Spaces:
Build error
Build error
| import os | |
| import sys | |
| import traceback | |
| import types | |
| from functools import wraps | |
| from itertools import chain | |
| import numpy as np | |
| import torch.utils.data | |
| from torch.utils.data import ConcatDataset | |
| from text_to_speech.utils.commons.hparams import hparams | |
| def collate_1d_or_2d(values, pad_idx=0, left_pad=False, shift_right=False, max_len=None, shift_id=1): | |
| if len(values[0].shape) == 1: | |
| return collate_1d(values, pad_idx, left_pad, shift_right, max_len, shift_id) | |
| else: | |
| return collate_2d(values, pad_idx, left_pad, shift_right, max_len) | |
| def collate_1d(values, pad_idx=0, left_pad=False, shift_right=False, max_len=None, shift_id=1): | |
| """Convert a list of 1d tensors into a padded 2d tensor.""" | |
| size = max(v.size(0) for v in values) if max_len is None else max_len | |
| res = values[0].new(len(values), size).fill_(pad_idx) | |
| def copy_tensor(src, dst): | |
| assert dst.numel() == src.numel() | |
| if shift_right: | |
| dst[1:] = src[:-1] | |
| dst[0] = shift_id | |
| else: | |
| dst.copy_(src) | |
| for i, v in enumerate(values): | |
| copy_tensor(v, res[i][size - len(v):] if left_pad else res[i][:len(v)]) | |
| return res | |
| def collate_2d(values, pad_idx=0, left_pad=False, shift_right=False, max_len=None): | |
| """Convert a list of 2d tensors into a padded 3d tensor.""" | |
| size = max(v.size(0) for v in values) if max_len is None else max_len | |
| res = values[0].new(len(values), size, values[0].shape[1]).fill_(pad_idx) | |
| def copy_tensor(src, dst): | |
| assert dst.numel() == src.numel() | |
| if shift_right: | |
| dst[1:] = src[:-1] | |
| else: | |
| dst.copy_(src) | |
| for i, v in enumerate(values): | |
| copy_tensor(v, res[i][size - len(v):] if left_pad else res[i][:len(v)]) | |
| return res | |
| def _is_batch_full(batch, num_tokens, max_tokens, max_sentences): | |
| if len(batch) == 0: | |
| return 0 | |
| if len(batch) == max_sentences: | |
| return 1 | |
| if num_tokens > max_tokens: | |
| return 1 | |
| return 0 | |
| def batch_by_size( | |
| indices, num_tokens_fn, max_tokens=None, max_sentences=None, | |
| required_batch_size_multiple=1, distributed=False | |
| ): | |
| """ | |
| Yield mini-batches of indices bucketed by size. Batches may contain | |
| sequences of different lengths. | |
| Args: | |
| indices (List[int]): ordered list of dataset indices | |
| num_tokens_fn (callable): function that returns the number of tokens at | |
| a given index | |
| max_tokens (int, optional): max number of tokens in each batch | |
| (default: None). | |
| max_sentences (int, optional): max number of sentences in each | |
| batch (default: None). | |
| required_batch_size_multiple (int, optional): require batch size to | |
| be a multiple of N (default: 1). | |
| """ | |
| max_tokens = max_tokens if max_tokens is not None else sys.maxsize | |
| max_sentences = max_sentences if max_sentences is not None else sys.maxsize | |
| bsz_mult = required_batch_size_multiple | |
| if isinstance(indices, types.GeneratorType): | |
| indices = np.fromiter(indices, dtype=np.int64, count=-1) | |
| sample_len = 0 | |
| sample_lens = [] | |
| batch = [] | |
| batches = [] | |
| for i in range(len(indices)): | |
| idx = indices[i] | |
| num_tokens = num_tokens_fn(idx) | |
| sample_lens.append(num_tokens) | |
| sample_len = max(sample_len, num_tokens) | |
| assert sample_len <= max_tokens, ( | |
| "sentence at index {} of size {} exceeds max_tokens " | |
| "limit of {}!".format(idx, sample_len, max_tokens) | |
| ) | |
| num_tokens = (len(batch) + 1) * sample_len | |
| if _is_batch_full(batch, num_tokens, max_tokens, max_sentences): | |
| mod_len = max( | |
| bsz_mult * (len(batch) // bsz_mult), | |
