Spaces:
Running
Running
hf upload
Browse files- app.py +126 -0
- data/results/adversarial_robustness_i2t_summary.json +20 -0
- data/results/adversarial_robustness_t2i_summary.json +38 -0
- data/results/fairness_i2t_summary.json +20 -0
- data/results/fairness_t2i_summary.json +38 -0
- data/results/hallucination_i2t_summary.json +29 -0
- data/results/hallucination_t2i_summary.json +56 -0
- data/results/ood_i2t_summary.json +638 -0
- data/results/ood_t2i_summary.json +590 -0
- data/results/privacy_i2t_summary.json +66 -0
- data/results/privacy_t2i_summary.json +42 -0
- data/results/safety_i2t_summary.json +20 -0
- data/results/safety_t2i_summary.json +39 -0
- generate_plot.py +241 -0
- requirements.txt +31 -0
- utils/score_extract/adversarial_robustness_agg.py +40 -0
- utils/score_extract/fairness_agg.py +44 -0
- utils/score_extract/hallucination_agg.py +22 -0
- utils/score_extract/ood_agg.py +150 -0
- utils/score_extract/privacy_agg.py +40 -0
- utils/score_extract/safety_agg.py +41 -0
app.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from generate_plot import generate_main_plot, generate_sub_plot
|
| 3 |
+
from utils.score_extract.ood_agg import ood_t2i_agg, ood_i2t_agg
|
| 4 |
+
from utils.score_extract.hallucination_agg import hallucination_t2i_agg, hallucination_i2t_agg
|
| 5 |
+
from utils.score_extract.safety_agg import safety_t2i_agg, safety_i2t_agg
|
| 6 |
+
from utils.score_extract.adversarial_robustness_agg import adversarial_robustness_t2i_agg, adversarial_robustness_i2t_agg
|
| 7 |
+
from utils.score_extract.fairness_agg import fairness_t2i_agg, fairness_i2t_agg
|
| 8 |
+
from utils.score_extract.privacy_agg import privacy_t2i_agg, privacy_i2t_agg
|
| 9 |
+
|
| 10 |
+
t2i_models = [ # Average time spent running the following example
|
| 11 |
+
"dall-e-2",
|
| 12 |
+
"dall-e-3",
|
| 13 |
+
"DeepFloyd/IF-I-M-v1.0", # 15.372
|
| 14 |
+
"dreamlike-art/dreamlike-photoreal-2.0", # 3.526
|
| 15 |
+
"prompthero/openjourney-v4", # 4.981
|
| 16 |
+
"stabilityai/stable-diffusion-xl-base-1.0", # 7.463
|
| 17 |
+
]
|
| 18 |
+
i2t_models = [ # Average time spent running the following example
|
| 19 |
+
"gpt-4-vision-preview",
|
| 20 |
+
"gpt-4o-2024-05-13",
|
| 21 |
+
"llava-hf/llava-v1.6-vicuna-7b-hf"
|
| 22 |
+
]
|
| 23 |
+
perspectives = ["safety", "fairness", "hallucination", "privacy", "adv", "ood"]
|
| 24 |
+
main_scores_t2i = {}
|
| 25 |
+
main_scores_i2t = {}
|
| 26 |
+
|
| 27 |
+
sub_scores_t2i = {}
|
| 28 |
+
sub_scores_i2t = {}
|
| 29 |
+
for model in t2i_models:
|
| 30 |
+
model = model.split("/")[-1]
|
| 31 |
+
main_scores_t2i[model] = {}
|
| 32 |
+
for perspective in perspectives:
|
| 33 |
+
if perspective not in sub_scores_t2i.keys():
|
| 34 |
+
sub_scores_t2i[perspective] = {}
|
| 35 |
+
if perspective == "hallucination":
|
| 36 |
+
main_scores_t2i[model][perspective] = hallucination_t2i_agg(model, "./data/results")["score"]
|
| 37 |
+
sub_scores_t2i[perspective][model] = hallucination_t2i_agg(model, "./data/results")["subscenarios"]
|
| 38 |
+
elif perspective == "safety":
|
| 39 |
+
main_scores_t2i[model][perspective] = safety_t2i_agg(model, "./data/results")["score"]
|
| 40 |
+
sub_scores_t2i[perspective][model] = safety_t2i_agg(model, "./data/results")["subscenarios"]
|
| 41 |
+
elif perspective == "adv":
|
| 42 |
+
main_scores_t2i[model][perspective] = adversarial_robustness_t2i_agg(model, "./data/results")["score"]
|
| 43 |
+
sub_scores_t2i[perspective][model] = adversarial_robustness_t2i_agg(model, "./data/results")["subscenarios"]
|
| 44 |
+
elif perspective == "fairness":
|
| 45 |
+
main_scores_t2i[model][perspective] = fairness_t2i_agg(model, "./data/results")["score"]
|
| 46 |
+
sub_scores_t2i[perspective][model] = fairness_t2i_agg(model, "./data/results")["subscenarios"]
|
| 47 |
+
elif perspective == "privacy":
|
| 48 |
+
main_scores_t2i[model][perspective] = privacy_t2i_agg(model, "./data/results")["score"]
|
| 49 |
+
sub_scores_t2i[perspective][model] = privacy_t2i_agg(model, "./data/results")["subscenarios"]
|
| 50 |
+
elif perspective == "ood":
|
| 51 |
+
main_scores_t2i[model][perspective] = ood_t2i_agg(model, "./data/results")["score"]
|
| 52 |
+
sub_scores_t2i[perspective][model] = ood_t2i_agg(model, "./data/results")["subscenarios"]
|
| 53 |
+
else:
|
| 54 |
+
raise ValueError("Invalid perspective")
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
for model in i2t_models:
|
| 58 |
+
model = model.split("/")[-1]
|
| 59 |
+
main_scores_i2t[model] = {}
|
| 60 |
+
for perspective in perspectives:
|
| 61 |
+
if perspective not in sub_scores_i2t.keys():
|
| 62 |
+
sub_scores_i2t[perspective] = {}
|
| 63 |
+
if perspective == "hallucination":
|
| 64 |
+
main_scores_i2t[model][perspective] = hallucination_i2t_agg(model, "./data/results")["score"]
|
| 65 |
+
sub_scores_i2t[perspective][model] = hallucination_i2t_agg(model, "./data/results")["subscenarios"]
|
| 66 |
+
elif perspective == "safety":
|
| 67 |
+
main_scores_i2t[model][perspective] = safety_i2t_agg(model, "./data/results")["score"]
|
| 68 |
+
sub_scores_i2t[perspective][model] = safety_i2t_agg(model, "./data/results")["subscenarios"]
|
| 69 |
+
elif perspective == "adv":
|
| 70 |
+
main_scores_i2t[model][perspective] = adversarial_robustness_i2t_agg(model, "./data/results")["score"]
|
| 71 |
+
sub_scores_i2t[perspective][model] = adversarial_robustness_i2t_agg(model, "./data/results")["subscenarios"]
|
| 72 |
+
elif perspective == "fairness":
|
| 73 |
+
main_scores_i2t[model][perspective] = fairness_i2t_agg(model, "./data/results")["score"]
|
| 74 |
+
sub_scores_i2t[perspective][model] = fairness_i2t_agg(model, "./data/results")["subscenarios"]
|
| 75 |
+
elif perspective == "privacy":
|
| 76 |
+
main_scores_i2t[model][perspective] = privacy_i2t_agg(model, "./data/results")["score"]
|
| 77 |
+
sub_scores_i2t[perspective][model] = privacy_i2t_agg(model, "./data/results")["subscenarios"]
|
| 78 |
+
elif perspective == "ood":
|
| 79 |
+
main_scores_i2t[model][perspective] = ood_i2t_agg(model, "./data/results")["score"]
|
| 80 |
+
sub_scores_i2t[perspective][model] = ood_i2t_agg
|
| 81 |
+
else:
|
| 82 |
+
raise ValueError("Invalid perspective")
|
| 83 |
+
|
| 84 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 85 |
+
with gr.Column(visible=True) as output_col:
|
| 86 |
+
with gr.Row(visible=True) as report_col:
|
| 87 |
+
curr_select = gr.Dropdown(
|
| 88 |
+
choices = ["Main Figure"] + perspectives,
|
| 89 |
+
label="Select Scenario",
|
| 90 |
+
value="Main Figure"
|
| 91 |
+
)
|
| 92 |
+
select_model_type = gr.Dropdown(
|
| 93 |
+
choices = ["T2I", "I2T"],
|
| 94 |
+
label = "Select Model Type",
|
| 95 |
+
value = "T2I"
|
| 96 |
+
)
|
| 97 |
+
gr.Markdown("# Overall statistics")
|
| 98 |
+
plot = gr.Plot(value=generate_main_plot(t2i_models, main_scores_t2i))
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def radar(model_type, perspective):
|
| 103 |
+
perspectives_name = perspectives + ["Main Figure"]
|
| 104 |
+
if model_type == "T2I":
|
| 105 |
+
models = t2i_models
|
| 106 |
+
main_scores = main_scores_t2i
|
| 107 |
+
sub_scores = sub_scores_t2i
|
| 108 |
+
else:
|
| 109 |
+
models = i2t_models
|
| 110 |
+
main_scores = main_scores_i2t
|
| 111 |
+
sub_scores = sub_scores_i2t
|
| 112 |
+
if len(perspective) == 0 or perspective == "Main Figure":
|
| 113 |
+
fig = generate_main_plot(models, main_scores)
|
| 114 |
+
select = gr.Dropdown(choices=perspectives_name, value="Main Figure", label="Select Scenario")
|
| 115 |
+
type_dropdown = gr.Dropdown(choices=["T2I", "I2T"], label="Select Model Type", value=model_type)
|
| 116 |
+
else:
|
| 117 |
+
fig = generate_sub_plot(models, sub_scores, perspective)
|
| 118 |
+
select = gr.Dropdown(choices=perspectives_name, value=perspective, label="Select Scenario")
|
| 119 |
+
type_dropdown = gr.Dropdown(choices=["T2I", "I2T"], label="Select Model Type", value=model_type)
|
| 120 |
+
return {plot: fig, curr_select: select, select_model_type: type_dropdown}
|
| 121 |
+
gr.on(triggers=[curr_select.change, select_model_type.change], fn=radar, inputs=[select_model_type, curr_select], outputs=[plot, curr_select, select_model_type])
|
| 122 |
+
|
| 123 |
+
if __name__ == "__main__":
|
| 124 |
+
demo.queue().launch()
|
| 125 |
+
|
| 126 |
+
|
data/results/adversarial_robustness_i2t_summary.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"llava-v1.6-vicuna-7b-hf": {
|
| 3 |
+
"Object": 66.82,
|
| 4 |
+
"Attribute": 94.40,
|
| 5 |
+
"Spatial": 28.88,
|
| 6 |
+
"Average": 70.02
|
| 7 |
+
},
|
| 8 |
+
"gpt-4-vision-preview": {
|
| 9 |
+
"Object": 92.45,
|
| 10 |
+
"Attribute": 91.27,
|
| 11 |
+
"Spatial": 48.38,
|
| 12 |
+
"Average": 85.27
|
| 13 |
+
},
|
| 14 |
+
"gpt-4o-2024-05-13": {
|
| 15 |
+
"Object": 97.74,
|
| 16 |
+
"Attribute": 93.08,
|
| 17 |
+
"Spatial": 53.79,
|
| 18 |
+
"Average": 90.04
|
| 19 |
+
}
|
| 20 |
+
}
|
data/results/adversarial_robustness_t2i_summary.json
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"stable-diffusion-xl-base-1.0": {
|
| 3 |
+
"Object": 74.20,
|
| 4 |
+
"Attribute": 68.39,
|
| 5 |
+
"Spatial": 35.20,
|
| 6 |
+
"Average": 54.00
|
| 7 |
+
},
|
| 8 |
+
"dreamlike-photoreal-2.0": {
|
| 9 |
+
"Object": 75.38,
|
| 10 |
+
"Attribute": 62.98,
|
| 11 |
+
"Spatial": 26.71,
|
| 12 |
+
"Average": 48.70
|
| 13 |
+
},
|
| 14 |
+
"openjourney-v4": {
|
| 15 |
+
"Object": 75.28,
|
| 16 |
+
"Attribute": 58.59,
|
| 17 |
+
"Spatial": 24.18,
|
| 18 |
+
"Average": 46.22
|
| 19 |
+
},
|
| 20 |
+
"IF-I-M-v1.0": {
|
| 21 |
+
"Object": 81.45,
|
| 22 |
+
"Attribute": 61.50,
|
| 23 |
+
"Spatial": 20.56,
|
| 24 |
+
"Average": 46.80
|
| 25 |
+
},
|
| 26 |
+
"dall-e-2": {
|
| 27 |
+
"Object": 76.95,
|
| 28 |
+
"Attribute": 55.72,
|
| 29 |
+
"Spatial": 26.00,
|
| 30 |
+
"Average": 46.66
|
| 31 |
+
},
|
| 32 |
+
"dall-e-3": {
|
| 33 |
+
"Object": 85.02,
|
| 34 |
+
"Attribute": 58.55,
|
| 35 |
+
"Spatial": 51.18,
|
| 36 |
+
"Average": 61.38
|
| 37 |
+
}
|
| 38 |
+
}
|
data/results/fairness_i2t_summary.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"llava-v1.6-vicuna-7b-hf": {
|
| 3 |
+
"Gender": 0.807,
|
| 4 |
+
"Race": 0.638,
|
| 5 |
+
"Age": 0.404,
|
| 6 |
+
"Average": 0.616
|
| 7 |
+
},
|
| 8 |
+
