import subprocess
subprocess.run('pip install flash-attn==2.7.0.post2 --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
import spaces
import argparse
import os
import re
import logging
from typing import List, Optional, Tuple, Generator
from threading import Thread
import gradio as gr
import PIL.Image
import torch
import numpy as np
from moviepy.editor import VideoFileClip
from transformers import AutoModelForCausalLM, TextIteratorStreamer
logging.getLogger("httpx").setLevel(logging.WARNING)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# --- Global Model Variables ---
model = None
streamer = None
# This should point to the directory containing your SVG file.
CUR_DIR = os.path.dirname(os.path.abspath(__file__))
def submit_chat(chatbot, text_input):
response = ''
chatbot.append([text_input, response])
return chatbot, ''
# --- Helper Functions ---
latex_delimiters_set = [
{
"left": "\\(",
"right": "\\)",
"display": False
},
{
"left": "\\begin{equation}",
"right": "\\end{equation}",
"display": True
},
{
"left": "\\begin{align}",
"right": "\\end{align}",
"display": True
},
{
"left": "\\begin{alignat}",
"right": "\\end{alignat}",
"display": True
},
{
"left": "\\begin{gather}",
"right": "\\end{gather}",
"display": True
},
{
"left": "\\begin{CD}",
"right": "\\end{CD}",
"display": True
},
{
"left": "\\[",
"right": "\\]",
"display": True
}
]
def load_video_frames(video_path: Optional[str], n_frames: int = 8) -> Optional[List[PIL.Image.Image]]:
"""Extracts a specified number of frames from a video file."""
if not video_path:
return None
try:
with VideoFileClip(video_path) as clip:
total_frames = int(clip.fps * clip.duration)
if total_frames <= 0: return None
num_to_extract = min(n_frames, total_frames)
indices = np.linspace(0, total_frames - 1, num_to_extract, dtype=int)
frames = [PIL.Image.fromarray(clip.get_frame(index / clip.fps)) for index in indices]
return frames
except Exception as e:
print(f"Error processing video {video_path}: {e}")
return None
def parse_model_output(response_text: str, enable_thinking: bool) -> str:
"""Formats the model output, separating 'thinking' and 'response' parts if enabled."""
if enable_thinking:
# Use a more robust regex to handle nested content and variations
think_match = re.search(r"(.*?)", response_text, re.DOTALL)
if think_match:
thinking_content = think_match.group(1).strip()
# Remove the think block from the original text to get the response
response_content = re.sub(r".*?", "", response_text, flags=re.DOTALL).strip()
return f"**Thinking:**\n```\n{thinking_content}\n```\n\n**Response:**\n{response_content}"
else:
return response_text # No think tag found, return as is
else:
# If thinking is disabled, strip the tags just in case the model still generates them
return re.sub(r".*?", "", response_text, flags=re.DOTALL).strip()
# --- MODIFIED Core Inference Logic (Now with Streaming) ---
@spaces.GPU
def run_inference(
chatbot: List,
image_input: Optional[PIL.Image.Image],
video_input: Optional[str],
do_sample: bool,
max_new_tokens: int,
enable_thinking: bool,
):
"""
Runs a single turn of inference and yields the output stream for a gr.Chatbot.
This function is now a generator.
"""
prompt = chatbot[-1][0]
if (not image_input and not video_input and not prompt) or not prompt:
gr.Warning("A text prompt is required for generation.")
# MODIFICATION: Yield the current state and return to avoid errors
yield chatbot
return
# MODIFICATION: Append the new prompt to the existing history
# chatbot.append([prompt, ""])
# yield chatbot, "" # Yield the updated chat to show the user's prompt immediately
content = []
if image_input:
content.append({"type": "image", "image": image_input})
if video_input:
frames = load_video_frames(video_input)
if frames:
content.append({"type": "video", "video": frames})
else:
gr.Warning("Failed to process the video file.")
chatbot[-1][1] = "Error: Could not process the video file."
yield chatbot
return
content.append({"type": "text", "text": prompt})
messages = [{"role": "user", "content": content}]
logger.info(messages)
try:
if video_input:
input_ids, pixel_values, grid_thws = model.preprocess_inputs(messages=messages, add_generation_prompt=True, enable_thinking=enable_thinking, max_pixels=896*896)
else:
input_ids, pixel_values, grid_thws = model.preprocess_inputs(messages=messages, add_generation_prompt=True, enable_thinking=enable_thinking)
except Exception as e:
chatbot[-1][1] = f"Error during input preprocessing: {e}"
yield chatbot
return
input_ids = input_ids.to(model.device)
if pixel_values is not None:
pixel_values = pixel_values.to(model.device, dtype=torch.bfloat16)
if grid_thws is not None:
grid_thws = grid_thws.to(model.device)
gen_kwargs = {
"max_new_tokens": max_new_tokens,
"do_sample": do_sample,
"eos_token_id": model.text_tokenizer.eos_token_id,
"pad_token_id": model.text_tokenizer.pad_token_id,
"streamer": streamer,
"use_cache": True
}
with torch.inference_mode():
thread = Thread(target=model.generate, kwargs={
"inputs": input_ids,
"pixel_values": pixel_values,
"grid_thws": grid_thws,
**gen_kwargs
})
thread.start()
# MODIFICATION: Stream output token by token
response_text = ""
for new_text in streamer:
response_text += new_text
# Append only the new text chunk to the last response
chatbot[-1][1] = response_text
yield chatbot # Yield the updated history
thread.join()
# MODIFICATION: Format the final response once generation is complete
formatted_response = parse_model_output(response_text, enable_thinking)
chatbot[-1][1] = formatted_response
yield chatbot # Yield the final, formatted response
logger.info("[OVIS_CONV_START]")
[print(f'Q{i}:\n {request}\nA{i}:\n {answer}') for i, (request, answer) in enumerate(chatbot, 1)]
# print('New_Q:\n', text_input)
# print('New_A:\n', response)
logger.info("[OVIS_CONV_END]")
def clear_chat():
return [], None, ""
# --- UI Helper Functions ---
def toggle_media_input(choice: str) -> Tuple:
"""Switches visibility between Image/Video inputs and their corresponding examples."""
if choice == "Image":
return gr.update(visible=True, value=None), gr.update(visible=False, value=None), gr.update(visible=True), gr.update(visible=False)
else: # Video
return gr.update(visible=False, value=None), gr.update(visible=True, value=None), gr.update(visible=False), gr.update(visible=True)
# --- Build Gradio Application ---
# @spaces.GPU
def build_demo(model_path: str):
"""Builds the Gradio user interface for the model."""
global model, streamer
device = "cuda"
print(f"Loading model {model_path} onto device {device}...")
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
trust_remote_code=True
).to(device).eval()
text_tokenizer = model.text_tokenizer
streamer = TextIteratorStreamer(text_tokenizer, skip_prompt=True, skip_special_tokens=True)
print("Model loaded successfully.")
model_name_display = model_path.split('/')[-1]
logo_html = ""
logo_svg_path = os.path.join(CUR_DIR, "resource", "logo.svg")
if os.path.exists(logo_svg_path):
with open(logo_svg_path, "r", encoding="utf-8") as svg_file:
svg_content = svg_file.read()
font_size = "2.5em"
svg_content_styled = re.sub(r'(