| len(batch) % bsz_mult, | |
| ) | |
| batches.append(batch[:mod_len]) | |
| batch = batch[mod_len:] | |
| sample_lens = sample_lens[mod_len:] | |
| sample_len = max(sample_lens) if len(sample_lens) > 0 else 0 | |
| batch.append(idx) | |
| if len(batch) > 0: | |
| batches.append(batch) | |
| return batches | |
| def unpack_dict_to_list(samples): | |
| samples_ = [] | |
| bsz = samples.get('outputs').size(0) | |
| for i in range(bsz): | |
| res = {} | |
| for k, v in samples.items(): | |
| try: | |
| res[k] = v[i] | |
| except: | |
| pass | |
| samples_.append(res) | |
| return samples_ | |
| def remove_padding(x, padding_idx=0): | |
| if x is None: | |
| return None | |
| assert len(x.shape) in [1, 2] | |
| if len(x.shape) == 2: # [T, H] | |
| return x[np.abs(x).sum(-1) != padding_idx] | |
| elif len(x.shape) == 1: # [T] | |
| return x[x != padding_idx] | |
| def data_loader(fn): | |
| """ | |
| Decorator to make any fx with this use the lazy property | |
| :param fn: | |
| :return: | |
| """ | |
| wraps(fn) | |
| attr_name = '_lazy_' + fn.__name__ | |
| def _get_data_loader(self): | |
| try: | |
| value = getattr(self, attr_name) | |
| except AttributeError: | |
| try: | |
| value = fn(self) # Lazy evaluation, done only once. | |
| except AttributeError as e: | |
| # Guard against AttributeError suppression. (Issue #142) | |
| traceback.print_exc() | |
| error = f'{fn.__name__}: An AttributeError was encountered: ' + str(e) | |
| raise RuntimeError(error) from e | |
| setattr(self, attr_name, value) # Memoize evaluation. | |
| return value | |
| return _get_data_loader | |
| class BaseDataset(torch.utils.data.Dataset): | |
| def __init__(self, shuffle): | |
| super().__init__() | |
| self.hparams = hparams | |
| self.shuffle = shuffle | |
| self.sort_by_len = hparams['sort_by_len'] | |
| self.sizes = None | |
| def _sizes(self): | |
| return self.sizes | |
| def __getitem__(self, index): | |
| raise NotImplementedError | |
| def collater(self, samples): | |
| raise NotImplementedError | |
| def __len__(self): | |
| return len(self._sizes) | |
| def num_tokens(self, index): | |
| return self.size(index) | |
| def size(self, index): | |
| """Return an example's size as a float or tuple. This value is used when | |
| filtering a dataset with ``--max-positions``.""" | |
| return min(self._sizes[index], hparams['max_frames']) | |
| def ordered_indices(self): | |
| """Return an ordered list of indices. Batches will be constructed based | |
| on this order.""" | |
| if self.shuffle: | |
| indices = np.random.permutation(len(self)) | |
| if self.sort_by_len: | |
| indices = indices[np.argsort(np.array(self._sizes)[indices], kind='mergesort')] | |
| else: | |
| indices = np.arange(len(self)) | |
| return indices | |
| def num_workers(self): | |
| return int(os.getenv('NUM_WORKERS', hparams['ds_workers'])) | |
| class BaseConcatDataset(ConcatDataset): | |
| def collater(self, samples): | |
| return self.datasets[0].collater(samples) | |
| def _sizes(self): | |
| if not hasattr(self, 'sizes'): | |
| self.sizes = list(chain.from_iterable([d._sizes for d in self.datasets])) | |
| return self.sizes | |
| def size(self, index): | |
| return min(self._sizes[index], hparams['max_frames']) | |
| def num_tokens(self, index): | |
| return self.size(index) | |
| def ordered_indices(self): | |
| """Return an ordered list of indices. Batches will be constructed based | |
| on this order.""" | |
| if self.datasets[0].shuffle: | |
| indices = np.random.permutation(len(self)) | |
| if self.datasets[0].sort_by_len: | |
| indices = indices[np.argsort(np.array(self._sizes)[indices], kind='mergesort')] | |
| else: | |
| indices = np.arange(len(self)) | |
| return indices | |
| def num_workers(self): | |
| return self.datasets[0].num_workers | |