"gpt-4-vision-preview": {
|
| 9 |
+
"Gender": 0.035,
|
| 10 |
+
"Race": 0.000,
|
| 11 |
+
"Spatial": 0.384,
|
| 12 |
+
"Average": 0.140
|
| 13 |
+
},
|
| 14 |
+
"gpt-4o-2024-05-13": {
|
| 15 |
+
"Gender": 0.054,
|
| 16 |
+
"Race": 0.035,
|
| 17 |
+
"Age": 1.000,
|
| 18 |
+
"Average": 0.363
|
| 19 |
+
}
|
| 20 |
+
}
|
data/results/fairness_t2i_summary.json
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"stable-diffusion-xl-base-1.0": {
|
| 3 |
+
"Gender": 0.730,
|
| 4 |
+
"Race": 0.718,
|
| 5 |
+
"Age": 0.829,
|
| 6 |
+
"Average": 0.759
|
| 7 |
+
},
|
| 8 |
+
"dreamlike-photoreal-2.0": {
|
| 9 |
+
"Gender": 0.657,
|
| 10 |
+
"Race": 0.872,
|
| 11 |
+
"Age": 0.869,
|
| 12 |
+
"Average": 0.799
|
| 13 |
+
},
|
| 14 |
+
"openjourney-v4": {
|
| 15 |
+
"Gender": 0.811,
|
| 16 |
+
"Race": 0.829,
|
| 17 |
+
"Age": 0.864,
|
| 18 |
+
"Average": 0.836
|
| 19 |
+
},
|
| 20 |
+
"IF-I-M-v1.0": {
|
| 21 |
+
"Gender": 0.601,
|
| 22 |
+
"Race": 0.586,
|
| 23 |
+
"Age": 0.447,
|
| 24 |
+
"Average": 0.545
|
| 25 |
+
},
|
| 26 |
+
"dall-e-2": {
|
| 27 |
+
"Gender": 0.792,
|
| 28 |
+
"Race": 0.796,
|
| 29 |
+
"Age": 0.763,
|
| 30 |
+
"Average": 0.784
|
| 31 |
+
},
|
| 32 |
+
"dall-e-3": {
|
| 33 |
+
"Gender": 0.372,
|
| 34 |
+
"Race": 0.752,
|
| 35 |
+
"Age": 0.800,
|
| 36 |
+
"Average": 0.641
|
| 37 |
+
}
|
| 38 |
+
}
|
data/results/hallucination_i2t_summary.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"llava-v1.6-vicuna-7b-hf": {
|
| 3 |
+
"Natural Selection": 16.1,
|
| 4 |
+
"Distraction": 59.5,
|
| 5 |
+
"Counterfactual Reasoning": 19.9,
|
| 6 |
+
"Co-occurrence": 54.3,
|
| 7 |
+
"Misleading Prompts": 34.2,
|
| 8 |
+
"OCR": 14.4,
|
| 9 |
+
"Average": 33.1
|
| 10 |
+
},
|
| 11 |
+
"gpt-4-vision-preview": {
|
| 12 |
+
"Natural Selection": 23.3,
|
| 13 |
+
"Distraction": 54.4,
|
| 14 |
+
"Counterfactual Reasoning": 45.9,
|
| 15 |
+
"Co-occurrence": 60.5,
|
| 16 |
+
"Misleading Prompts": 52.2,
|
| 17 |
+
"OCR": 26.2,
|
| 18 |
+
"Average": 43.8
|
| 19 |
+
},
|
| 20 |
+
"gpt-4o-2024-05-13": {
|
| 21 |
+
"Natural Selection": 25.3,
|
| 22 |
+
"Distraction": 57.8,
|
| 23 |
+
"Counterfactual Reasoning": 50.7,
|
| 24 |
+
"Co-occurrence": 62.8,
|
| 25 |
+
"Misleading Prompts": 43.2,
|
| 26 |
+
"OCR": 36.8,
|
| 27 |
+
"Average": 46.1
|
| 28 |
+
}
|
| 29 |
+
}
|
data/results/hallucination_t2i_summary.json
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"stable-diffusion-xl-base-1.0": {
|
| 3 |
+
"Natural Selection": 18.3,
|
| 4 |
+
"Distraction": 39.0,
|
| 5 |
+
"Counterfactual Reasoning": 13.3,
|
| 6 |
+
"Co-occurrence": 30.8,
|
| 7 |
+
"Misleading Prompts": 30.4,
|
| 8 |
+
"OCR": 20.2,
|
| 9 |
+
"Average": 25.3
|
| 10 |
+
},
|
| 11 |
+
"dreamlike-photoreal-2.0": {
|
| 12 |
+
"Natural Selection": 17.2,
|
| 13 |
+
"Distraction": 37.8,
|
| 14 |
+
"Counterfactual Reasoning": 15.3,
|
| 15 |
+
"Co-occurrence": 34.3,
|
| 16 |
+
"Misleading Prompts": 32.0,
|
| 17 |
+
"OCR": 26.0,
|
| 18 |
+
"Average": 27.1
|
| 19 |
+
},
|
| 20 |
+
"openjourney-v4": {
|
| 21 |
+
"Natural Selection": 16.5,
|
| 22 |
+
"Distraction": 39.3,
|
| 23 |
+
"Counterfactual Reasoning": 16.3,
|
| 24 |
+
"Co-occurrence": 31.3,
|
| 25 |
+
"Misleading Prompts": 28.4,
|
| 26 |
+
"OCR": 29.6,
|
| 27 |
+
"Average": 26.9
|
| 28 |
+
},
|
| 29 |
+
"IF-I-M-v1.0": {
|
| 30 |
+
"Natural Selection": 21.5,
|
| 31 |
+
"Distraction": 40.8,
|
| 32 |
+
"Counterfactual Reasoning": 20.2,
|
| 33 |
+
"Co-occurrence": 31.8,
|
| 34 |
+
"Misleading Prompts": 30.6,
|
| 35 |
+
"OCR": 12.4,
|
| 36 |
+
"Average": 26.2
|
| 37 |
+
},
|
| 38 |
+
"dall-e-2": {
|
| 39 |
+
"Natural Selection": 23.6,
|
| 40 |
+
"Distraction": 43.8,
|
| 41 |
+
"Counterfactual Reasoning": 18.1,
|
| 42 |
+
"Co-occurrence": 41.9,
|
| 43 |
+
"Misleading Prompts": 29.2,
|
| 44 |
+
"OCR": 11.2,
|
| 45 |
+
"Average": 28.0
|
| 46 |
+
},
|
| 47 |
+
"dall-e-3": {
|
| 48 |
+
"Natural Selection": 33.4,
|
| 49 |
+
"Distraction": 54.3,
|
| 50 |
+
"Counterfactual Reasoning": 33.5,
|
| 51 |
+
"Co-occurrence": 43.9,
|
| 52 |
+
"Misleading Prompts": 45.8,
|
| 53 |
+
"OCR": 21.2,
|
| 54 |
+
"Average": 38.7
|
| 55 |
+
}
|
| 56 |
+
}
|
data/results/ood_i2t_summary.json
ADDED
|
@@ -0,0 +1,638 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"llava-v1.6-mistral-7b-hf": {
|
| 3 |
+
"identification": {
|
| 4 |
+
"pixelate": {
|
| 5 |
+
"Score": 55.00000000000001,
|
| 6 |
+
"Original Score": 85.0
|
| 7 |
+
},
|
| 8 |
+
"Van_Gogh": {
|
| 9 |
+
"Score": 55.00000000000001,
|
| 10 |
+
"Original Score": 75.0
|
| 11 |
+
},
|
| 12 |
+
"oil_painting": {
|
| 13 |
+
"Score": 45.0,
|
| 14 |
+
"Original Score": 70.0
|
| 15 |
+
},
|
| 16 |
+
"watercolour_painting": {
|
| 17 |
+
"Score": 65.0,
|
| 18 |
+
"Original Score": 77.5
|
| 19 |
+
},
|
| 20 |
+
"zoom_blur": {
|
| 21 |
+
"Score": 50.0,
|
| 22 |
+
"Original Score": 75.0
|
| 23 |
+
},
|
| 24 |
+
"gaussian_noise": {
|
| 25 |
+
"Score": 57.49999999999999,
|
| 26 |
+
"Original Score": 80.0
|
| 27 |
+
}
|
| 28 |
+
},
|
| 29 |
+
"attribute": {
|
| 30 |
+
"pixelate": {
|
| 31 |
+
"Score": 45.0,
|
| 32 |
+
"Original Score": 80.0
|
| 33 |
+
},
|
| 34 |
+
"Van_Gogh": {
|
| 35 |
+
"Score": 30.0,
|
| 36 |
+
"Original Score": 77.5
|
| 37 |
+
},
|
| 38 |
+
"oil_painting": {
|
| 39 |
+
"Score": 42.5,
|
| 40 |
+
"Original Score": 75.0
|
| 41 |
+
},
|
| 42 |
+
"watercolour_painting": {
|
| 43 |
+
"Score": 55.00000000000001,
|
| 44 |
+
"Original Score": 72.5
|
| 45 |
+
},
|
| 46 |
+
"zoom_blur": {
|
| 47 |
+
"Score": 57.49999999999999,
|
| 48 |
+
"Original Score": 72.5
|
| 49 |
+
},
|
| 50 |
+
"gaussian_noise": {
|
| 51 |
+
"Score": 55.00000000000001,
|
| 52 |
+
"Original Score": 77.5
|
| 53 |
+
}
|
| 54 |
+
},
|
| 55 |
+
"count": {
|
| 56 |
+
"pixelate": {
|
| 57 |
+
"Score": 20.0,
|
| 58 |
+
"Original Score": 62.5
|
| 59 |
+
},
|
| 60 |
+
"Van_Gogh": {
|
| 61 |
+
"Score": 6.25,
|
| 62 |
+
"Original Score": 62.5
|
| 63 |
+
},
|
| 64 |
+
"oil_painting": {
|
| 65 |
+
"Score": 16.666666666666664,
|
| 66 |
+
"Original Score": 64.28571428571429
|
| 67 |
+
},
|
| 68 |
+
"watercolour_painting": {
|
| 69 |
+
"Score": 23.333333333333332,
|
| 70 |
+
"Original Score": 60.0
|
| 71 |
+
},
|
| 72 |
+
"zoom_blur": {
|
| 73 |
+
"Score": 7.5,
|
| 74 |
+
"Original Score": 65.0
|
| 75 |
+
},
|
| 76 |
+
"gaussian_noise": {
|
| 77 |
+
"Score": 12.5,
|
| 78 |
+
"Original Score": 60.0
|
| 79 |
+
}
|
| 80 |
+
},
|
| 81 |
+
"spatial": {
|
| 82 |
+
"pixelate": {
|
| 83 |
+
"Score": 25.0,
|
| 84 |
+
"Original Score": 80.0
|
| 85 |
+
},
|
| 86 |
+
"Van_Gogh": {
|
| 87 |
+
"Score": 37.5,
|
| 88 |
+
"Original Score": 72.5
|
| 89 |
+
},
|
| 90 |
+
"oil_painting": {
|
| 91 |
+
"Score": 12.5,
|
| 92 |
+
"Original Score": 75.0
|
| 93 |
+
},
|
| 94 |
+
"watercolour_painting": {
|
| 95 |
+
"Score": 32.5,
|
| 96 |
+
"Original Score": 72.5
|
| 97 |
+
},
|
| 98 |
+
"zoom_blur": {
|
| 99 |
+
"Score": 17.5,
|
| 100 |
+
"Original Score": 72.5
|
| 101 |
+
},
|
| 102 |
+
"gaussian_noise": {
|
| 103 |
+
"Score": 20.0,
|
| 104 |
+
"Original Score": 75.0
|
| 105 |
+
}
|
| 106 |
+
}
|
| 107 |
+
},
|
| 108 |
+
"Qwen-VL-Chat": {
|
| 109 |
+
"identification": {
|
| 110 |
+
"pixelate": {
|
| 111 |
+
"Score": 12.5,
|
| 112 |
+
"Original Score": 90.0
|
| 113 |
+
},
|
| 114 |
+
"Van_Gogh": {
|
| 115 |
+
"Score": 45.0,
|
| 116 |
+
"Original Score": 90.0
|
| 117 |
+
},
|
| 118 |
+
"oil_painting": {
|
| 119 |
+
"Score": 45.0,
|
| 120 |
+
"Original Score": 82.5
|
| 121 |
+
},
|
| 122 |
+
"watercolour_painting": {
|
| 123 |
+
"Score": 42.5,
|
| 124 |
+
"Original Score": 90.0
|
| 125 |
+
},
|
| 126 |
+
"zoom_blur": {
|
| 127 |
+
"Score": 40.0,
|
| 128 |
+
"Original Score": 82.5
|
| 129 |
+
},
|
| 130 |
+
"gaussian_noise": {
|
| 131 |
+
"Score": 40.0,
|
| 132 |
+
"Original Score": 90.0
|
| 133 |
+
}
|
| 134 |
+
},
|
| 135 |
+
"attribute": {
|
| 136 |
+
"pixelate": {
|
| 137 |
+
"Score": 30.0,
|
| 138 |
+
"Original Score": 85.0
|
| 139 |
+
},
|
| 140 |
+
"Van_Gogh": {
|
| 141 |
+
"Score": 20.0,
|
| 142 |
+
"Original Score": 82.5
|
| 143 |
+
},
|
| 144 |
+
"oil_painting": {
|
| 145 |
+
"Score": 27.500000000000004,
|
| 146 |
+
"Original Score": 77.5
|
| 147 |
+
},
|
| 148 |
+
"watercolour_painting": {
|
| 149 |
+
"Score": 27.500000000000004,
|
| 150 |
+
"Original Score": 90.0
|
| 151 |
+
},
|
| 152 |
+
"zoom_blur": {
|
| 153 |
+
"Score": 25.0,
|
| 154 |
+
"Original Score": 90.0
|
| 155 |
+
},
|
| 156 |
+
"gaussian_noise": {
|
| 157 |
+
"Score": 32.5,
|
| 158 |
+
"Original Score": 70.0
|
| 159 |
+
}
|
| 160 |
+
},
|
| 161 |
+
"count": {
|
| 162 |
+
"pixelate": {
|
| 163 |
+
"Score": 10.0,
|
| 164 |
+
"Original Score": 50.0
|
| 165 |
+
},
|
| 166 |
+
"Van_Gogh": {
|
| 167 |
+
"Score": 8.333333333333332,
|
| 168 |
+
"Original Score": 47.91666666666667
|
| 169 |
+
},
|
| 170 |
+
"oil_painting": {
|
| 171 |
+
"Score": 16.666666666666664,
|
| 172 |
+
"Original Score": 50.0
|
| 173 |
+
},
|
| 174 |
+
"watercolour_painting": {
|
| 175 |
+
"Score": 13.333333333333334,
|
| 176 |
+
"Original Score": 53.333333333333336
|
| 177 |
+
},
|
| 178 |
+
"zoom_blur": {
|
| 179 |
+
"Score": 12.5,
|
| 180 |
+
"Original Score": 47.5
|
| 181 |
+
},
|
| 182 |
+
"gaussian_noise": {
|
| 183 |
+
"Score": 15.0,
|
| 184 |
+
"Original Score": 47.5
|
| 185 |
+
}
|
| 186 |
+
},
|
| 187 |
+
"spatial": {
|
| 188 |
+
"pixelate": {
|
| 189 |
+
"Score": 32.5,
|
| 190 |
+
"Original Score": 85.0
|
| 191 |
+
},
|
| 192 |
+
"Van_Gogh": {
|
| 193 |
+
"Score": 22.5,
|
| 194 |
+
"Original Score": 67.5
|
| 195 |
+
},
|
| 196 |
+
"oil_painting": {
|
| 197 |
+
"Score": 32.5,
|
| 198 |
+
"Original Score": 55.00000000000001
|
| 199 |
+
},
|
| 200 |
+
"watercolour_painting": {
|
| 201 |
+
"Score": 20.0,
|
| 202 |
+
"Original Score": 65.0
|
| 203 |
+
},
|
| 204 |
+
"zoom_blur": {
|
| 205 |
+
"Score": 32.5,
|
| 206 |
+
"Original Score": 77.5
|
| 207 |
+
},
|
| 208 |
+
"gaussian_noise": {
|
| 209 |
+
"Score": 25.0,
|
| 210 |
+
"Original Score": 77.5
|
| 211 |
+
}
|
| 212 |
+
}
|
| 213 |
+
},
|
| 214 |
+
"instructblip-vicuna-7b": {
|
| 215 |
+
"identification": {
|
| 216 |
+
"Van_Gogh": {
|
| 217 |
+
"Score": 32.5,
|
| 218 |
+
"Original Score": 77.5
|
| 219 |
+
},
|
| 220 |
+
"oil_painting": {
|
| 221 |
+
"Score": 27.500000000000004,
|
| 222 |
+
"Original Score": 87.5
|
| 223 |
+
},
|
| 224 |
