Spaces:
Build error
Build error
| import pickle | |
| from copy import deepcopy | |
| import numpy as np | |
| class IndexedDataset: | |
| def __init__(self, path, num_cache=1): | |
| super().__init__() | |
| self.path = path | |
| self.data_file = None | |
| self.data_offsets = np.load(f"{path}.idx", allow_pickle=True).item()['offsets'] | |
| self.data_file = open(f"{path}.data", 'rb', buffering=-1) | |
| self.cache = [] | |
| self.num_cache = num_cache | |
| def check_index(self, i): | |
| if i < 0 or i >= len(self.data_offsets) - 1: | |
| raise IndexError('index out of range') | |
| def __del__(self): | |
| if self.data_file: | |
| self.data_file.close() | |
| def __getitem__(self, i): | |
| self.check_index(i) | |
| if self.num_cache > 0: | |
| for c in self.cache: | |
| if c[0] == i: | |
| return c[1] | |
| self.data_file.seek(self.data_offsets[i]) | |
| b = self.data_file.read(self.data_offsets[i + 1] - self.data_offsets[i]) | |
| item = pickle.loads(b) | |
| if self.num_cache > 0: | |
| self.cache = [(i, deepcopy(item))] + self.cache[:-1] | |
| return item | |
| def __len__(self): | |
| return len(self.data_offsets) - 1 | |
| class IndexedDatasetBuilder: | |
| def __init__(self, path): | |
| self.path = path | |
| self.out_file = open(f"{path}.data", 'wb') | |
| self.byte_offsets = [0] | |
| def add_item(self, item): | |
| s = pickle.dumps(item) | |
| bytes = self.out_file.write(s) | |
| self.byte_offsets.append(self.byte_offsets[-1] + bytes) | |
| def finalize(self): | |
| self.out_file.close() | |
| np.save(open(f"{self.path}.idx", 'wb'), {'offsets': self.byte_offsets}) | |
| if __name__ == "__main__": | |
| import random | |
| from tqdm import tqdm | |
| ds_path = '/tmp/indexed_ds_example' | |
| size = 100 | |
| items = [{"a": np.random.normal(size=[10000, 10]), | |
| "b": np.random.normal(size=[10000, 10])} for i in range(size)] | |
| builder = IndexedDatasetBuilder(ds_path) | |
| for i in tqdm(range(size)): | |
| builder.add_item(items[i]) | |
| builder.finalize() | |
| ds = IndexedDataset(ds_path) | |
| for i in tqdm(range(10000)): | |
| idx = random.randint(0, size - 1) | |
| assert (ds[idx]['a'] == items[idx]['a']).all() | |