Spaces:
Runtime error
Runtime error
| import spaces | |
| import os | |
| import re | |
| import time | |
| import gradio as gr | |
| import torch | |
| from transformers import AutoModelForCausalLM | |
| from transformers import TextIteratorStreamer | |
| from threading import Thread | |
| model_name = 'AIDC-AI/Ovis1.6-Gemma2-9B' | |
| # load model | |
| model = AutoModelForCausalLM.from_pretrained(model_name, | |
| torch_dtype=torch.bfloat16, | |
| multimodal_max_length=8192, | |
| trust_remote_code=True).to(device='cuda') | |
| text_tokenizer = model.get_text_tokenizer() | |
| visual_tokenizer = model.get_visual_tokenizer() | |
| streamer = TextIteratorStreamer(text_tokenizer, skip_prompt=True, skip_special_tokens=True) | |
| image_placeholder = '<image>' | |
| cur_dir = os.path.dirname(os.path.abspath(__file__)) | |
| def submit_chat(chatbot, text_input): | |
| response = '' | |
| chatbot.append((text_input, response)) | |
| return chatbot ,'' | |
| def ovis_chat(chatbot, image_input): | |
| # preprocess inputs | |
| conversations = [] | |
| response = "" | |
| text_input = chatbot[-1][0] | |
| for query, response in chatbot[:-1]: | |
| conversations.append({ | |
| "from": "human", | |
| "value": query | |
| }) | |
| conversations.append({ | |
| "from": "gpt", | |
| "value": response | |
| }) | |
| text_input = text_input.replace(image_placeholder, '') | |
| conversations.append({ | |
| "from": "human", | |
| "value": text_input | |
| }) | |
| if image_input is not None: | |
| conversations[0]["value"] = image_placeholder + '\n' + conversations[0]["value"] | |
| prompt, input_ids, pixel_values = model.preprocess_inputs(conversations, [image_input]) | |
| attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id) | |
| input_ids = input_ids.unsqueeze(0).to(device=model.device) | |
| attention_mask = attention_mask.unsqueeze(0).to(device=model.device) | |
| if image_input is None: | |
| pixel_values = [None] | |
| else: | |
| pixel_values = [pixel_values.to(dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)] | |
| with torch.inference_mode(): | |
| gen_kwargs = dict( | |
| max_new_tokens=512, | |
| do_sample=False, | |
| top_p=None, | |
| top_k=None, | |
| temperature=None, | |
| repetition_penalty=None, | |
| eos_token_id=model.generation_config.eos_token_id, | |
| pad_token_id=text_tokenizer.pad_token_id, | |
| use_cache=True | |
| ) | |
| response = "" | |
| thread = Thread(target=model.generate, | |
| kwargs={"inputs": input_ids, | |
| "pixel_values": pixel_values, | |
| "attention_mask": attention_mask, | |
| "streamer": streamer, | |
| **gen_kwargs}) | |
| thread.start() | |
| for new_text in streamer: | |
| response += new_text | |
| chatbot[-1][1] = response | |
| yield chatbot | |
| thread.join() | |
| # debug | |
| print('*'*60) | |
| print('*'*60) | |
| print('OVIS_CONV_START') | |
| for i, (request, answer) in enumerate(chatbot[:-1], 1): | |
| print(f'Q{i}:\n {request}') | |
| print(f'A{i}:\n {answer}') | |
| print('New_Q:\n', text_input) | |
| print('New_A:\n', response) | |
| print('OVIS_CONV_END') | |
| def clear_chat(): | |
| return [], None, "" | |
| with open(f"{cur_dir}/resource/logo.svg", "r", encoding="utf-8") as svg_file: | |
| svg_content = svg_file.read() | |
| font_size = "2.5em" | |
| svg_content = re.sub(r'(<svg[^>]*)(>)', rf'\1 height="{font_size}" style="vertical-align: middle; display: inline-block;"\2', svg_content) | |
| html = f""" | |
| <p align="center" style="font-size: {font_size}; line-height: 1;"> | |
| <span style="display: inline-block; vertical-align: middle;">{svg_content}</span> | |
| <span style="display: inline-block; vertical-align: middle;">{model_name.split('/')[-1]}</span> | |
| </p> | |
| <center><font size=3><b>Ovis</b> has been open-sourced on <a href='https://huggingface.co/{model_name}'>π Huggingface</a> and <a href='https://github.com/AIDC-AI/Ovis'>π GitHub</a>. If you find Ovis useful, a likeβ€οΈ or a starπ would be appreciated.</font></center> | |
| """ | |
| latex_delimiters_set = [{ | |
| "left": "\\(", | |
| "right": "\\)", | |
| "display": False | |
| }, { | |
| "left": "\\begin{equation}", | |
| "right": "\\end{equation}", | |
| "display": True | |
| }, { | |
| "left": "\\begin{align}", | |
| "right": "\\end{align}", | |
| "display": True | |
| }, { | |
| "left": "\\begin{alignat}", | |
| "right": "\\end{alignat}", | |
| "display": True | |
| }, { | |
| "left": "\\begin{gather}", | |
| "right": "\\end{gather}", | |
| "display": True | |
| }, { | |
| "left": "\\begin{CD}", | |
| "right": "\\end{CD}", | |
| "display": True | |
| }, { | |
| "left": "\\[", | |
| "right": "\\]", | |
| "display": True | |
| }] | |
| text_input = gr.Textbox(label="prompt", placeholder="Enter your text here...", lines=1, container=False) | |
| with gr.Blocks(title=model_name.split('/')[-1], theme=gr.themes.Ocean()) as demo: | |
| gr.HTML(html) | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| image_input = gr.Image(label="image", height=350, type="pil") | |
| gr.Examples( | |
| examples=[ | |
| [f"{cur_dir}/examples/case0.png", "Find the area of the shaded region."], | |
| [f"{cur_dir}/examples/case1.png", "explain this model to me."], | |
| [f"{cur_dir}/examples/case2.png", "What is net profit margin as a percentage of total revenue?"], | |
| ], | |
| inputs=[image_input, text_input] | |
| ) | |
| with gr.Column(scale=7): | |
| chatbot = gr.Chatbot(label="Ovis", layout="panel", height=600, show_copy_button=True, latex_delimiters=latex_delimiters_set) | |
| text_input.render() | |
| with gr.Row(): | |
| send_btn = gr.Button("Send", variant="primary") | |
| clear_btn = gr.Button("Clear", variant="secondary") | |
| send_click_event = send_btn.click(submit_chat, [chatbot, text_input], [chatbot, text_input]).then(ovis_chat,[chatbot, image_input],chatbot) | |
| submit_event = text_input.submit(submit_chat, [chatbot, text_input], [chatbot, text_input]).then(ovis_chat,[chatbot, image_input],chatbot) | |
| clear_btn.click(clear_chat, outputs=[chatbot, image_input, text_input]) | |
| demo.launch() | |