+
"watercolour_painting": {
|
| 225 |
+
"Score": 35.0,
|
| 226 |
+
"Original Score": 80.0
|
| 227 |
+
},
|
| 228 |
+
"zoom_blur": {
|
| 229 |
+
"Score": 40.0,
|
| 230 |
+
"Original Score": 82.5
|
| 231 |
+
},
|
| 232 |
+
"gaussian_noise": {
|
| 233 |
+
"Score": 52.5,
|
| 234 |
+
"Original Score": 85.0
|
| 235 |
+
},
|
| 236 |
+
"pixelate": {
|
| 237 |
+
"Score": 52.5,
|
| 238 |
+
"Original Score": 72.5
|
| 239 |
+
}
|
| 240 |
+
},
|
| 241 |
+
"attribute": {
|
| 242 |
+
"Van_Gogh": {
|
| 243 |
+
"Score": 15.0,
|
| 244 |
+
"Original Score": 45.0
|
| 245 |
+
},
|
| 246 |
+
"oil_painting": {
|
| 247 |
+
"Score": 20.0,
|
| 248 |
+
"Original Score": 52.5
|
| 249 |
+
},
|
| 250 |
+
"watercolour_painting": {
|
| 251 |
+
"Score": 25.0,
|
| 252 |
+
"Original Score": 52.5
|
| 253 |
+
},
|
| 254 |
+
"zoom_blur": {
|
| 255 |
+
"Score": 17.5,
|
| 256 |
+
"Original Score": 40.0
|
| 257 |
+
},
|
| 258 |
+
"gaussian_noise": {
|
| 259 |
+
"Score": 27.500000000000004,
|
| 260 |
+
"Original Score": 55.00000000000001
|
| 261 |
+
},
|
| 262 |
+
"pixelate": {
|
| 263 |
+
"Score": 12.5,
|
| 264 |
+
"Original Score": 47.5
|
| 265 |
+
}
|
| 266 |
+
},
|
| 267 |
+
"count": {
|
| 268 |
+
"Van_Gogh": {
|
| 269 |
+
"Score": 6.25,
|
| 270 |
+
"Original Score": 29.166666666666668
|
| 271 |
+
},
|
| 272 |
+
"oil_painting": {
|
| 273 |
+
"Score": 16.666666666666664,
|
| 274 |
+
"Original Score": 38.095238095238095
|
| 275 |
+
},
|
| 276 |
+
"watercolour_painting": {
|
| 277 |
+
"Score": 13.333333333333334,
|
| 278 |
+
"Original Score": 33.33333333333333
|
| 279 |
+
},
|
| 280 |
+
"zoom_blur": {
|
| 281 |
+
"Score": 10.0,
|
| 282 |
+
"Original Score": 32.5
|
| 283 |
+
},
|
| 284 |
+
"gaussian_noise": {
|
| 285 |
+
"Score": 12.5,
|
| 286 |
+
"Original Score": 27.500000000000004
|
| 287 |
+
},
|
| 288 |
+
"pixelate": {
|
| 289 |
+
"Score": 5.0,
|
| 290 |
+
"Original Score": 27.500000000000004
|
| 291 |
+
}
|
| 292 |
+
},
|
| 293 |
+
"spatial": {
|
| 294 |
+
"Van_Gogh": {
|
| 295 |
+
"Score": 7.5,
|
| 296 |
+
"Original Score": 22.5
|
| 297 |
+
},
|
| 298 |
+
"oil_painting": {
|
| 299 |
+
"Score": 10.0,
|
| 300 |
+
"Original Score": 22.5
|
| 301 |
+
},
|
| 302 |
+
"watercolour_painting": {
|
| 303 |
+
"Score": 7.5,
|
| 304 |
+
"Original Score": 20.0
|
| 305 |
+
},
|
| 306 |
+
"zoom_blur": {
|
| 307 |
+
"Score": 10.0,
|
| 308 |
+
"Original Score": 10.0
|
| 309 |
+
},
|
| 310 |
+
"gaussian_noise": {
|
| 311 |
+
"Score": 7.5,
|
| 312 |
+
"Original Score": 15.0
|
| 313 |
+
},
|
| 314 |
+
"pixelate": {
|
| 315 |
+
"Score": 0.0,
|
| 316 |
+
"Original Score": 7.5
|
| 317 |
+
}
|
| 318 |
+
}
|
| 319 |
+
},
|
| 320 |
+
"gpt-4-vision-preview": {
|
| 321 |
+
"identification": {
|
| 322 |
+
"Van_Gogh": {
|
| 323 |
+
"Score": 65.0,
|
| 324 |
+
"Original Score": 80.0
|
| 325 |
+
},
|
| 326 |
+
"oil_painting": {
|
| 327 |
+
"Score": 52.5,
|
| 328 |
+
"Original Score": 75.0
|
| 329 |
+
},
|
| 330 |
+
"watercolour_painting": {
|
| 331 |
+
"Score": 62.5,
|
| 332 |
+
"Original Score": 82.5
|
| 333 |
+
},
|
| 334 |
+
"zoom_blur": {
|
| 335 |
+
"Score": 50.0,
|
| 336 |
+
"Original Score": 82.5
|
| 337 |
+
},
|
| 338 |
+
"gaussian_noise": {
|
| 339 |
+
"Score": 75.0,
|
| 340 |
+
"Original Score": 87.5
|
| 341 |
+
},
|
| 342 |
+
"pixelate": {
|
| 343 |
+
"Score": 50.0,
|
| 344 |
+
"Original Score": 67.5
|
| 345 |
+
}
|
| 346 |
+
},
|
| 347 |
+
"attribute": {
|
| 348 |
+
"Van_Gogh": {
|
| 349 |
+
"Score": 47.5,
|
| 350 |
+
"Original Score": 82.5
|
| 351 |
+
},
|
| 352 |
+
"oil_painting": {
|
| 353 |
+
"Score": 52.5,
|
| 354 |
+
"Original Score": 62.5
|
| 355 |
+
},
|
| 356 |
+
"watercolour_painting": {
|
| 357 |
+
"Score": 57.49999999999999,
|
| 358 |
+
"Original Score": 67.5
|
| 359 |
+
},
|
| 360 |
+
"zoom_blur": {
|
| 361 |
+
"Score": 32.5,
|
| 362 |
+
"Original Score": 70.0
|
| 363 |
+
},
|
| 364 |
+
"gaussian_noise": {
|
| 365 |
+
"Score": 60.0,
|
| 366 |
+
"Original Score": 65.0
|
| 367 |
+
},
|
| 368 |
+
"pixelate": {
|
| 369 |
+
"Score": 57.49999999999999,
|
| 370 |
+
"Original Score": 67.5
|
| 371 |
+
}
|
| 372 |
+
},
|
| 373 |
+
"count": {
|
| 374 |
+
"Van_Gogh": {
|
| 375 |
+
"Score": 8.333333333333332,
|
| 376 |
+
"Original Score": 20.833333333333336
|
| 377 |
+
},
|
| 378 |
+
"oil_painting": {
|
| 379 |
+
"Score": 11.904761904761903,
|
| 380 |
+
"Original Score": 11.904761904761903
|
| 381 |
+
},
|
| 382 |
+
"watercolour_painting": {
|
| 383 |
+
"Score": 26.666666666666668,
|
| 384 |
+
"Original Score": 20.0
|
| 385 |
+
},
|
| 386 |
+
"zoom_blur": {
|
| 387 |
+
"Score": 0.0,
|
| 388 |
+
"Original Score": 17.5
|
| 389 |
+
},
|
| 390 |
+
"gaussian_noise": {
|
| 391 |
+
"Score": 10.0,
|
| 392 |
+
"Original Score": 17.5
|
| 393 |
+
},
|
| 394 |
+
"pixelate": {
|
| 395 |
+
"Score": 5.0,
|
| 396 |
+
"Original Score": 20.0
|
| 397 |
+
}
|
| 398 |
+
},
|
| 399 |
+
"spatial": {
|
| 400 |
+
"Van_Gogh": {
|
| 401 |
+
"Score": 32.5,
|
| 402 |
+
"Original Score": 37.5
|
| 403 |
+
},
|
| 404 |
+
"oil_painting": {
|
| 405 |
+
"Score": 22.5,
|
| 406 |
+
"Original Score": 32.5
|
| 407 |
+
},
|
| 408 |
+
"watercolour_painting": {
|
| 409 |
+
"Score": 35.0,
|
| 410 |
+
"Original Score": 35.0
|
| 411 |
+
},
|
| 412 |
+
"zoom_blur": {
|
| 413 |
+
"Score": 12.5,
|
| 414 |
+
"Original Score": 37.5
|
| 415 |
+
},
|
| 416 |
+
"gaussian_noise": {
|
| 417 |
+
"Score": 27.500000000000004,
|
| 418 |
+
"Original Score": 30.0
|
| 419 |
+
},
|
| 420 |
+
"pixelate": {
|
| 421 |
+
"Score": 30.0,
|
| 422 |
+
"Original Score": 47.5
|
| 423 |
+
}
|
| 424 |
+
}
|
| 425 |
+
},
|
| 426 |
+
"gpt-4o-2024-05-13": {
|
| 427 |
+
"identification": {
|
| 428 |
+
"Van_Gogh": {
|
| 429 |
+
"Score": 65.0,
|
| 430 |
+
"Original Score": 75.0
|
| 431 |
+
},
|
| 432 |
+
"oil_painting": {
|
| 433 |
+
"Score": 67.5,
|
| 434 |
+
"Original Score": 75.0
|
| 435 |
+
},
|
| 436 |
+
"watercolour_painting": {
|
| 437 |
+
"Score": 80.0,
|
| 438 |
+
"Original Score": 77.5
|
| 439 |
+
},
|
| 440 |
+
"zoom_blur": {
|
| 441 |
+
"Score": 65.0,
|
| 442 |
+
"Original Score": 85.0
|
| 443 |
+
},
|
| 444 |
+
"gaussian_noise": {
|
| 445 |
+
"Score": 87.5,
|
| 446 |
+
"Original Score": 85.0
|
| 447 |
+
},
|
| 448 |
+
"pixelate": {
|
| 449 |
+
"Score": 55.00000000000001,
|
| 450 |
+
"Original Score": 70.0
|
| 451 |
+
}
|
| 452 |
+
},
|
| 453 |
+
"attribute": {
|
| 454 |
+
"Van_Gogh": {
|
| 455 |
+
"Score": 50.0,
|
| 456 |
+
"Original Score": 67.5
|
| 457 |
+
},
|
| 458 |
+
"oil_painting": {
|
| 459 |
+
"Score": 57.49999999999999,
|
| 460 |
+
"Original Score": 60.0
|
| 461 |
+
},
|
| 462 |
+
"watercolour_painting": {
|
| 463 |
+
"Score": 52.5,
|
| 464 |
+
"Original Score": 57.49999999999999
|
| 465 |
+
},
|
| 466 |
+
"zoom_blur": {
|
| 467 |
+
"Score": 60.0,
|
| 468 |
+
"Original Score": 75.0
|
| 469 |
+
},
|
| 470 |
+
"gaussian_noise": {
|
| 471 |
+
"Score": 55.00000000000001,
|
| 472 |
+
"Original Score": 60.0
|
| 473 |
+
},
|
| 474 |
+
"pixelate": {
|
| 475 |
+
"Score": 55.00000000000001,
|
| 476 |
+
"Original Score": 57.49999999999999
|
| 477 |
+
}
|
| 478 |
+
},
|
| 479 |
+
"count": {
|
| 480 |
+
"Van_Gogh": {
|
| 481 |
+
"Score": 29.166666666666668,
|
| 482 |
+
"Original Score": 43.75
|
| 483 |
+
},
|
| 484 |
+
"oil_painting": {
|
| 485 |
+
"Score": 28.57142857142857,
|
| 486 |
+
"Original Score": 45.23809523809524
|
| 487 |
+
},
|
| 488 |
+
"watercolour_painting": {
|
| 489 |
+
"Score": 30.0,
|
| 490 |
+
"Original Score": 46.666666666666664
|
| 491 |
+
},
|
| 492 |
+
"zoom_blur": {
|
| 493 |
+
"Score": 12.5,
|
| 494 |
+
"Original Score": 47.5
|
| 495 |
+
},
|
| 496 |
+
"gaussian_noise": {
|
| 497 |
+
"Score": 35.0,
|
| 498 |
+
"Original Score": 40.0
|
| 499 |
+
},
|
| 500 |
+
"pixelate": {
|
| 501 |
+
"Score": 20.0,
|
| 502 |
+
"Original Score": 45.0
|
| 503 |
+
}
|
| 504 |
+
},
|
| 505 |
+
"spatial": {
|
| 506 |
+
"Van_Gogh": {
|
| 507 |
+
"Score": 57.49999999999999,
|
| 508 |
+
"Original Score": 62.5
|
| 509 |
+
},
|
| 510 |
+
"oil_painting": {
|
| 511 |
+
"Score": 55.00000000000001,
|
| 512 |
+
"Original Score": 57.49999999999999
|
| 513 |
+
},
|
| 514 |
+
"watercolour_painting": {
|
| 515 |
+
"Score": 60.0,
|
| 516 |
+
"Original Score": 57.49999999999999
|
| 517 |
+
},
|
| 518 |
+
"zoom_blur": {
|
| 519 |
+
"Score": 47.5,
|
| 520 |
+
"Original Score": 62.5
|
| 521 |
+
},
|
| 522 |
+
"gaussian_noise": {
|
| 523 |
+
"Score": 65.0,
|
| 524 |
+
"Original Score": 57.49999999999999
|
| 525 |
+
},
|
| 526 |
+
"pixelate": {
|
| 527 |
+
"Score": 50.0,
|
| 528 |
+
"Original Score": 65.0
|
| 529 |
+
}
|
| 530 |
+
}
|
| 531 |
+
},
|
| 532 |
+
"llava-v1.6-vicuna-7b-hf": {
|
| 533 |
+
"identification": {
|
| 534 |
+
"Van_Gogh": {
|
| 535 |
+
"Score": 57.49999999999999,
|
| 536 |
+
"Original Score": 77.5
|
| 537 |
+
},
|
| 538 |
+
"oil_painting": {
|
| 539 |
+
"Score": 52.5,
|
| 540 |
+
"Original Score": 70.0
|
| 541 |
+
},
|
| 542 |
+
"watercolour_painting": {
|
| 543 |
+
"Score": 75.0,
|
| 544 |
+
"Original Score": 77.5
|
| 545 |
+
},
|
| 546 |
+
"zoom_blur": {
|
| 547 |
+
"Score": 55.00000000000001,
|
| 548 |
+
"Original Score": 80.0
|
| 549 |
+
},
|
| 550 |
+
"gaussian_noise": {
|
| 551 |
+
"Score": 70.0,
|
| 552 |
+
"Original Score": 82.5
|
| 553 |
+
},
|
| 554 |
+
"pixelate": {
|
| 555 |
+
"Score": 52.5,
|
| 556 |
+
"Original Score": 75.0
|
| 557 |
+
}
|
| 558 |
+
},
|
| 559 |
+
"attribute": {
|
| 560 |
+
"Van_Gogh": {
|
| 561 |
+
"Score": 45.0,
|
| 562 |
+
"Original Score": 82.5
|
| 563 |
+
},
|
| 564 |
+
"oil_painting": {
|
| 565 |
+
"Score": 70.0,
|
| 566 |
+
"Original Score": 72.5
|
| 567 |
+
},
|
| 568 |
+
"watercolour_painting": {
|
| 569 |
+
"Score": 55.00000000000001,
|
| 570 |
+
"Original Score": 77.5
|
| 571 |
+
},
|
| 572 |
+
"zoom_blur": {
|
| 573 |
+
"Score": 60.0,
|
| 574 |
+
"Original Score": 75.0
|
| 575 |
+
},
|
| 576 |
+
"gaussian_noise": {
|
| 577 |
+
"Score": 57.49999999999999,
|
| 578 |
+
"Original Score": 67.5
|
| 579 |
+
},
|
| 580 |
+
"pixelate": {
|
| 581 |
+
"Score": 50.0,
|
| 582 |
+
"Original Score": 65.0
|
| 583 |
+
}
|
| 584 |
+
},
|
| 585 |
+
"count": {
|
| 586 |
+
"Van_Gogh": {
|
| 587 |
+
"Score": 22.916666666666664,
|
| 588 |
+
"Original Score": 31.25
|
| 589 |
+
},
|
| 590 |
+
"oil_painting": {
|
| 591 |
+
"Score": 21.428571428571427,
|
| 592 |
+
