Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	File size: 3,386 Bytes
			
			| 9206300 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 | # -*- coding: utf-8 -*-
"""RAdam optimizer.
This code is drived from https://github.com/LiyuanLucasLiu/RAdam.
"""
import math
import torch
from torch.optim.optimizer import Optimizer
class RAdam(Optimizer):
    """Rectified Adam optimizer."""
    def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0):
        """Initilize RAdam optimizer."""
        defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
        self.buffer = [[None, None, None] for ind in range(10)]
        super(RAdam, self).__init__(params, defaults)
    def __setstate__(self, state):
        """Set state."""
        super(RAdam, self).__setstate__(state)
    def step(self, closure=None):
        """Run one step."""
        loss = None
        if closure is not None:
            loss = closure()
        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data.float()
                if grad.is_sparse:
                    raise RuntimeError('RAdam does not support sparse gradients')
                p_data_fp32 = p.data.float()
                state = self.state[p]
                if len(state) == 0:
                    state['step'] = 0
                    state['exp_avg'] = torch.zeros_like(p_data_fp32)
                    state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
                else:
                    state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
                    state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)
                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
                beta1, beta2 = group['betas']
                exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
                exp_avg.mul_(beta1).add_(1 - beta1, grad)
                state['step'] += 1
                buffered = self.buffer[int(state['step'] % 10)]
                if state['step'] == buffered[0]:
                    N_sma, step_size = buffered[1], buffered[2]
                else:
                    buffered[0] = state['step']
                    beta2_t = beta2 ** state['step']
                    N_sma_max = 2 / (1 - beta2) - 1
                    N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)
                    buffered[1] = N_sma
                    # more conservative since it's an approximated value
                    if N_sma >= 5:
                        step_size = math.sqrt(
                            (1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step'])  # NOQA
                    else:
                        step_size = 1.0 / (1 - beta1 ** state['step'])
                    buffered[2] = step_size
                if group['weight_decay'] != 0:
                    p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
                # more conservative since it's an approximated value
                if N_sma >= 5:
                    denom = exp_avg_sq.sqrt().add_(group['eps'])
                    p_data_fp32.addcdiv_(-step_size * group['lr'], exp_avg, denom)
                else:
                    p_data_fp32.add_(-step_size * group['lr'], exp_avg)
                p.data.copy_(p_data_fp32)
        return loss
 |