Spaces:
Sleeping
Sleeping
File size: 16,243 Bytes
db48033 b38979e db48033 ec5c780 db48033 ec5c780 db48033 ec5c780 db48033 b38979e db48033 b38979e db48033 b38979e db48033 b38979e db48033 b38979e db48033 b38979e db48033 b38979e db48033 b38979e db48033 b38979e db48033 b38979e db48033 b38979e db48033 ec5c780 db48033 ec5c780 db48033 ec5c780 b38979e db48033 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
# from yaml import load
from persist import persist, load_widget_state
import streamlit as st
from io import StringIO
import tempfile
from pathlib import Path
import requests
from huggingface_hub import hf_hub_download, upload_file
import pandas as pd
from huggingface_hub import create_repo
import os
from datetime import date
from middleMan import parse_into_jinja_markdown as pj
import requests
@st.cache
def get_icd():
# Get ICD10 list
token_endpoint = 'https://icdaccessmanagement.who.int/connect/token'
client_id = '3bc9c811-7f2e-4dab-a2dc-940e47a38fef_a6108252-4503-4ff7-90ab-300fd27392aa'
client_secret = 'xPj7mleWf1Bilu9f7P10UQmBPvL5F6Wgd8/rJhO1T04='
scope = 'icdapi_access'
grant_type = 'client_credentials'
# set data to post
payload = {'client_id': client_id,
'client_secret': client_secret,
'scope': scope,
'grant_type': grant_type}
# make request
r = requests.post(token_endpoint, data=payload, verify=False).json()
token = r['access_token']
# access ICD API
uri = 'https://id.who.int/icd/release/10/2019/C00-C75'
# HTTP header fields to set
headers = {'Authorization': 'Bearer '+token,
'Accept': 'application/json',
'Accept-Language': 'en',
'API-Version': 'v2'}
# make request
r = requests.get(uri, headers=headers, verify=False)
print("icd",r.json())
icd_map =[]
for child in r.json()['child']:
r_child = requests.get(child, headers=headers,verify=False).json()
icd_map.append(r_child["code"]+" "+r_child["title"]["@value"])
return icd_map
@st.cache
def get_treatment_mod():
url = "https://clinicaltables.nlm.nih.gov/loinc_answers?loinc_num=21964-2"
r = requests.get(url).json()
treatment_mod = [treatment['DisplayText'] for treatment in r]
return treatment_mod
@st.cache
def get_cached_data():
languages_df = pd.read_html("https://hf.co/languages")[0]
languages_map = pd.Series(languages_df["Language"].values, index=languages_df["ISO code"]).to_dict()
license_df = pd.read_html("https://huggingface.co/docs/hub/repositories-licenses")[0]
license_map = pd.Series(
license_df["License identifier (to use in repo card)"].values, index=license_df.Fullname
).to_dict()
available_metrics = [x['id'] for x in requests.get('https://huggingface.co/api/metrics').json()]
r = requests.get('https://huggingface.co/api/models-tags-by-type')
tags_data = r.json()
libraries = [x['id'] for x in tags_data['library']]
tasks = [x['id'] for x in tags_data['pipeline_tag']]
icd_map = get_icd()
treatment_mod = get_treatment_mod()
return languages_map, license_map, available_metrics, libraries, tasks, icd_map, treatment_mod
def card_upload(card_info,repo_id,token):
#commit_message=None,
repo_type = "model"
commit_description=None,
revision=None
create_pr=None
with tempfile.TemporaryDirectory() as tmpdir:
tmp_path = Path(tmpdir) / "README.md"
tmp_path.write_text(str(card_info))
url = upload_file(
path_or_fileobj=str(tmp_path),
path_in_repo="README.md",
repo_id=repo_id,
token=token,
repo_type=repo_type,
# identical_ok=True,
revision=revision
)
return url
def images_upload(images_list,repo_id,token):
repo_type = "model"
commit_description=None,
revision=None
create_pr=None
for img in images_list:
if img is not None:
with tempfile.TemporaryDirectory() as tmpdir:
tmp_path = Path(tmpdir) / "README.md"
tmp_path.write_text(str(img))
url = upload_file(
path_or_fileobj=str(tmp_path),
path_in_repo="README.md",
repo_id=repo_id,
token=token,
repo_type=repo_type,
# identical_ok=True,
revision=revision
)
return url
def validate(self, repo_type="model"):
"""Validates card against Hugging Face Hub's model card validation logic.
Using this function requires access to the internet, so it is only called
internally by `modelcards.ModelCard.push_to_hub`.
Args:
repo_type (`str`, *optional*):
The type of Hugging Face repo to push to. Defaults to None, which will use
use "model". Other options are "dataset" and "space".