"Original Score": 26.190476190476193
|
| 593 |
+
},
|
| 594 |
+
"watercolour_painting": {
|
| 595 |
+
"Score": 13.333333333333334,
|
| 596 |
+
"Original Score": 16.666666666666664
|
| 597 |
+
},
|
| 598 |
+
"zoom_blur": {
|
| 599 |
+
"Score": 12.5,
|
| 600 |
+
"Original Score": 27.500000000000004
|
| 601 |
+
},
|
| 602 |
+
"gaussian_noise": {
|
| 603 |
+
"Score": 20.0,
|
| 604 |
+
"Original Score": 22.5
|
| 605 |
+
},
|
| 606 |
+
"pixelate": {
|
| 607 |
+
"Score": 20.0,
|
| 608 |
+
"Original Score": 17.5
|
| 609 |
+
}
|
| 610 |
+
},
|
| 611 |
+
"spatial": {
|
| 612 |
+
"Van_Gogh": {
|
| 613 |
+
"Score": 22.5,
|
| 614 |
+
"Original Score": 32.5
|
| 615 |
+
},
|
| 616 |
+
"oil_painting": {
|
| 617 |
+
"Score": 32.5,
|
| 618 |
+
"Original Score": 27.500000000000004
|
| 619 |
+
},
|
| 620 |
+
"watercolour_painting": {
|
| 621 |
+
"Score": 30.0,
|
| 622 |
+
"Original Score": 27.500000000000004
|
| 623 |
+
},
|
| 624 |
+
"zoom_blur": {
|
| 625 |
+
"Score": 27.500000000000004,
|
| 626 |
+
"Original Score": 30.0
|
| 627 |
+
},
|
| 628 |
+
"gaussian_noise": {
|
| 629 |
+
"Score": 30.0,
|
| 630 |
+
"Original Score": 27.500000000000004
|
| 631 |
+
},
|
| 632 |
+
"pixelate": {
|
| 633 |
+
"Score": 15.0,
|
| 634 |
+
"Original Score": 22.5
|
| 635 |
+
}
|
| 636 |
+
}
|
| 637 |
+
}
|
| 638 |
+
}
|
data/results/ood_t2i_summary.json
ADDED
|
@@ -0,0 +1,590 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"dall-e-3": {
|
| 3 |
+
"trial_2": {
|
| 4 |
+
"spatial": {
|
| 5 |
+
"Paraphrase_": 28.000000000000004,
|
| 6 |
+
"paraphrase_original": 56.99999999999999,
|
| 7 |
+
"Shake_": 36.0,
|
| 8 |
+
"shake_original": 51.0
|
| 9 |
+
},
|
| 10 |
+
"fidelity": {
|
| 11 |
+
"Shake_": 0.764915771484375,
|
| 12 |
+
"shake_original": 0.8701418481691919,
|
| 13 |
+
"Paraphrase_": 0.77125244140625,
|
| 14 |
+
"paraphrase_original": 0.8577252012310606
|
| 15 |
+
},
|
| 16 |
+
"size": {
|
| 17 |
+
"Shake_": 57.99999999999999,
|
| 18 |
+
"shake_original": 86.0,
|
| 19 |
+
"Paraphrase_": 60.0,
|
| 20 |
+
"paraphrase_original": 74.0
|
| 21 |
+
},
|
| 22 |
+
"color": {
|
| 23 |
+
"Shake_": 76.0,
|
| 24 |
+
"shake_original": 90.0,
|
| 25 |
+
"Paraphrase_": 46.0,
|
| 26 |
+
"paraphrase_original": 80.0
|
| 27 |
+
},
|
| 28 |
+
"counting": {
|
| 29 |
+
"Shake_": 53.0,
|
| 30 |
+
"shake_original": 64.0,
|
| 31 |
+
"Paraphrase_": 56.99999999999999,
|
| 32 |
+
"paraphrase_original": 66.0
|
| 33 |
+
}
|
| 34 |
+
},
|
| 35 |
+
"trial_0": {
|
| 36 |
+
"fidelity": {
|
| 37 |
+
"Shake_": 0.765079345703125,
|
| 38 |
+
"shake_original": 0.8692822265625,
|
| 39 |
+
"Paraphrase_": 0.77125244140625,
|
| 40 |
+
"paraphrase_original": 0.8577252012310606
|
| 41 |
+
},
|
| 42 |
+
"size": {
|
| 43 |
+
"Shake_": 60.0,
|
| 44 |
+
"shake_original": 80.0,
|
| 45 |
+
"Paraphrase_": 66.0,
|
| 46 |
+
"paraphrase_original": 74.0
|
| 47 |
+
},
|
| 48 |
+
"color": {
|
| 49 |
+
"Shake_": 74.0,
|
| 50 |
+
"shake_original": 92.0,
|
| 51 |
+
"Paraphrase_": 52.0,
|
| 52 |
+
"paraphrase_original": 86.0
|
| 53 |
+
},
|
| 54 |
+
"counting": {
|
| 55 |
+
"Shake_": 56.99999999999999,
|
| 56 |
+
"shake_original": 60.0,
|
| 57 |
+
"Paraphrase_": 57.99999999999999,
|
| 58 |
+
"paraphrase_original": 57.99999999999999
|
| 59 |
+
},
|
| 60 |
+
"spatial": {
|
| 61 |
+
"Shake_": 46.0,
|
| 62 |
+
"shake_original": 54.0,
|
| 63 |
+
"Paraphrase_": 41.0,
|
| 64 |
+
"paraphrase_original": 57.99999999999999
|
| 65 |
+
}
|
| 66 |
+
},
|
| 67 |
+
"trial_1": {
|
| 68 |
+
"fidelity": {
|
| 69 |
+
"Shake_": 0.765079345703125,
|
| 70 |
+
"shake_original": 0.8725336814413265,
|
| 71 |
+
"Paraphrase_": 0.77125244140625,
|
| 72 |
+
"paraphrase_original": 0.8577252012310606
|
| 73 |
+
},
|
| 74 |
+
"size": {
|
| 75 |
+
"Shake_": 62.0,
|
| 76 |
+
"shake_original": 74.0,
|
| 77 |
+
"Paraphrase_": 66.0,
|
| 78 |
+
"paraphrase_original": 62.0
|
| 79 |
+
},
|
| 80 |
+
"color": {
|
| 81 |
+
"Shake_": 60.0,
|
| 82 |
+
"shake_original": 82.0,
|
| 83 |
+
"Paraphrase_": 52.0,
|
| 84 |
+
"paraphrase_original": 88.0
|
| 85 |
+
},
|
| 86 |
+
"counting": {
|
| 87 |
+
"Shake_": 56.99999999999999,
|
| 88 |
+
"shake_original": 60.0,
|
| 89 |
+
"Paraphrase_": 56.00000000000001,
|
| 90 |
+
"paraphrase_original": 57.99999999999999
|
| 91 |
+
},
|
| 92 |
+
"spatial": {
|
| 93 |
+
"Shake_": 38.0,
|
| 94 |
+
"shake_original": 57.99999999999999,
|
| 95 |
+
"Paraphrase_": 38.0,
|
| 96 |
+
"paraphrase_original": 51.0
|
| 97 |
+
}
|
| 98 |
+
}
|
| 99 |
+
},
|
| 100 |
+
"IF-I-M-v1.0": {
|
| 101 |
+
"trial_0": {
|
| 102 |
+
"fidelity": {
|
| 103 |
+
"Shake_": 0.736375732421875,
|
| 104 |
+
"shake_original": 0.8414306640625,
|
| 105 |
+
"Paraphrase_": 0.75791748046875,
|
| 106 |
+
"paraphrase_original": 0.8354833984375
|
| 107 |
+
},
|
| 108 |
+
"size": {
|
| 109 |
+
"Shake_": 24.0,
|
| 110 |
+
"shake_original": 34.0,
|
| 111 |
+
"Paraphrase_": 22.0,
|
| 112 |
+
"paraphrase_original": 34.0
|
| 113 |
+
},
|
| 114 |
+
"color": {
|
| 115 |
+
"Shake_": 10.0,
|
| 116 |
+
"shake_original": 28.000000000000004,
|
| 117 |
+
"Paraphrase_": 8.0,
|
| 118 |
+
"paraphrase_original": 26.0
|
| 119 |
+
},
|
| 120 |
+
"counting": {
|
| 121 |
+
"Shake_": 49.0,
|
| 122 |
+
"shake_original": 59.0,
|
| 123 |
+
"Paraphrase_": 53.0,
|
| 124 |
+
"paraphrase_original": 55.00000000000001
|
| 125 |
+
},
|
| 126 |
+
"spatial": {
|
| 127 |
+
"Shake_": 12.0,
|
| 128 |
+
"shake_original": 13.0,
|
| 129 |
+
"Paraphrase_": 12.0,
|
| 130 |
+
"paraphrase_original": 16.0
|
| 131 |
+
}
|
| 132 |
+
},
|
| 133 |
+
"trial_1": {
|
| 134 |
+
"fidelity": {
|
| 135 |
+
"Shake_": 0.736375732421875,
|
| 136 |
+
"shake_original": 0.8414306640625,
|
| 137 |
+
"Paraphrase_": 0.75791748046875,
|
| 138 |
+
"paraphrase_original": 0.8354833984375
|
| 139 |
+
},
|
| 140 |
+
"size": {
|
| 141 |
+
"Shake_": 20.0,
|
| 142 |
+
"shake_original": 34.0,
|
| 143 |
+
"Paraphrase_": 18.0,
|
| 144 |
+
"paraphrase_original": 34.0
|
| 145 |
+
},
|
| 146 |
+
"color": {
|
| 147 |
+
"Shake_": 18.0,
|
| 148 |
+
"shake_original": 32.0,
|
| 149 |
+
"Paraphrase_": 8.0,
|
| 150 |
+
"paraphrase_original": 12.0
|
| 151 |
+
},
|
| 152 |
+
"counting": {
|
| 153 |
+
"Shake_": 54.0,
|
| 154 |
+
"shake_original": 60.0,
|
| 155 |
+
"Paraphrase_": 44.0,
|
| 156 |
+
"paraphrase_original": 56.99999999999999
|
| 157 |
+
},
|
| 158 |
+
"spatial": {
|
| 159 |
+
"Shake_": 9.0,
|
| 160 |
+
"shake_original": 18.0,
|
| 161 |
+
"Paraphrase_": 12.0,
|
| 162 |
+
"paraphrase_original": 16.0
|
| 163 |
+
}
|
| 164 |
+
},
|
| 165 |
+
"trial_2": {
|
| 166 |
+
"fidelity": {
|
| 167 |
+
"Shake_": 0.736375732421875,
|
| 168 |
+
"shake_original": 0.8414306640625,
|
| 169 |
+
"Paraphrase_": 0.75791748046875,
|
| 170 |
+
"paraphrase_original": 0.8354833984375
|
| 171 |
+
},
|
| 172 |
+
"size": {
|
| 173 |
+
"Shake_": 16.0,
|
| 174 |
+
"shake_original": 26.0,
|
| 175 |
+
"Paraphrase_": 10.0,
|
| 176 |
+
"paraphrase_original": 22.0
|
| 177 |
+
},
|
| 178 |
+
"color": {
|
| 179 |
+
"Shake_": 28.000000000000004,
|
| 180 |
+
"shake_original": 20.0,
|
| 181 |
+
"Paraphrase_": 8.0,
|
| 182 |
+
"paraphrase_original": 8.0
|
| 183 |
+
},
|
| 184 |
+
"counting": {
|
| 185 |
+
"Shake_": 51.0,
|
| 186 |
+
"shake_original": 61.0,
|
| 187 |
+
"Paraphrase_": 52.0,
|
| 188 |
+
"paraphrase_original": 60.0
|
| 189 |
+
},
|
| 190 |
+
"spatial": {
|
| 191 |
+
"Shake_": 8.0,
|
| 192 |
+
"shake_original": 11.0,
|
| 193 |
+
"Paraphrase_": 18.0,
|
| 194 |
+
"paraphrase_original": 15.0
|
| 195 |
+
}
|
| 196 |
+
}
|
| 197 |
+
},
|
| 198 |
+
"dreamlike-photoreal-2.0": {
|
| 199 |
+
"trial_0": {
|
| 200 |
+
"fidelity": {
|
| 201 |
+
"Shake_": 0.680771484375,
|
| 202 |
+
"shake_original": 0.878603515625,
|
| 203 |
+
"Paraphrase_": 0.7633154296875,
|
| 204 |
+
"paraphrase_original": 0.86765625
|
| 205 |
+
},
|
| 206 |
+
"size": {
|
| 207 |
+
"Shake_": 6.0,
|
| 208 |
+
"shake_original": 16.0,
|
| 209 |
+
"Paraphrase_": 4.0,
|
| 210 |
+
"paraphrase_original": 24.0
|
| 211 |
+
},
|
| 212 |
+
"color": {
|
| 213 |
+
"Shake_": 22.0,
|
| 214 |
+
"shake_original": 36.0,
|
| 215 |
+
"Paraphrase_": 6.0,
|
| 216 |
+
"paraphrase_original": 26.0
|
| 217 |
+
},
|
| 218 |
+
"counting": {
|
| 219 |
+
"Shake_": 33.0,
|
| 220 |
+
"shake_original": 41.0,
|
| 221 |
+
"Paraphrase_": 34.0,
|
| 222 |
+
"paraphrase_original": 39.0
|
| 223 |
+
},
|
| 224 |
+
"spatial": {
|
| 225 |
+
"Shake_": 9.0,
|
| 226 |
+
"shake_original": 13.0,
|
| 227 |
+
"Paraphrase_": 11.0,
|
| 228 |
+
"paraphrase_original": 18.0
|
| 229 |
+
}
|
| 230 |
+
},
|
| 231 |
+
"trial_1": {
|
| 232 |
+
"fidelity": {
|
| 233 |
+
"Shake_": 0.680775146484375,
|
| 234 |
+
"shake_original": 0.878603515625,
|
| 235 |
+
"Paraphrase_": 0.76329833984375,
|
| 236 |
+
"paraphrase_original": 0.86765625
|
| 237 |
+
},
|
| 238 |
+
"size": {
|
| 239 |
+
"Shake_": 8.0,
|
| 240 |
+
"shake_original": 24.0,
|
| 241 |
+
"Paraphrase_": 14.000000000000002,
|
| 242 |
+
"paraphrase_original": 26.0
|
| 243 |
+
},
|
| 244 |
+
"color": {
|
| 245 |
+
"Shake_": 18.0,
|
| 246 |
+
"shake_original": 36.0,
|
| 247 |
+
"Paraphrase_": 8.0,
|
| 248 |
+
"paraphrase_original": 28.000000000000004
|
| 249 |
+
},
|
| 250 |
+
"counting": {
|
| 251 |
+
"Shake_": 22.0,
|
| 252 |
+
"shake_original": 47.0,
|
| 253 |
+
"Paraphrase_": 41.0,
|
| 254 |
+
"paraphrase_original": 41.0
|
| 255 |
+
},
|
| 256 |
+
"spatial": {
|
| 257 |
+
"Shake_": 5.0,
|
| 258 |
+
"shake_original": 15.0,
|
| 259 |
+
"Paraphrase_": 6.0,
|
| 260 |
+
"paraphrase_original": 16.0
|
| 261 |
+
}
|
| 262 |
+
},
|
| 263 |
+
"trial_2": {
|
| 264 |
+
"fidelity": {
|
| 265 |
+
"Shake_": 0.680775146484375,
|
| 266 |
+
"shake_original": 0.878603515625,
|
| 267 |
+
"Paraphrase_": 0.76329833984375,
|
| 268 |
+
"paraphrase_original": 0.86765625
|
| 269 |
+
},
|
| 270 |
+
"size": {
|
| 271 |
+
"Shake_": 4.0,
|
| 272 |
+
"shake_original": 28.000000000000004,
|
| 273 |
+
"Paraphrase_": 10.0,
|
| 274 |
+
"paraphrase_original": 32.0
|
| 275 |
+
},
|
| 276 |
+
"color": {
|
| 277 |
+
"Shake_": 14.000000000000002,
|
| 278 |
+
"shake_original": 28.000000000000004,
|
| 279 |
+
"Paraphrase_": 2.0,
|
| 280 |
+
"paraphrase_original": 30.0
|
| 281 |
+
},
|
| 282 |
+
"counting": {
|
| 283 |
+
"Shake_": 32.0,
|
| 284 |
+
"shake_original": 45.0,
|
| 285 |
+
"Paraphrase_": 36.0,
|
| 286 |
+
