|
|
|
import os |
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0" |
|
|
|
import torch |
|
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor |
|
from PIL import Image |
|
import gradio as gr |
|
from qwen_vl_utils import process_vision_info |
|
|
|
def load_model(): |
|
""" |
|
マージ済みモデルとプロセッサのロード |
|
""" |
|
print("マージ済みモデルをロード中...") |
|
model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
"AIBunCho/AI_bokete", torch_dtype="auto", device_map="auto", |
|
) |
|
processor = AutoProcessor.from_pretrained("AIBunCho/AI_bokete") |
|
print("マージ済みモデルのロード完了.") |
|
return model, processor |
|
|
|
def perform_inference(model, processor, image, prompt): |
|
""" |
|
推論の実行 |
|
""" |
|
|
|
target_width = 512 |
|
width_percent = (target_width / float(image.size[0])) |
|
target_height = int((float(image.size[1]) * float(width_percent))) |
|
image = image.resize((target_width, target_height), Image.Resampling.LANCZOS) |
|
|
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "image", |
|
"image": image, |
|
}, |
|
{"type": "text", "text": prompt}, |
|
], |
|
} |
|
] |
|
|
|
|
|
image = image.convert("RGB") |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
|
|
|
|
text = processor.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
|
|
|
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
|
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
model.to(device) |
|
inputs = {k: v.to(device) for k, v in inputs.items()} |
|
|
|
|
|
for param in model.parameters(): |
|
param.data = param.data.to(device) |
|
|
|
|
|
with torch.no_grad(): |
|
generated_ids = model.generate(**inputs, max_new_tokens=128) |
|
|
|
|
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs["input_ids"], generated_ids) |
|
] |
|
|
|
|
|
output_text = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
|
|
return output_text[0] |
|
|
|
def main(): |
|
|
|
model, processor = load_model() |
|
|
|
|
|
prompt = "<image>画像を見てシュールで面白いことを言ってください。空欄がある場合はそれを埋めるように答えてください。" |
|
|
|
|
|
iface = gr.Interface( |
|
fn=lambda image: perform_inference(model, processor, image, prompt), |
|
inputs=gr.Image(type="pil"), |
|
outputs="text", |
|
title="Qwen2-VL-7B-Instruct Bokete Inference", |
|
description="画像をアップロードすると、シュールで面白いキャプションが生成される…かも?", |
|
examples=[["./images/0.jpg"]], |
|
) |
|
|
|
|
|
iface.launch() |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|