"""
if repo_type is None:
repo_type = "model"
# TODO - compare against repo types constant in huggingface_hub if we move this object there.
if repo_type not in ["model", "space", "dataset"]:
raise RuntimeError(
"Provided repo_type '{repo_type}' should be one of ['model', 'space',"
" 'dataset']."
)
body = {
"repoType": repo_type,
"content": str(self),
}
headers = {"Accept": "text/plain"}
try:
r = requests.post(
"https://huggingface.co/api/validate-yaml", body, headers=headers
)
r.raise_for_status()
except requests.exceptions.HTTPError as exc:
if r.status_code == 400:
raise RuntimeError(r.text)
else:
raise exc
## Save uploaded [markdown] file to directory to be used by jinja parser function
def save_uploadedfile(uploadedfile):
with open(uploadedfile.name,"wb") as f:
f.write(uploadedfile.getbuffer())
st.success("Saved File:{} to temp_uploaded_filed_Dir".format(uploadedfile.name))
return uploadedfile.name
def main_page():
today=date.today()
if "model_name" not in st.session_state:
# Initialize session state.
st.session_state.update({
# Model Basic Information
"model_version": 0,
"icd10": [],
"treatment_modality": [],
"prescription_levels": [],
"additional_information": "",
"motivation": "",
"model_class":"",
"creation_date": today,
"architecture": "",
"model_developers": "",
"funded_by":"",
"shared_by":"",
"license": "",
"finetuned_from": "",
"research_paper": "",
"git_repo": "",
# Technical Specifications
"nb_parameters": 5,
"input_channels": [],
"loss_function": "",
"batch_size": 1,
"patch_dimension": [],
"architecture_filename":None,
"libraries":[],
"hardware": "",
"inference_time": 10,
"get_started_code": "",
# Training Details
"training_set_size":10,
"validation_set_size":10,
"age_fig_filename":"",
"sex_fig_filename":"",
"dataset_source": "",
"acquisition_from": today,
"acquisition_to": today,
"markdown_upload": ""
})
## getting cache for each warnings
languages_map, license_map, available_metrics, libraries, tasks, icd_map, treatment_mod = get_cached_data()
## form UI setting
st.header("Model basic information (Dose prediction)")
warning_placeholder = st.empty()
st.text_input("Model Name", key=persist("model_name"))
st.number_input("Version",key=persist("model_version"),step=0.1)
st.text("Intended use:")
left, right = st.columns([4,2])
left.multiselect("Treatment site ICD10",list(icd_map), help="Reference ICD10 WHO: https://icd.who.int/icdapi",key=persist("icd10"))
right.multiselect("Treatment modality", list(treatment_mod), help="Reference LOINC Modality Radiation treatment: https://loinc.org/21964-2", key=persist("treatment_modality"))
left, right = st.columns(2)
nlines = int(left.number_input("Number of prescription levels", 0, 20, 1))
# cols = st.columns(ncol)
for i in range(nlines):
right.number_input(f"Prescription [Gy] # {i}", key=i)
st.text_area("Additional information", placeholder = "Bilateral cases only", help="E.g. Bilateral cases only", key=persist('additional_information'))
st.text_area("Motivation for development", key=persist('motivation'))
st.text_area("Class", placeholder="RULE 11, FROM MDCG 2021-24", key=persist('model_class'))
st.date_input("Creation date", key=persist('creation_date'))
st.text_area("Type of architecture",value="UNet", key=persist('architecture'))
st.text("Developed by:")
left, middle, right = st.columns(3)
left.text_input("Name", key=persist('dev_name'))
middle.text_input("Institution", placeholder = "University/clinic/company", key=persist('dev_institution'))
right.text_input("Email", key=persist('dev_email'))
st.text_area("Funded by", key=persist('funded_by'))
st.text_area("Shared by", key=persist('shared_by'))
st.selectbox("License", [""] + list(license_map.values()), help="The license associated with this model.", key=persist("license"))
st.text_area("Fine tuned from model", key=persist('finetuned_from'))
st.text_area("Related Research Paper", help="Research paper related to this model.", key=persist("research_paper"))
st.text_input("Related GitHub Repository", help="Link to a GitHub repository used in the development of this model", key=persist("git_repo"))
# st.selectbox("Library Name", [""] + libraries, help="The name of the library this model came from (Ex. pytorch, timm, spacy, keras, etc.). This is usually automatically detected in model repos, so it is not required.", key=persist('library_name'))
# st.text_input("Parent Model (URL)", help="If this model has another model as its base, please provide the URL link to the parent model", key=persist("Parent_Model_name"))
# st.text_input("Datasets (comma separated)", help="The dataset(s) used to train this model. Use dataset id from https://hf.co/datasets.", key=persist("datasets"))
# st.multiselect("Metrics", available_metrics, help="Metrics used in the training/evaluation of this model. Use metric id from https://hf.co/metrics.", key=persist("metrics"))
# st.selectbox("Task", [""] + tasks, help="What task does this model aim to solve?", key=persist('task'))
# st.text_input("Tags (comma separated)", help="Additional tags to add which will be filterable on https://hf.co/models. (Ex. image-classification, vision, resnet)", key=persist("tags"))
# st.text_input("Author(s) (comma separated)", help="The authors who developed this model. If you trained this model, the author is you.", key=persist("the_authors"))
# s
# st.text_input("Carbon Emitted:", help="You can estimate carbon emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700)", key=persist("Model_c02_emitted"))