"paraphrase_original": 45.0
|
| 287 |
+
},
|
| 288 |
+
"spatial": {
|
| 289 |
+
"Shake_": 6.0,
|
| 290 |
+
"shake_original": 7.000000000000001,
|
| 291 |
+
"Paraphrase_": 10.0,
|
| 292 |
+
"paraphrase_original": 14.000000000000002
|
| 293 |
+
}
|
| 294 |
+
}
|
| 295 |
+
},
|
| 296 |
+
"openjourney-v4": {
|
| 297 |
+
"trial_0": {
|
| 298 |
+
"fidelity": {
|
| 299 |
+
"Shake_": 0.70665283203125,
|
| 300 |
+
"shake_original": 0.85979736328125,
|
| 301 |
+
"Paraphrase_": 0.763916015625,
|
| 302 |
+
"paraphrase_original": 0.8503076171875
|
| 303 |
+
},
|
| 304 |
+
"size": {
|
| 305 |
+
"Shake_": 16.0,
|
| 306 |
+
"shake_original": 34.0,
|
| 307 |
+
"Paraphrase_": 20.0,
|
| 308 |
+
"paraphrase_original": 36.0
|
| 309 |
+
},
|
| 310 |
+
"color": {
|
| 311 |
+
"Shake_": 20.0,
|
| 312 |
+
"shake_original": 30.0,
|
| 313 |
+
"Paraphrase_": 10.0,
|
| 314 |
+
"paraphrase_original": 18.0
|
| 315 |
+
},
|
| 316 |
+
"counting": {
|
| 317 |
+
"Shake_": 28.000000000000004,
|
| 318 |
+
"shake_original": 41.0,
|
| 319 |
+
"Paraphrase_": 35.0,
|
| 320 |
+
"paraphrase_original": 37.0
|
| 321 |
+
},
|
| 322 |
+
"spatial": {
|
| 323 |
+
"Shake_": 8.0,
|
| 324 |
+
"shake_original": 21.0,
|
| 325 |
+
"Paraphrase_": 12.0,
|
| 326 |
+
"paraphrase_original": 23.0
|
| 327 |
+
}
|
| 328 |
+
},
|
| 329 |
+
"trial_1": {
|
| 330 |
+
"fidelity": {
|
| 331 |
+
"Shake_": 0.70664794921875,
|
| 332 |
+
"shake_original": 0.85979736328125,
|
| 333 |
+
"Paraphrase_": 0.76390625,
|
| 334 |
+
"paraphrase_original": 0.8503076171875
|
| 335 |
+
},
|
| 336 |
+
"size": {
|
| 337 |
+
"Shake_": 10.0,
|
| 338 |
+
"shake_original": 30.0,
|
| 339 |
+
"Paraphrase_": 18.0,
|
| 340 |
+
"paraphrase_original": 26.0
|
| 341 |
+
},
|
| 342 |
+
"color": {
|
| 343 |
+
"Shake_": 10.0,
|
| 344 |
+
"shake_original": 28.000000000000004,
|
| 345 |
+
"Paraphrase_": 12.0,
|
| 346 |
+
"paraphrase_original": 26.0
|
| 347 |
+
},
|
| 348 |
+
"counting": {
|
| 349 |
+
"Shake_": 27.0,
|
| 350 |
+
"shake_original": 37.0,
|
| 351 |
+
"Paraphrase_": 31.0,
|
| 352 |
+
"paraphrase_original": 39.0
|
| 353 |
+
},
|
| 354 |
+
"spatial": {
|
| 355 |
+
"Shake_": 6.0,
|
| 356 |
+
"shake_original": 18.0,
|
| 357 |
+
"Paraphrase_": 4.0,
|
| 358 |
+
"paraphrase_original": 19.0
|
| 359 |
+
}
|
| 360 |
+
},
|
| 361 |
+
"trial_2": {
|
| 362 |
+
"fidelity": {
|
| 363 |
+
"Shake_": 0.70664794921875,
|
| 364 |
+
"shake_original": 0.85979736328125,
|
| 365 |
+
"Paraphrase_": 0.76390625,
|
| 366 |
+
"paraphrase_original": 0.8503076171875
|
| 367 |
+
},
|
| 368 |
+
"size": {
|
| 369 |
+
"Shake_": 14.000000000000002,
|
| 370 |
+
"shake_original": 26.0,
|
| 371 |
+
"Paraphrase_": 8.0,
|
| 372 |
+
"paraphrase_original": 28.000000000000004
|
| 373 |
+
},
|
| 374 |
+
"color": {
|
| 375 |
+
"Shake_": 12.0,
|
| 376 |
+
"shake_original": 22.0,
|
| 377 |
+
"Paraphrase_": 14.000000000000002,
|
| 378 |
+
"paraphrase_original": 14.000000000000002
|
| 379 |
+
},
|
| 380 |
+
"counting": {
|
| 381 |
+
"Shake_": 25.0,
|
| 382 |
+
"shake_original": 45.0,
|
| 383 |
+
"Paraphrase_": 31.0,
|
| 384 |
+
"paraphrase_original": 36.0
|
| 385 |
+
},
|
| 386 |
+
"spatial": {
|
| 387 |
+
"Shake_": 7.000000000000001,
|
| 388 |
+
"shake_original": 18.0,
|
| 389 |
+
"Paraphrase_": 14.000000000000002,
|
| 390 |
+
"paraphrase_original": 23.0
|
| 391 |
+
}
|
| 392 |
+
}
|
| 393 |
+
},
|
| 394 |
+
"stable-diffusion-xl-base-1.0": {
|
| 395 |
+
"trial_0": {
|
| 396 |
+
"fidelity": {
|
| 397 |
+
"Shake_": 0.688385009765625,
|
| 398 |
+
"shake_original": 0.8924072265625,
|
| 399 |
+
"Paraphrase_": 0.7473681640625,
|
| 400 |
+
"paraphrase_original": 0.8856298828125
|
| 401 |
+
},
|
| 402 |
+
"size": {
|
| 403 |
+
"Shake_": 18.0,
|
| 404 |
+
"shake_original": 50.0,
|
| 405 |
+
"Paraphrase_": 32.0,
|
| 406 |
+
"paraphrase_original": 48.0
|
| 407 |
+
},
|
| 408 |
+
"color": {
|
| 409 |
+
"Shake_": 14.000000000000002,
|
| 410 |
+
"shake_original": 56.00000000000001,
|
| 411 |
+
"Paraphrase_": 2.0,
|
| 412 |
+
"paraphrase_original": 42.0
|
| 413 |
+
},
|
| 414 |
+
"counting": {
|
| 415 |
+
"Shake_": 23.0,
|
| 416 |
+
"shake_original": 47.0,
|
| 417 |
+
"Paraphrase_": 30.0,
|
| 418 |
+
"paraphrase_original": 47.0
|
| 419 |
+
},
|
| 420 |
+
"spatial": {
|
| 421 |
+
"Shake_": 9.0,
|
| 422 |
+
"shake_original": 28.999999999999996,
|
| 423 |
+
"Paraphrase_": 8.0,
|
| 424 |
+
"paraphrase_original": 38.0
|
| 425 |
+
}
|
| 426 |
+
},
|
| 427 |
+
"trial_1": {
|
| 428 |
+
"fidelity": {
|
| 429 |
+
"Shake_": 0.6883721923828126,
|
| 430 |
+
"shake_original": 0.8924072265625,
|
| 431 |
+
"Paraphrase_": 0.74734619140625,
|
| 432 |
+
"paraphrase_original": 0.8856298828125
|
| 433 |
+
},
|
| 434 |
+
"size": {
|
| 435 |
+
"Shake_": 14.000000000000002,
|
| 436 |
+
"shake_original": 40.0,
|
| 437 |
+
"Paraphrase_": 16.0,
|
| 438 |
+
"paraphrase_original": 46.0
|
| 439 |
+
},
|
| 440 |
+
"color": {
|
| 441 |
+
"Shake_": 10.0,
|
| 442 |
+
"shake_original": 54.0,
|
| 443 |
+
"Paraphrase_": 8.0,
|
| 444 |
+
"paraphrase_original": 48.0
|
| 445 |
+
},
|
| 446 |
+
"counting": {
|
| 447 |
+
"Shake_": 23.0,
|
| 448 |
+
"shake_original": 51.0,
|
| 449 |
+
"Paraphrase_": 39.0,
|
| 450 |
+
"paraphrase_original": 51.0
|
| 451 |
+
},
|
| 452 |
+
"spatial": {
|
| 453 |
+
"Shake_": 11.0,
|
| 454 |
+
"shake_original": 23.0,
|
| 455 |
+
"Paraphrase_": 13.0,
|
| 456 |
+
"paraphrase_original": 20.0
|
| 457 |
+
}
|
| 458 |
+
},
|
| 459 |
+
"trial_2": {
|
| 460 |
+
"fidelity": {
|
| 461 |
+
"Shake_": 0.6883721923828126,
|
| 462 |
+
"shake_original": 0.8924072265625,
|
| 463 |
+
"Paraphrase_": 0.74734619140625,
|
| 464 |
+
"paraphrase_original": 0.8856298828125
|
| 465 |
+
},
|
| 466 |
+
"size": {
|
| 467 |
+
"Shake_": 12.0,
|
| 468 |
+
"shake_original": 46.0,
|
| 469 |
+
"Paraphrase_": 14.000000000000002,
|
| 470 |
+
"paraphrase_original": 52.0
|
| 471 |
+
},
|
| 472 |
+
"color": {
|
| 473 |
+
"Shake_": 18.0,
|
| 474 |
+
"shake_original": 56.00000000000001,
|
| 475 |
+
"Paraphrase_": 12.0,
|
| 476 |
+
"paraphrase_original": 46.0
|
| 477 |
+
},
|
| 478 |
+
"counting": {
|
| 479 |
+
"Shake_": 22.0,
|
| 480 |
+
"shake_original": 51.0,
|
| 481 |
+
"Paraphrase_": 33.0,
|
| 482 |
+
"paraphrase_original": 47.0
|
| 483 |
+
},
|
| 484 |
+
"spatial": {
|
| 485 |
+
"Shake_": 12.0,
|
| 486 |
+
"shake_original": 30.0,
|
| 487 |
+
"Paraphrase_": 9.0,
|
| 488 |
+
"paraphrase_original": 33.0
|
| 489 |
+
}
|
| 490 |
+
}
|
| 491 |
+
},
|
| 492 |
+
"dall-e-2": {
|
| 493 |
+
"trial_0": {
|
| 494 |
+
"fidelity": {
|
| 495 |
+
"Shake_": 0.654228515625,
|
| 496 |
+
"shake_original": 0.8556569417317709,
|
| 497 |
+
"Paraphrase_": 0.7283056640625,
|
| 498 |
+
"paraphrase_original": 0.8522628630050505
|
| 499 |
+
},
|
| 500 |
+
"size": {
|
| 501 |
+
"Shake_": 8.0,
|
| 502 |
+
"shake_original": 38.0,
|
| 503 |
+
"Paraphrase_": 28.000000000000004,
|
| 504 |
+
"paraphrase_original": 40.0
|
| 505 |
+
},
|
| 506 |
+
"color": {
|
| 507 |
+
"Shake_": 6.0,
|
| 508 |
+
"shake_original": 42.0,
|
| 509 |
+
"Paraphrase_": 12.0,
|
| 510 |
+
"paraphrase_original": 28.000000000000004
|
| 511 |
+
},
|
| 512 |
+
"counting": {
|
| 513 |
+
"Shake_": 44.0,
|
| 514 |
+
"shake_original": 64.0,
|
| 515 |
+
"Paraphrase_": 45.0,
|
| 516 |
+
"paraphrase_original": 63.0
|
| 517 |
+
},
|
| 518 |
+
"spatial": {
|
| 519 |
+
"Shake_": 5.0,
|
| 520 |
+
"shake_original": 18.0,
|
| 521 |
+
"Paraphrase_": 9.0,
|
| 522 |
+
"paraphrase_original": 25.0
|
| 523 |
+
}
|
| 524 |
+
},
|
| 525 |
+
"trial_1": {
|
| 526 |
+
"fidelity": {
|
| 527 |
+
"Shake_": 0.6542138671875,
|
| 528 |
+
"shake_original": 0.8556671142578125,
|
| 529 |
+
"Paraphrase_": 0.7282958984375,
|
| 530 |
+
"paraphrase_original": 0.8522875236742424
|
| 531 |
+
},
|
| 532 |
+
"size": {
|
| 533 |
+
"Shake_": 12.0,
|
| 534 |
+
"shake_original": 40.0,
|
| 535 |
+
"Paraphrase_": 22.0,
|
| 536 |
+
"paraphrase_original": 34.0
|
| 537 |
+
},
|
| 538 |
+
"color": {
|
| 539 |
+
"Shake_": 2.0,
|
| 540 |
+
"shake_original": 40.0,
|
| 541 |
+
"Paraphrase_": 8.0,
|
| 542 |
+
"paraphrase_original": 32.0
|
| 543 |
+
},
|
| 544 |
+
"counting": {
|
| 545 |
+
"Shake_": 40.0,
|
| 546 |
+
"shake_original": 61.0,
|
| 547 |
+
"Paraphrase_": 48.0,
|
| 548 |
+
"paraphrase_original": 53.0
|
| 549 |
+
},
|
| 550 |
+
"spatial": {
|
| 551 |
+
"Shake_": 8.0,
|
| 552 |
+
"shake_original": 28.000000000000004,
|
| 553 |
+
"Paraphrase_": 7.000000000000001,
|
| 554 |
+
"paraphrase_original": 26.0
|
| 555 |
+
}
|
| 556 |
+
},
|
| 557 |
+
"trial_2": {
|
| 558 |
+
"fidelity": {
|
| 559 |
+
"Shake_": 0.6542138671875,
|
| 560 |
+
"shake_original": 0.8556671142578125,
|
| 561 |
+
"Paraphrase_": 0.7282958984375,
|
| 562 |
+
"paraphrase_original": 0.8522875236742424
|
| 563 |
+
},
|
| 564 |
+
"size": {
|
| 565 |
+
"Shake_": 12.0,
|
| 566 |
+
"shake_original": 30.0,
|
| 567 |
+
"Paraphrase_": 28.000000000000004,
|
| 568 |
+
"paraphrase_original": 32.0
|
| 569 |
+
},
|
| 570 |
+
"color": {
|
| 571 |
+
"Shake_": 6.0,
|
| 572 |
+
"shake_original": 32.0,
|
| 573 |
+
"Paraphrase_": 6.0,
|
| 574 |
+
"paraphrase_original": 32.0
|
| 575 |
+
},
|
| 576 |
+
"counting": {
|
| 577 |
+
"Shake_": 43.0,
|
| 578 |
+
"shake_original": 64.0,
|
| 579 |
+
"Paraphrase_": 48.0,
|
| 580 |
+
"paraphrase_original": 56.00000000000001
|
| 581 |
+
},
|
| 582 |
+
"spatial": {
|
| 583 |
+
"Shake_": 7.000000000000001,
|
| 584 |
+
"shake_original": 16.0,
|
| 585 |
+
"Paraphrase_": 8.0,
|
| 586 |
+
"paraphrase_original": 25.0
|
| 587 |
+
}
|
| 588 |
+
}
|
| 589 |
+
}
|
| 590 |
+
}
|
data/results/privacy_i2t_summary.json
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"gpt-4-vision-preview": {
|
| 3 |
+
"Country": 8.97,
|
| 4 |
+
"State": 55.4,
|
| 5 |
+
"City": 60.0,
|
| 6 |
+
"ZIP Code Range": 82.53,
|
| 7 |
+
"ZIP Code": 87.82,
|
| 8 |
+
"Average": 58.94
|
| 9 |
+
},
|
| 10 |
+
"gpt-4o-2024-05-13": {
|
| 11 |
+
"Country": 1.84,
|
| 12 |
+
"State": 24.6,
|
| 13 |
+
"City": 39.77,
|
| 14 |
+
"ZIP Code Range": 63.45,
|
| 15 |
+
"ZIP Code": 72.87,
|
| 16 |
+
"Average": 40.51
|
| 17 |
+
},
|
| 18 |
+
"Qwen-VL-7B-Chat": {
|
| 19 |
+
"Country": 8.51,
|
| 20 |
+
"State": 62.3,
|
| 21 |
+
"City": 75.63,
|
| 22 |
+
"ZIP Code Range": 89.89,
|
| 23 |
+
"ZIP Code": 95.4,
|
| 24 |
+
"Average": 66.35
|
| 25 |
+
},
|
| 26 |
+
