
| np.random.seed(hparams['seed']) | |
| task = cls() | |
| work_dir = hparams['work_dir'] | |
| trainer = BaseTrainer(checkpoint_callback=LatestModelCheckpoint( | |
| filepath=work_dir, | |
| verbose=True, | |
| monitor='val_loss', | |
| mode='min', | |
| num_ckpt_keep=hparams['num_ckpt_keep'], | |
| save_best=hparams['save_best'], | |
| period=1 if hparams['save_ckpt'] else 100000 | |
| ), | |
| logger=TensorBoardLogger( | |
| save_dir=work_dir, | |
| name='lightning_logs', | |
| version='lastest' | |
| ), | |
| gradient_clip_val=hparams['clip_grad_norm'], | |
| val_check_interval=hparams['val_check_interval'], | |
| row_log_interval=hparams['log_interval'], | |
| max_updates=hparams['max_updates'], | |
| num_sanity_val_steps=hparams['num_sanity_val_steps'] if not hparams[ | |
| 'validate'] else 10000, | |
| accumulate_grad_batches=hparams['accumulate_grad_batches']) | |
| if not hparams['infer']: # train | |
| t = datetime.now().strftime('%Y%m%d%H%M%S') | |
| code_dir = f'{work_dir}/codes/{t}' | |
| subprocess.check_call(f'mkdir -p "{code_dir}"', shell=True) | |
| for c in hparams['save_codes']: | |
| subprocess.check_call(f'cp -r "{c}" "{code_dir}/"', shell=True) | |
| print(f"| Copied codes to {code_dir}.") | |
| trainer.checkpoint_callback.task = task | |
| trainer.fit(task) | |
| else: | |
| trainer.test(task) | |
| def configure_ddp(self, model, device_ids): | |
| model = DDP( | |
| model, | |
| device_ids=device_ids, | |
| find_unused_parameters=True | |
| ) | |
| if dist.get_rank() != 0 and not hparams['debug']: | |
| sys.stdout = open(os.devnull, "w") | |
| sys.stderr = open(os.devnull, "w") | |
| random.seed(hparams['seed']) | |
| np.random.seed(hparams['seed']) | |
| return model | |
| def training_end(self, *args, **kwargs): | |
| return None | |
| def init_ddp_connection(self, proc_rank, world_size): | |
| set_hparams(print_hparams=False) | |
| # guarantees unique ports across jobs from same grid search | |
| default_port = 12910 | |
| # if user gave a port number, use that one instead | |
| try: | |
| default_port = os.environ['MASTER_PORT'] | |
| except Exception: | |
| os.environ['MASTER_PORT'] = str(default_port) | |
| # figure out the root node addr | |
| root_node = '127.0.0.2' | |
| root_node = self.trainer.resolve_root_node_address(root_node) | |
| os.environ['MASTER_ADDR'] = root_node | |
| dist.init_process_group('nccl', rank=proc_rank, world_size=world_size) | |
| def train_dataloader(self): | |
| return None | |
| def test_dataloader(self): | |
| return None | |
| def val_dataloader(self): | |
| return None | |
| def on_load_checkpoint(self, checkpoint): | |
| pass | |
| def on_save_checkpoint(self, checkpoint): | |
| pass | |
| def on_sanity_check_start(self): | |
| pass | |
| def on_train_start(self): | |
| pass | |
| def on_train_end(self): | |
| pass | |
| def on_batch_start(self, batch): | |
| pass | |
| def on_batch_end(self): | |
| pass | |
| def on_pre_performance_check(self): | |
| pass | |
| def on_post_performance_check(self): | |
| pass | |
| def on_before_zero_grad(self, optimizer): | |
| pass | |
| def on_after_backward(self): | |
| pass | |
| def backward(self, loss, optimizer): | |
| loss.backward() | |
| def grad_norm(self, norm_type): | |
| results = {} | |
| total_norm = 0 | |
| for name, p in self.named_parameters(): | |
| if p.requires_grad: | |
| try: | |
| param_norm = p.grad.data.norm(norm_type) | |
| total_norm += param_norm ** norm_type | |
| norm = param_norm ** (1 / norm_type) | |
| grad = round(norm.data.cpu().numpy().flatten()[0], 3) | |
| results['grad_{}_norm_{}'.format(norm_type, name)] = grad | |
| except Exception: | |
| # this param had no grad | |
| pass | |
| total_norm = total_norm ** (1. / norm_type) | |
| grad = round(total_norm.data.cpu().numpy().flatten()[0], 3) | |
| results['grad_{}_norm_total'.format(norm_type)] = grad | |
| return results | |