# st.header("Technical specifications")
# st.header("Training data, methodology, and results")
# st.header("Evaluation data, methodology, and results / commissioning")
# st.header("Ethical use considerations")
# warnings setting
# languages=st.session_state.languages or None
license=st.session_state.license or None
task = None #st.session_state.task or None
markdown_upload = st.session_state.markdown_upload
#uploaded_model_card = st.session_state.uploaded_model
# Handle any warnings...
do_warn = False
warning_msg = "Warning: The following fields are required but have not been filled in: "
if not license:
warning_msg += "\n- License"
do_warn = True
if do_warn:
warning_placeholder.error(warning_msg)
with st.sidebar:
######################################################
### Uploading a model card from local drive
######################################################
st.markdown("## Upload Model Card")
st.markdown("#### Model Card must be in markdown (.md) format.")
# Read a single file
uploaded_file = st.file_uploader("Choose a file", type = ['md'], help = 'Please choose a markdown (.md) file type to upload')
if uploaded_file is not None:
name_of_uploaded_file = save_uploadedfile(uploaded_file)
st.session_state.markdown_upload = name_of_uploaded_file ## uploaded model card
# elif st.session_state.task =='fill-mask' or 'translation' or 'token-classification' or ' sentence-similarity' or 'summarization' or 'question-answering' or 'text2text-generation' or 'text-classification' or 'text-generation' or 'conversational':
# print("YO",st.session_state.task)
# st.session_state.markdown_upload = "language_model_template1.md" ## language model template
else:#if st.session_state.task:
st.session_state.markdown_upload = "current_card.md" ## default non language model template
print("st.session_state.markdown_upload",st.session_state.markdown_upload)
#########################################
### Uploading model card to HUB
#########################################
out_markdown =open( st.session_state.markdown_upload, "r+"
).read()
print_out_final = f"{out_markdown}"
st.markdown("## Export Loaded Model Card to Hub")
with st.form("Upload to π€ Hub"):
st.markdown("Use a token with write access from [here](https://hf.co/settings/tokens)")
token = st.text_input("Token", type='password')
repo_id = st.text_input("Repo ID")
submit = st.form_submit_button('Upload to π€ Hub', help='The current model card will be uploaded to a branch in the supplied repo ')
if submit:
if len(repo_id.split('/')) == 2:
repo_url = create_repo(repo_id, exist_ok=True, token=token)
new_url = card_upload(pj(),repo_id, token=token)
# images_upload([st.session_state['architecture_filename'], st.session_state["age_fig_filename"], st.session_state["sex_fig_filename"]],repo_id, token=token)
st.success(f"Pushed the card to the repo [here]({new_url})!") # note: was repo_url
else:
st.error("Repo ID invalid. It should be username/repo-name. For example: nateraw/food")
#########################################
### Download model card
#########################################
st.markdown("## Download current Model Card")
if st.session_state.model_name is None or st.session_state.model_name== ' ':
downloaded_file_name = 'current_model_card.md'
else:
downloaded_file_name = st.session_state.model_name+'_'+'model_card.md'
download_status = st.download_button(label = 'Download Model Card', data = pj(), file_name = downloaded_file_name, help = "The current model card will be downloaded as a markdown (.md) file")
if download_status == True:
st.success("Your current model card, successfully downloaded π€")
def page_switcher(page):
st.session_state.runpage = page
def main():
st.header("About Model Cards")
st.markdown(Path('about.md').read_text(), unsafe_allow_html=True)
btn = st.button('Create a Model Card π',on_click=page_switcher,args=(main_page,))
if btn:
st.experimental_rerun() # rerun is needed to clear the page
if __name__ == '__main__':
load_widget_state()
if 'runpage' not in st.session_state :
st.session_state.runpage = main
st.session_state.runpage()
|