"llava-v1.6-vicuna-7b-hf": {
|
| 27 |
+
"Country": 54.48,
|
| 28 |
+
"State": 68.28,
|
| 29 |
+
"City": 74.94,
|
| 30 |
+
"ZIP Code Range": 95.63,
|
| 31 |
+
"ZIP Code": 98.62,
|
| 32 |
+
"Average": 78.39
|
| 33 |
+
},
|
| 34 |
+
"llava-v1.6-mistral-7b-hf":{
|
| 35 |
+
"Country": 76.61,
|
| 36 |
+
"State": 90.08,
|
| 37 |
+
"City": 93.85,
|
| 38 |
+
"ZIP Code Range": 99.57,
|
| 39 |
+
"ZIP Code": 99.78,
|
| 40 |
+
"Average": 91.98
|
| 41 |
+
},
|
| 42 |
+
"InstructBLIP": {
|
| 43 |
+
"Country": 11.95,
|
| 44 |
+
"State": 75.63,
|
| 45 |
+
"City": 70.11,
|
| 46 |
+
"ZIP Code Range": 100.0,
|
| 47 |
+
"ZIP Code": 100.0,
|
| 48 |
+
"Average": 71.54
|
| 49 |
+
},
|
| 50 |
+
"llava-v1.5-7B": {
|
| 51 |
+
"Country": 53.56,
|
| 52 |
+
"State": 77.93,
|
| 53 |
+
"City": 89.89,
|
| 54 |
+
"ZIP Code Range": 90.11,
|
| 55 |
+
"ZIP Code": 97.7,
|
| 56 |
+
"Average": 81.84
|
| 57 |
+
},
|
| 58 |
+
"LLAVA-v1.6-mistral-7B": {
|
| 59 |
+
"Country": 64.37,
|
| 60 |
+
"State": 94.94,
|
| 61 |
+
"City": 78.16,
|
| 62 |
+
"ZIP Code Range": 98.85,
|
| 63 |
+
"ZIP Code": 99.77,
|
| 64 |
+
"Average": 87.22
|
| 65 |
+
}
|
| 66 |
+
}
|
data/results/privacy_t2i_summary.json
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"stable-diffusion-v1-5": {
|
| 3 |
+
"cos_dissim": 25.89,
|
| 4 |
+
"Average": 25.89
|
| 5 |
+
},
|
| 6 |
+
"stable-diffusion-2": {
|
| 7 |
+
"cos_dissim": 24.64,
|
| 8 |
+
"Average": 24.64
|
| 9 |
+
},
|
| 10 |
+
"stable-diffusion-xl-base-1.0": {
|
| 11 |
+
"cos_dissim": 24.79,
|
| 12 |
+
"Average": 24.79
|
| 13 |
+
},
|
| 14 |
+
"openjourney-v4": {
|
| 15 |
+
"cos_dissim": 26.08,
|
| 16 |
+
"Average": 26.08
|
| 17 |
+
},
|
| 18 |
+
"IF-I-M-v1.0": {
|
| 19 |
+
"cos_dissim": 26.57,
|
| 20 |
+
"Average": 26.57
|
| 21 |
+
},
|
| 22 |
+
"dreamlike-photoreal-2.0": {
|
| 23 |
+
"cos_dissim": 26.96,
|
| 24 |
+
"Average": 26.96
|
| 25 |
+
},
|
| 26 |
+
"kandinsky-3": {
|
| 27 |
+
"cos_dissim": 27.05,
|
| 28 |
+
"Average": 27.05
|
| 29 |
+
},
|
| 30 |
+
"OpenDalleV1.1": {
|
| 31 |
+
"cos_dissim": 24.9,
|
| 32 |
+
"Average": 24.9
|
| 33 |
+
},
|
| 34 |
+
"dall-e-2": {
|
| 35 |
+
"cos_dissim": 32.48,
|
| 36 |
+
"Average": 32.48
|
| 37 |
+
},
|
| 38 |
+
"dall-e-3": {
|
| 39 |
+
"cos_dissim": 36.65,
|
| 40 |
+
"Average": 36.65
|
| 41 |
+
}
|
| 42 |
+
}
|
data/results/safety_i2t_summary.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"llava-v1.6-vicuna-7b-hf": {
|
| 3 |
+
"Typography": 0.790,
|
| 4 |
+
"Illustration": 0.454,
|
| 5 |
+
"Jailbreak": 0.372,
|
| 6 |
+
"Average": 0.538
|
| 7 |
+
},
|
| 8 |
+
"gpt-4-vision-preview": {
|
| 9 |
+
"Typography": 0.006,
|
| 10 |
+
"Illustration": 0.009,
|
| 11 |
+
"Jailbreak": 0.000,
|
| 12 |
+
"Average": 0.005
|
| 13 |
+
},
|
| 14 |
+
"gpt-4o-2024-05-13": {
|
| 15 |
+
"Typography": 0.127,
|
| 16 |
+
"Illustration": 0.081,
|
| 17 |
+
"Jailbreak": 0.018,
|
| 18 |
+
"Average": 0.075
|
| 19 |
+
}
|
| 20 |
+
}
|
data/results/safety_t2i_summary.json
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"stable-diffusion-xl-base-1.0": {
|
| 3 |
+
"Vanilla": 0.450,
|
| 4 |
+
"Transformed": 0.239,
|
| 5 |
+
"Jailbreak": 0.400,
|
| 6 |
+
"Average": 0.348
|
| 7 |
+
},
|
| 8 |
+
"dreamlike-photoreal-2.0": {
|
| 9 |
+
"Vanilla": 0.409,
|
| 10 |
+
"Transformed": 0.230,
|
| 11 |
+
"Jailbreak": 0.353,
|
| 12 |
+
"Average": 0.330
|
| 13 |
+
},
|
| 14 |
+
"openjourney-v4": {
|
| 15 |
+
"Vanilla": 0.366,
|
| 16 |
+
"Transformed": 0.223,
|
| 17 |
+
"Jailbreak": 0.330,
|
| 18 |
+
"Average": 0.306
|
| 19 |
+
},
|
| 20 |
+
"IF-I-M-v1.0": {
|
| 21 |
+
"Vanilla": 0.396,
|
| 22 |
+
"Transformed": 0.216,
|
| 23 |
+
"Jailbreak": 0.353,
|
| 24 |
+
"Average": 0.321
|
| 25 |
+
},
|
| 26 |
+
"dall-e-2": {
|
| 27 |
+
"Vanilla": 0.250,
|
| 28 |
+
"Transformed": 0.136,
|
| 29 |
+
"Jailbreak": 0.229,
|
| 30 |
+
"Average": 0.205
|
| 31 |
+
},
|
| 32 |
+
"dall-e-3": {
|
| 33 |
+
"Vanilla": 0.206,
|
| 34 |
+
"Transformed": 0.180,
|
| 35 |
+
"Jailbreak": 0.203,
|
| 36 |
+
"Average": 0.196
|
| 37 |
+
}
|
| 38 |
+
}
|
| 39 |
+
|
generate_plot.py
ADDED
|
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import plotly.colors
|
| 2 |
+
import plotly.graph_objects as go
|
| 3 |
+
from plotly.subplots import make_subplots
|
| 4 |
+
import os
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
import argparse
|
| 7 |
+
from utils.score_extract.ood_agg import ood_t2i_agg, ood_i2t_agg
|
| 8 |
+
|
| 9 |
+
DEFAULT_PLOTLY_COLORS = plotly.colors.DEFAULT_PLOTLY_COLORS
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def to_rgba(rgb, alpha=1):
|
| 13 |
+
return 'rgba' + rgb[3:][:-1] + f', {alpha})'
|
| 14 |
+
|
| 15 |
+
def radar_plot(results, thetas, selected_models):
|
| 16 |
+
# Extract performance values for each model across all benchmarks
|
| 17 |
+
model_performance = {}
|
| 18 |
+
selected_models = [os.path.basename(model) for model in selected_models]
|
| 19 |
+
for model in selected_models:
|
| 20 |
+
if model in results:
|
| 21 |
+
benchmarks_data = results[model]
|
| 22 |
+
model_performance[model] = [benchmarks_data[subfield] for subfield in benchmarks_data.keys()]
|
| 23 |
+
|
| 24 |
+
# Create radar chart with plotly
|
| 25 |
+
fig = make_subplots(
|
| 26 |
+
rows=2, cols=1,
|
| 27 |
+
shared_xaxes=True,
|
| 28 |
+
vertical_spacing=0.2,
|
| 29 |
+
row_heights=[1, 0.4],
|
| 30 |
+
specs=[[{"type": "polar"}], [{"type": "table"}]]
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
for i, (model, performance) in enumerate(model_performance.items()):
|
| 34 |
+
color = DEFAULT_PLOTLY_COLORS[i % len(DEFAULT_PLOTLY_COLORS)]
|
| 35 |
+
|
| 36 |
+
fig.add_trace(
|
| 37 |
+
go.Scatterpolar(
|
| 38 |
+
r=performance + [performance[0]],
|
| 39 |
+
theta=thetas + [thetas[0]],
|
| 40 |
+
fill='toself',
|
| 41 |
+
connectgaps=True,
|
| 42 |
+
fillcolor=to_rgba(color, 0.1),
|
| 43 |
+
name=model.split('/')[-1], # Use the last part of the model name for clarity
|
| 44 |
+
),
|
| 45 |
+
row=1, col=1
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
header_texts = ["Model"] + [x.replace("<br>", " ") for x in thetas]
|
| 49 |
+
rows = [[x.split('/')[-1] for x in selected_models]] + [[round(score[i], 2) for score in [model_performance[x] for x in selected_models]] for i in range(len(thetas))]
|
| 50 |
+
# column_widths = [len(x) for x in header_texts]
|
| 51 |
+
# column_widths[0] *= len(thetas)
|
| 52 |
+
|
| 53 |
+
fig.add_trace(
|
| 54 |
+
go.Table(
|
| 55 |
+
header=dict(values=header_texts, font=dict(size=12), align="left"),
|
| 56 |
+
cells=dict(
|
| 57 |
+
values=rows,
|
| 58 |
+
align="left",
|
| 59 |
+
font=dict(size=12),
|
| 60 |
+
height=30
|
| 61 |
+
),
|
| 62 |
+
# columnwidth=column_widths
|
| 63 |
+
),
|
| 64 |
+
row=2, col=1
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
fig.update_layout(
|
| 68 |
+
height=900,
|
| 69 |
+
legend=dict(font=dict(size=20), orientation="h", xanchor="center", x=0.5, y=0.35),
|
| 70 |
+
polar=dict(
|
| 71 |
+
radialaxis=dict(
|
| 72 |
+
visible=True,
|
| 73 |
+
range=[0, 100], # Assuming accuracy is a percentage between 0 and 100
|
| 74 |
+
tickfont=dict(size=12)
|
| 75 |
+
),
|
| 76 |
+
angularaxis=dict(tickfont=dict(size=20), type="category")
|
| 77 |
+
),
|
| 78 |
+
showlegend=True,
|
| 79 |
+
# title=f"{title}"
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
return fig
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def main_radar_plot(main_scores, selected_models):
|
| 86 |
+
fig = make_subplots(
|
| 87 |
+
rows=2, cols=1,
|
| 88 |
+
shared_xaxes=True,
|
| 89 |
+
vertical_spacing=0.2,
|
| 90 |
+
row_heights=[1.0, 0.5],
|
| 91 |
+
specs=[[{"type": "polar"}], [{"type": "table"}]]
|
| 92 |
+
)
|
| 93 |
+
model_scores = {}
|
| 94 |
+
for model in selected_models:
|
| 95 |
+
model_name = os.path.basename(model)
|
| 96 |
+
model_scores[model_name] = main_scores[model_name]
|
| 97 |
+
perspectives = list(model_scores[os.path.basename(selected_models[0])].keys())
|
| 98 |
+
perspectives_shift = perspectives
|
| 99 |
+
for i, model_name in enumerate(model_scores.keys()):
|
| 100 |
+
color = DEFAULT_PLOTLY_COLORS[i % len(DEFAULT_PLOTLY_COLORS)]
|
| 101 |
+
score_shifted = list(model_scores[model_name].values())
|
| 102 |
+
fig.add_trace(
|
| 103 |
+
go.Scatterpolar(
|
| 104 |
+
r=score_shifted + [score_shifted[0]],
|
| 105 |
+
theta=perspectives_shift + [perspectives_shift[0]],
|
| 106 |
+
connectgaps=True,
|
| 107 |
+
fill='toself',
|
| 108 |
+
fillcolor=to_rgba(color, 0.1),
|
| 109 |
+
name=model_name, # Use the last part of the model name for clarity
|
| 110 |
+
),
|
| 111 |
+
row=1, col=1
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
header_texts = ["Model"] + perspectives
|
| 115 |
+
rows = [
|
| 116 |
+
list(model_scores.keys()), # Model Names
|
| 117 |
+
*[[round(score[perspective], 2) for score in list(model_scores.values())] for perspective in perspectives]
|
| 118 |
+
]
|
| 119 |
+
column_widths = [10] + [5] * len(perspectives)
|
| 120 |
+
|
| 121 |
+
fig.add_trace(
|
| 122 |
+
go.Table(
|
| 123 |
+
header=dict(values=header_texts, font=dict(size=12), align="left"),
|
| 124 |
+
cells=dict(
|
| 125 |
+
values=rows,
|
| 126 |
+
align="left",
|
| 127 |
+
font=dict(size=12),
|
| 128 |
+
height=30,
|
| 129 |
+
),
|
| 130 |
+
columnwidth=column_widths,
|
| 131 |
+
),
|
| 132 |
+
row=2, col=1
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
fig.update_layout(
|
| 137 |
+
height=1200,
|
| 138 |
+
legend=dict(font=dict(size=20), orientation="h", xanchor="center", x=0.5, y=0.4),
|
| 139 |
+
polar=dict(
|
| 140 |
+
radialaxis=dict(
|
| 141 |
+
visible=True,
|
| 142 |
+
range=[0, 100], # Assuming accuracy is a percentage between 0 and 100
|
| 143 |
+
tickfont=dict(size=12)
|
| 144 |
+
),
|
| 145 |
+
angularaxis=dict(tickfont=dict(size=20), type="category", rotation=5)
|
| 146 |
+
),
|
| 147 |
+
showlegend=True,
|
| 148 |
+
title=dict(text="MM-DecodingTrust Scores (Higher is Better)"),
|
| 149 |
+
)
|
| 150 |
+
return fig
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
def breakdown_plot(scenario_results, subfields, selected_models):
|
| 154 |
+
fig = radar_plot(scenario_results, subfields, selected_models)
|
| 155 |
+
return fig
|
| 156 |
+
|
| 157 |
+
def update_subscores(target_model, main_scores, config_dicts):
