Spaces:
Build error
Build error
| import numpy as np | |
| import torch | |
| def print_arch(model, model_name='model'): | |
| print(f"| {model_name} Arch: ", model) | |
| num_params(model, model_name=model_name) | |
| def num_params(model, print_out=True, model_name="model"): | |
| parameters = filter(lambda p: p.requires_grad, model.parameters()) | |
| parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000 | |
| if print_out: | |
| print(f'| {model_name} Trainable Parameters: %.3fM' % parameters) | |
| return parameters | |
| def requires_grad(model): | |
| if isinstance(model, torch.nn.Module): | |
| for p in model.parameters(): | |
| p.requires_grad = True | |
| else: | |
| model.requires_grad = True | |
| def not_requires_grad(model): | |
| if isinstance(model, torch.nn.Module): | |
| for p in model.parameters(): | |
| p.requires_grad = False | |
| else: | |
| model.requires_grad = False | |
| def get_grad_norm(model, l=2): | |
| num_para = 0 | |
| accu_grad = 0 | |
| if isinstance(model, torch.nn.Module): | |
| params = model.parameters() | |
| else: | |
| params = model | |
| for p in params: | |
| if p.grad is None: | |
| continue | |
| num_para += p.numel() | |
| if l == 1: | |
| accu_grad += p.grad.abs(1).sum() | |
| elif l == 2: | |
| accu_grad += p.grad.pow(2).sum() | |
| else: | |
| raise ValueError("Now we only implement l1/l2 norm !") | |
| if l == 2: | |
| accu_grad = accu_grad ** 0.5 | |
| return accu_grad |