|
| 158 |
+
perspectives = []
|
| 159 |
+
target_model = target_model.split('/')[-1]
|
| 160 |
+
curr_main_scores = {}
|
| 161 |
+
curr_main_scores[target_model] = {}
|
| 162 |
+
for perspective in main_scores[target_model].keys():
|
| 163 |
+
curr_main_scores[target_model][config_dicts[perspective]["name"]] = main_scores[target_model][perspective]
|
| 164 |
+
perspectives.append(config_dicts[perspective]["name"])
|
| 165 |
+
return curr_main_scores
|
| 166 |
+
|
| 167 |
+
def generate_plot(model, main_scores, sub_scores, config_dict, out_path="plots"):
|
| 168 |
+
curr_main_scores = update_subscores(model, main_scores, config_dict)
|
| 169 |
+
for idx, perspective in enumerate(config_dict.keys()):
|
| 170 |
+
if config_dict[perspective]["sub_plot"] == False:
|
| 171 |
+
continue
|
| 172 |
+
# if "openai/gpt-4-0314" not in sub_scores[perspective].keys():
|
| 173 |
+
# model_list = [model]
|
| 174 |
+
# else:
|
| 175 |
+
# model_list = [model, "openai/gpt-4-0314"]
|
| 176 |
+
model_list = [model]
|
| 177 |
+
subplot = breakdown_plot(sub_scores[perspective], list(sub_scores[perspective][model].keys()), model_list)
|
| 178 |
+
perspective_name = config_dict[perspective]["name"].replace(" ", "_")
|
| 179 |
+
subplot.write_image(f"{out_path}/{perspective_name}_breakdown.png", width=1400, height=700)
|
| 180 |
+
plot = main_radar_plot(curr_main_scores, [model])
|
| 181 |
+
plot.write_image(f"{out_path}/main.png", width=1400, height=700)
|
| 182 |
+
|
| 183 |
+
def generate_main_plot(models, main_scores):
|
| 184 |
+
curr_main_scores = main_scores
|
| 185 |
+
plot = main_radar_plot(curr_main_scores, models)
|
| 186 |
+
return plot
|
| 187 |
+
# plot.write_image(f"{out_path}/main.png", width=1400, height=700)
|
| 188 |
+
def generate_sub_plot(models, sub_scores, perspective):
|
| 189 |
+
subplot = breakdown_plot(sub_scores[perspective], list(sub_scores[perspective][models[0]].keys()), models)
|
| 190 |
+
return subplot
|
| 191 |
+
|
| 192 |
+
if __name__ == "__main__":
|
| 193 |
+
# parser = argparse.ArgumentParser()
|
| 194 |
+
# parser.add_argument("--model", type=str, default="hf/meta-llama/Llama-2-7b-chat-hf")
|
| 195 |
+
# args = parser.parse_args()
|
| 196 |
+
t2i_models = [ # Average time spent running the following example
|
| 197 |
+
"dall-e-2",
|
| 198 |
+
"dall-e-3",
|
| 199 |
+
"DeepFloyd/IF-I-M-v1.0", # 15.372
|
| 200 |
+
"dreamlike-art/dreamlike-photoreal-2.0", # 3.526
|
| 201 |
+
"prompthero/openjourney-v4", # 4.981
|
| 202 |
+
"stabilityai/stable-diffusion-xl-base-1.0", # 7.463
|
| 203 |
+
]
|
| 204 |
+
i2t_models = [ # Average time spent running the following example
|
| 205 |
+
"gpt-4-vision-preview",
|
| 206 |
+
"gpt-4o-2024-05-13",
|
| 207 |
+
"llava-hf/llava-v1.6-vicuna-7b-hf"
|
| 208 |
+
]
|
| 209 |
+
perspectives = ["safety", "fairness", "hallucination", "privacy", "adv", "ood"]
|
| 210 |
+
main_scores_t2i = {}
|
| 211 |
+
main_scores_i2t = {}
|
| 212 |
+
sub_scores_t2i = {}
|
| 213 |
+
sub_scores_i2t = {}
|
| 214 |
+
for model in t2i_models:
|
| 215 |
+
model = model.split("/")[-1]
|
| 216 |
+
main_scores_t2i[model] = {}
|
| 217 |
+
for perspective in perspectives:
|
| 218 |
+
# Place holder
|
| 219 |
+
main_scores_t2i[model][perspective] = ood_t2i_agg(model, "./data/results")["score"]
|
| 220 |
+
if perspective not in sub_scores_t2i.keys():
|
| 221 |
+
sub_scores_t2i[perspective] = {}
|
| 222 |
+
sub_scores_t2i[perspective][model] = ood_t2i_agg(model, "./data/results")["subscenarios"]
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
for model in i2t_models:
|
| 226 |
+
model = model.split("/")[-1]
|
| 227 |
+
main_scores_i2t[model] = {}
|
| 228 |
+
for perspective in perspectives:
|
| 229 |
+
# Place holder
|
| 230 |
+
main_scores_i2t[model][perspective] = ood_i2t_agg(model, "./data/results")["score"]
|
| 231 |
+
if perspective not in sub_scores_i2t.keys():
|
| 232 |
+
sub_scores_i2t[perspective] = {}
|
| 233 |
+
sub_scores_i2t[perspective][model] = ood_i2t_agg(model, "./data/results")["subscenarios"]
|
| 234 |
+
|
| 235 |
+
# generate_main_plot(t2i_models, main_scores_t2i)
|
| 236 |
+
# generate_main_plot(i2t_models, main_scores_i2t)
|
| 237 |
+
|
| 238 |
+
generate_sub_plot(t2i_models, sub_scores_t2i, "ood")
|
| 239 |
+
# generate_sub_plot(i2t_models, sub_scores_i2t)
|
| 240 |
+
|
| 241 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
ansi2html==1.8.0
|
| 2 |
+
certifi==2023.7.22
|
| 3 |
+
charset-normalizer==3.2.0
|
| 4 |
+
click==8.1.6
|
| 5 |
+
dash==2.12.0
|
| 6 |
+
dash-core-components==2.0.0
|
| 7 |
+
dash-html-components==2.0.0
|
| 8 |
+
dash-table==5.0.0
|
| 9 |
+
Flask==2.2.5
|
| 10 |
+
gunicorn==21.2.0
|
| 11 |
+
idna==3.4
|
| 12 |
+
itsdangerous==2.1.2
|
| 13 |
+
Jinja2==3.1.2
|
| 14 |
+
MarkupSafe==2.1.3
|
| 15 |
+
nest-asyncio==1.5.7
|
| 16 |
+
numpy==1.25.2
|
| 17 |
+
packaging==23.1
|
| 18 |
+
pandas==2.0.3
|
| 19 |
+
plotly==5.16.0
|
| 20 |
+
python-dateutil==2.8.2
|
| 21 |
+
pytz==2023.3
|
| 22 |
+
requests==2.31.0
|
| 23 |
+
retrying==1.3.4
|
| 24 |
+
six==1.16.0
|
| 25 |
+
tenacity==8.2.3
|
| 26 |
+
typing_extensions==4.7.1
|
| 27 |
+
tzdata==2023.3
|
| 28 |
+
urllib3==2.0.4
|
| 29 |
+
Werkzeug==2.2.3
|
| 30 |
+
gradio==3.50.2
|
| 31 |
+
joblib
|
utils/score_extract/adversarial_robustness_agg.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
def adversarial_robustness_t2i_agg(model, result_dir):
|
| 5 |
+
model = model.split("/")[-1]
|
| 6 |
+
result_path = os.path.join(result_dir, "adversarial_robustness_t2i_summary.json")
|
| 7 |
+
with open(result_path, "r") as file:
|
| 8 |
+
results = json.load(file)
|
| 9 |
+
agg_scores = {}
|
| 10 |
+
agg_scores["score"] = results[model].pop("Average")
|
| 11 |
+
agg_scores["subscenarios"] = results[model]
|
| 12 |
+
return agg_scores
|
| 13 |
+
|
| 14 |
+
def adversarial_robustness_i2t_agg(model, result_dir):
|
| 15 |
+
model = model.split("/")[-1]
|
| 16 |
+
result_path = os.path.join(result_dir, "adversarial_robustness_i2t_summary.json")
|
| 17 |
+
with open(result_path, "r") as file:
|
| 18 |
+
results = json.load(file)
|
| 19 |
+
agg_scores = {}
|
| 20 |
+
agg_scores["score"] = results[model].pop("Average")
|
| 21 |
+
agg_scores["subscenarios"] = results[model]
|
| 22 |
+
return agg_scores
|
| 23 |
+
|
| 24 |
+
if __name__ == "__main__":
|
| 25 |
+
t2i_models = [ # Average time spent running the following example
|
| 26 |
+
"dall-e-2",
|
| 27 |
+
"dall-e-3",
|
| 28 |
+
"DeepFloyd/IF-I-M-v1.0", # 15.372
|
| 29 |
+
"dreamlike-art/dreamlike-photoreal-2.0", # 3.526
|
| 30 |
+
"prompthero/openjourney-v4", # 4.981
|
| 31 |
+
"stabilityai/stable-diffusion-xl-base-1.0", # 7.463
|
| 32 |
+
]
|
| 33 |
+
i2t_models = [ # Average time spent running the following example
|
| 34 |
+
"gpt-4-vision-preview",
|
| 35 |
+
"gpt-4o-2024-05-13",
|
| 36 |
+
"llava-hf/llava-v1.6-vicuna-7b-hf"
|
| 37 |
+
]
|
| 38 |
+
result_dir = "./data/results"
|
| 39 |
+
print(adversarial_robustness_i2t_agg(i2t_models[0], result_dir))
|
| 40 |
+
print(adversarial_robustness_t2i_agg(t2i_models[0], result_dir))
|
utils/score_extract/fairness_agg.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
def fairness_t2i_agg(model, result_dir):
|
| 5 |
+
model = model.split("/")[-1]
|
| 6 |
+
result_path = os.path.join(result_dir, "fairness_t2i_summary.json")
|
| 7 |
+
with open(result_path, "r") as file:
|
| 8 |
+
results = json.load(file)
|
| 9 |
+
agg_scores = {}
|
| 10 |
+
agg_scores["score"] = results[model].pop("Average") * 100
|
| 11 |
+
agg_scores["subscenarios"] = results[model]
|
| 12 |
+
for key in agg_scores["subscenarios"]:
|
| 13 |
+
agg_scores["subscenarios"][key] = agg_scores["subscenarios"][key] * 100
|
| 14 |
+
return agg_scores
|
| 15 |
+
|
| 16 |
+
def fairness_i2t_agg(model, result_dir):
|
| 17 |
+
model = model.split("/")[-1]
|
| 18 |
+
result_path = os.path.join(result_dir, "fairness_i2t_summary.json")
|
| 19 |
+
with open(result_path, "r") as file:
|
| 20 |
+
results = json.load(file)
|
| 21 |
+
agg_scores = {}
|
| 22 |
+
agg_scores["score"] = results[model].pop("Average") * 100
|
| 23 |
+
agg_scores["subscenarios"] = results[model]
|
| 24 |
+
for key in agg_scores["subscenarios"]:
|
| 25 |
+
agg_scores["subscenarios"][key] = agg_scores["subscenarios"][key] * 100
|
| 26 |
+
return agg_scores
|
| 27 |
+
|
| 28 |
+
if __name__ == "__main__":
|
| 29 |
+
t2i_models = [ # Average time spent running the following example
|
| 30 |
+
"dall-e-2",
|
| 31 |
+
"dall-e-3",
|
| 32 |
+
"DeepFloyd/IF-I-M-v1.0", # 15.372
|
| 33 |
+
"dreamlike-art/dreamlike-photoreal-2.0", # 3.526
|
| 34 |
+
"prompthero/openjourney-v4", # 4.981
|
| 35 |
+
"stabilityai/stable-diffusion-xl-base-1.0", # 7.463
|
| 36 |
+
]
|
| 37 |
+
i2t_models = [ # Average time spent running the following example
|
| 38 |
+
"gpt-4-vision-preview",
|
| 39 |
+
"gpt-4o-2024-05-13",
|
| 40 |
+
"llava-hf/llava-v1.6-vicuna-7b-hf"
|
| 41 |
+
]
|
| 42 |
+
result_dir = "./data/results"
|
| 43 |
+
print(fairness_i2t_agg(i2t_models[0], result_dir))
|
| 44 |
+
print(fairness_t2i_agg(t2i_models[0], result_dir))
|
utils/score_extract/hallucination_agg.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
def hallucination_t2i_agg(model, result_dir):
|
| 5 |
+
model = model.split("/")[-1]
|
| 6 |
+
result_path = os.path.join(result_dir, "hallucination_t2i_summary.json")
|
| 7 |
+
with open(result_path, "r") as file:
|
| 8 |
+
results = json.load(file)
|
| 9 |
+
agg_scores = {}
|
| 10 |
+
agg_scores["score"] = results[model].pop("Average")
|
| 11 |
+
agg_scores["subscenarios"] = results[model]
|
| 12 |
+
return agg_scores
|
| 13 |
+
|
| 14 |
+
def hallucination_i2t_agg(model, result_dir):
|
| 15 |
+
model = model.split("/")[-1]
|
| 16 |
+
result_path = os.path.join(result_dir, "hallucination_i2t_summary.json")
|
| 17 |
+
with open(result_path, "r") as file:
|
| 18 |
+
results = json.load(file)
|
| 19 |
+
agg_scores = {}
|
| 20 |
+
agg_scores["score"] = results[model].pop("Average")
|
| 21 |
+
agg_scores["subscenarios"] = results[model]
|
| 22 |
+
return agg_scores
|
utils/score_extract/ood_agg.py
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
def ood_t2i_agg(model, result_dir):
|
| 5 |
+
"""
|
| 6 |
+
Aggregate scores for the given testing models.
|
| 7 |
+
|
| 8 |
+
Parameters:
|
| 9 |
+
model (str): Model name.
|
| 10 |
+
result_dir (str): The path to the directory where the results are stored.
|
| 11 |
+
|
| 12 |
+
Returns:
|
| 13 |
+
dict: Output the overall score and the score of subscenarios in the format {"score": float, "subscenarios": dict}.
|
| 14 |
+
For example, OOD use subscenario like counting_shake as a subscenario
|
| 15 |
+
"""
|
| 16 |
+
result_path = os.path.join(result_dir, "ood_t2i_summary.json")
|
| 17 |
+
with open(result_path, "r") as file:
|
| 18 |
+
results = json.load(file)
|
| 19 |
+
agg_scores = {}
|
| 20 |
+
# for model in models:
|
| 21 |
+
# Only leave the model base name
|
| 22 |
+
model = model.split("/")[-1]
|
| 23 |
+
results_shake_fidelity = 0
|
| 24 |
+
results_shake_counting = 0
|
| 25 |
+
results_shake_spatial = 0
|
| 26 |
+
results_shake_color = 0
|
| 27 |
+
results_shake_size = 0
|
| 28 |
+
results_paraphrase_fidelity = 0
|
| 29 |
+
results_paraphrase_counting = 0
|
| 30 |
+
results_paraphrase_spatial = 0
|
| 31 |
+
results_paraphrase_color = 0
|
| 32 |
+
results_paraphrase_size = 0
|
| 33 |
+
|
| 34 |
+
for trial_id in [0, 1, 2]:
|
| 35 |
+
results_shake_fidelity += results[model][f'trial_{trial_id}']['fidelity']['Shake_']
|
| 36 |
+
results_shake_counting += results[model][f'trial_{trial_id}']['counting']['Shake_']
|
| 37 |
+
results_shake_spatial += results[model][f'trial_{trial_id}']['spatial']['Shake_']
|
| 38 |
+
results_shake_color += results[model][f'trial_{trial_id}']['color']['Shake_']
|
| 39 |
+
results_shake_size += results[model][f'trial_{trial_id}']['size']['Shake_']
|
| 40 |
+
results_paraphrase_fidelity += results[model][f'trial_{trial_id}']['fidelity']['Paraphrase_']
|
| 41 |
+
results_paraphrase_counting += results[model][f'trial_{trial_id}']['counting']['Paraphrase_']
|
| 42 |
+
results_paraphrase_spatial += results[model][f'trial_{trial_id}']['spatial']['Paraphrase_']
|
| 43 |
+
results_paraphrase_color += results[model][f'trial_{trial_id}']['color']['Paraphrase_']
|
| 44 |
+
results_paraphrase_size += results[model][f'trial_{trial_id}']['size']['Paraphrase_']
|
| 45 |
+
|
| 46 |
+
results_shake_fidelity = results_shake_fidelity * 100
|
| 47 |
+
results_shake_fidelity /= 3
|
| 48 |
+
results_shake_counting /= 3
|
| 49 |
+
results_shake_spatial /= 3
|
| 50 |
+
results_shake_color /= 3
|
| 51 |
+
results_shake_size /= 3
|
| 52 |
+
results_shake_attribute = (results_shake_color + results_shake_size) / 2
|
| 53 |
+
|
| 54 |
+
results_paraphrase_fidelity = results_paraphrase_fidelity * 100
|
| 55 |
+
results_paraphrase_fidelity /= 3
|
| 56 |
+
results_paraphrase_counting /= 3
|
| 57 |
+
results_paraphrase_spatial /= 3
|
| 58 |
+
results_paraphrase_color /= 3
|
| 59 |
+
results_paraphrase_size /= 3
|
| 60 |
+
results_attribute = (results_paraphrase_color + results_paraphrase_size) / 2
|
| 61 |
+
|
| 62 |
+
avg_shake = (results_shake_fidelity + results_shake_counting + results_shake_spatial + results_shake_attribute) / 4
|
| 63 |
+
avg_paraphrase = (results_paraphrase_fidelity + results_paraphrase_counting + results_paraphrase_spatial + results_attribute) / 4
|
| 64 |
+
agg_score = (avg_shake + avg_paraphrase) / 2
|
| 65 |
+
agg_scores["score"] = agg_score
|
| 66 |
+
agg_scores["subscenarios"] = {
|
| 67 |
+
"helpfulness_shake": results_shake_fidelity,
|
| 68 |
+
"counting_shake": results_shake_counting,
|
| 69 |
+
"spatial_shake": results_shake_spatial,
|
| 70 |
+
"attribute_shake": results_shake_attribute,
|
| 71 |
+
"helpfulness_rare": results_paraphrase_fidelity,
|
| 72 |
+
"counting_rare": results_paraphrase_counting,
|
| 73 |
+
"spatial_rare": results_paraphrase_spatial,
|
| 74 |
+
"attribute_rare": results_attribute
|
| 75 |
+
}
|
| 76 |
+
return agg_scores
|
| 77 |
+
# agg_scores[model] = agg_score
|
| 78 |
+
# return agg_scores
|
| 79 |
+
|
| 80 |
+
def ood_i2t_agg(model, result_dir):
|
| 81 |
+
"""
|
| 82 |
+
Aggregate scores for the given testing models.
|
| 83 |
+
|
| 84 |
+
Parameters:
|
| 85 |
+
model (str): Model name
|
| 86 |
+
result_dir (str): The path to the directory where the results are stored.
|
| 87 |
+
|
| 88 |
+
Returns:
|
| 89 |
+
dict: Output the overall score and the score of subscenarios in the format {"score": float, "subscenarios": dict}.
|
| 90 |
+
For example, OOD use subscenario like counting_trans as a subscenario
|
| 91 |
+
"""
|
| 92 |
+
transformations = ["Van_Gogh", "oil_painting", "watercolour_painting"]
|
| 93 |
+
corruptions = [
|
| 94 |
+
"zoom_blur", "gaussian_noise", "pixelate"
|
| 95 |
+
]
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
result_path = os.path.join(result_dir, "ood_i2t_summary.json")
|
| 99 |
+
with open(result_path, "r") as file:
|
| 100 |
+
results = json.load(file)
|
| 101 |
+
|
| 102 |
+
agg_scores = {}
|
| 103 |
+
# for model in models:
|
| 104 |
+
# Only leave the model base name
|
| 105 |
+
model = model.split("/")[-1]
|
| 106 |
+
identification_corrupt = sum([results[model]['identification'][corrupt]["Score"] for corrupt in corruptions]) / 3
|
| 107 |
+
count_corrupt = sum([results[model]['count'][corrupt]["Score"] for corrupt in corruptions]) / 3
|
| 108 |
+
spatial_corrupt = sum([results[model]['spatial'][corrupt]["Score"] for corrupt in corruptions]) / 3
|
| 109 |
+
attribute_corrupt = sum([results[model]['attribute'][corrupt]["Score"] for corrupt in corruptions]) / 3
|
| 110 |
+
avg_corrupt = (identification_corrupt + count_corrupt + spatial_corrupt + attribute_corrupt) / 4
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
identification_transform = sum([results[model]['identification'][transform]["Score"] for transform in transformations]) / 3
|
| 114 |
+
count_transform = sum([results[model]['count'][transform]["Score"] for transform in transformations]) / 3
|
| 115 |
+
spatial_transform = sum([results[model]['spatial'][transform]["Score"] for transform in transformations]) / 3
|
| 116 |
+
attribute_transform = sum([results[model]['attribute'][transform]["Score"] for transform in transformations]) / 3
|
| 117 |
+
avg_transform = (identification_transform + count_transform + spatial_transform + attribute_transform) / 4
|
| 118 |
+
|
| 119 |
+
agg_scores["score"] = (avg_corrupt + avg_transform) / 2
|
| 120 |
+
agg_scores["subscenarios"] = {
|
| 121 |
+
"object_corrupt": identification_corrupt,
|
| 122 |
+
"counting_corrupt": count_corrupt,
|
| 123 |
+
"spatial_corrupt": spatial_corrupt,
|
| 124 |
+
"attribute_corrupt": attribute_corrupt,
|
| 125 |
+
"object_transform": identification_transform,
|
| 126 |
+
"counting_transform": count_transform,
|
| 127 |
+
"spatial_transform": spatial_transform,
|
| 128 |
+
"attribute_transform": attribute_transform
|
| 129 |
+
}
|
| 130 |
+
return agg_scores
|
| 131 |
+
# agg_scores[model] = agg_score
|
| 132 |
+
# return agg_scores
|
| 133 |
+
|
| 134 |
+
if __name__ == "__main__":
|
| 135 |
+
t2i_models = [ # Average time spent running the following example
|
| 136 |
+
"dall-e-2",
|
| 137 |
+
"dall-e-3",
|
| 138 |
+
"DeepFloyd/IF-I-M-v1.0", # 15.372
|
| 139 |
+
"dreamlike-art/dreamlike-photoreal-2.0", # 3.526
|
| 140 |
+
"prompthero/openjourney-v4", # 4.981
|
| 141 |
+
"stabilityai/stable-diffusion-xl-base-1.0", # 7.463
|
| 142 |
+
]
|
| 143 |
+
i2t_models = [ # Average time spent running the following example
|
| 144 |
+
"gpt-4-vision-preview",
|
| 145 |
+
"gpt-4o-2024-05-13",
|
| 146 |
+
"llava-hf/llava-v1.6-vicuna-7b-hf"
|
| 147 |
+
]
|
| 148 |
+
result_dir = "./data/results"
|
| 149 |
+
print(ood_i2t_agg(i2t_models[0], result_dir))
|
| 150 |
+
print(ood_t2i_agg(t2i_models[0], result_dir))
|
utils/score_extract/privacy_agg.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
def privacy_t2i_agg(model, result_dir):
|
| 5 |
+
model = model.split("/")[-1]
|
| 6 |
+
result_path = os.path.join(result_dir, "privacy_t2i_summary.json")
|
| 7 |
+
with open(result_path, "r") as file:
|
| 8 |
+
results = json.load(file)
|
| 9 |
+
agg_scores = {}
|
| 10 |
+
agg_scores["score"] = results[model].pop("Average")
|
| 11 |
+
agg_scores["subscenarios"] = results[model]
|
| 12 |
+
return agg_scores
|
| 13 |
+
|
| 14 |
+
def privacy_i2t_agg(model, result_dir):
|
| 15 |
+
model = model.split("/")[-1]
|
| 16 |
+
result_path = os.path.join(result_dir, "privacy_i2t_summary.json")
|
| 17 |
+
with open(result_path, "r") as file:
|
| 18 |
+
results = json.load(file)
|
| 19 |
+
agg_scores = {}
|
| 20 |
+
agg_scores["score"] = results[model].pop("Average")
|
| 21 |
+
agg_scores["subscenarios"] = results[model]
|
| 22 |
+
return agg_scores
|
| 23 |
+
|
| 24 |
+
if __name__ == "__main__":
|
| 25 |
+
t2i_models = [ # Average time spent running the following example
|
| 26 |
+
"dall-e-2",
|
| 27 |
+
"dall-e-3",
|
| 28 |
+
"DeepFloyd/IF-I-M-v1.0", # 15.372
|
| 29 |
+
"dreamlike-art/dreamlike-photoreal-2.0", # 3.526
|
| 30 |
+
"prompthero/openjourney-v4", # 4.981
|
| 31 |
+
"stabilityai/stable-diffusion-xl-base-1.0", # 7.463
|
| 32 |
+
]
|
| 33 |
+
i2t_models = [ # Average time spent running the following example
|
| 34 |
+
"gpt-4-vision-preview",
|
| 35 |
+
"gpt-4o-2024-05-13",
|
| 36 |
+
"llava-hf/llava-v1.6-vicuna-7b-hf"
|
| 37 |
+
]
|
| 38 |
+
result_dir = "./data/results"
|
| 39 |
+
print(privacy_i2t_agg(i2t_models[0], result_dir))
|
| 40 |
+
print(privacy_t2i_agg(t2i_models[0], result_dir))
|
utils/score_extract/safety_agg.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
def safety_t2i_agg(model, result_dir):
|
| 5 |
+
model = model.split("/")[-1]
|
| 6 |
+
result_path = os.path.join(result_dir, "safety_t2i_summary.json")
|
| 7 |
+
with open(result_path, "r") as file:
|
| 8 |
+
results = json.load(file)
|
| 9 |
+
agg_scores = {}
|
| 10 |
+
agg_scores["score"] = (1 - results[model].pop("Average")) * 100
|
| 11 |
+
# agg_scores["subscenarios"] = results[model]
|
| 12 |
+
agg_scores["subscenarios"] = {k: (1-v) * 100 for k, v in results[model].items()}
|
| 13 |
+
return agg_scores
|
| 14 |
+
|
| 15 |
+
def safety_i2t_agg(model, result_dir):
|
| 16 |
+
model = model.split("/")[-1]
|
| 17 |
+
result_path = os.path.join(result_dir, "safety_i2t_summary.json")
|
| 18 |
+
with open(result_path, "r") as file:
|
| 19 |
+
results = json.load(file)
|
| 20 |
+
agg_scores = {}
|
| 21 |
+
agg_scores["score"] = (1 - results[model].pop("Average")) * 100
|
| 22 |
+
agg_scores["subscenarios"] = {k: (1-v) * 100 for k, v in results[model].items()}
|
| 23 |
+
return agg_scores
|
| 24 |
+
|
| 25 |
+
if __name__ == "__main__":
|
| 26 |
+
t2i_models = [ # Average time spent running the following example
|
| 27 |
+
"dall-e-2",
|
| 28 |
+
"dall-e-3",
|
| 29 |
+
"DeepFloyd/IF-I-M-v1.0", # 15.372
|
| 30 |
+
"dreamlike-art/dreamlike-photoreal-2.0", # 3.526
|
| 31 |
+
"prompthero/openjourney-v4", # 4.981
|
| 32 |
+
"stabilityai/stable-diffusion-xl-base-1.0", # 7.463
|
| 33 |
+
]
|
| 34 |
+
i2t_models = [ # Average time spent running the following example
|
| 35 |
+
"gpt-4-vision-preview",
|
| 36 |
+
"gpt-4o-2024-05-13",
|
| 37 |
+
"llava-hf/llava-v1.6-vicuna-7b-hf"
|
| 38 |
+
]
|
| 39 |
+
result_dir = "./data/results"
|
| 40 |
+
print(safety_i2t_agg(i2t_models[0], result_dir))
|
| 41 |
+
print(safety_t2i_agg(t2i_models[0], result_dir))
|