
1

What is a Computer?

a computer is a device that receives, stores, and processes information

different types of computers have different characteristics
◼ supercomputers: powerful but expensive; used for complex computations (e.g.,

weather forecasting, engineering design and modeling)

◼ desktop computers: less powerful but affordable; used for a variety of user
applications (e.g., email, Web browsing, document processing)

◼ laptop computers: similar functionality to desktops, but mobile

◼ palmtop computers: portable, but limited applications and screen size

◼ smartphones: portable, integrated with phone, camera

2

Desktop Specifications

purchasing a computer can be confusing
◼ sales materials contain highly technical information and computer jargon

the following specs describe two computer systems for sale in January 2020
◼ Desktop 1 is a low-end system, inexpensive but with limited features

◼ Desktop 2 is a high-end system, uses the latest technology so expensive

3

Hardware vs. Software

the term hardware refers to the physical components of a computer system

◼ e.g., monitor, keyboard, mouse, hard drive

the term software refers to the programs that execute on the computer

◼ e.g., word processing program, Web browser

4

von Neumann Architecture

although specific components may vary, virtually all modern computers have
the same underlying structure
◼ known as the von Neumann architecture

◼ named after computer pioneer, John von Neumann, who popularized the design
in the early 1950's

the von Neumann architecture identifies 3 essential components
1. Input/Output Devices (I/O) allow the user to interact with the computer

2. Memory stores information to be processed as well as programs (instructions
specifying the steps necessary to complete specific tasks)

3. Central Processing Unit (CPU) carries out the instructions to process information

5

Central Processing Unit (CPU)

the CPU is the "brains" of the computer, responsible for controlling its inner
workings

◼ made of circuitry – electronic components wired together to control the flow of
electrical signals

◼ the circuitry is embedded in a small silicon chip, 1-2 inches square
◼ despite its small size, the CPU is the most complex part of a computer

(CPU circuitry can have 100's of millions of individual components)

◼ commercial examples: AMD Ryzen 5, Intel Core i5, and Intel Core i7

6

CPU (cont.)

the CPU works by repeatedly fetching a program instruction from memory

and executing that instruction

◼ individual instructions are very simple (e.g., add two numbers, or copy this data)

 but they vary across CPUs, higher end can do more in a single instruction

◼ complex behavior results from incredible speed

 a 2.6 GHz AMD A6 processor can execute 2.6 billion instructions per second

 a 3.3 GHz Intel i9 processor can execute 3.3 billion instructions per second

a dual-core processor contains
the circuitry of 2 processors,
packaged on a single chip
• in theory, can execute 2

instructions simultaneously

a deca-core processor contains
the circuitry of 10 processors,
packaged on a single chip

• in theory, can execute 10
instructions simultaneously

7

Memory

memory is the part of the computer that stores data and programs

modern computers are digital devices, meaning they store and process
information as binary digits (bits)

◼ bits are commonly represented as either 0 or 1

◼ bits are the building block of digital memory

by grouping bits together, large ranges of values can be represented

8

Memory (cont.)

memory capacity is usually specified in bytes

◼ a byte is a collection of 8 bits – so can represent a range of 28 = 256 values

◼ large collections of bytes can be specified using prefixes

since a byte is sufficient to represent a single character, can think of memory

in terms of text

◼ a kilobyte can store a few paragraphs (roughly 1 thousand characters)

◼ a megabyte can store a book (roughly 1 million characters)

◼ a gigabyte can store a small library (roughly 1 billion characters)

◼ a terabyte can store a book repository (roughly 1 trillion characters)

9

Memory (cont.)

modern computers use a combination of memory types, each with its own
performance and cost characteristics

main memory (or primary memory) is fast and expensive
◼ data is stored as electric signals in circuitry, used to store active data
◼ memory is volatile – data is lost when the computer is turned off
◼ examples: Random Access Memory (RAM), cache

secondary memory is slower but cheaper
◼ use different technologies (magnetic signals on hard disk, reflective spots on CD)
◼ memory is permanent – useful for storing long-term data
◼ examples: hard disk, flash drive, compact disk (CD)

RAM chips hard drive flash drive CD/DVD

10

Memory (cont.)

higher-end computers tend to have

◼ more main memory to allow for quick access to more data and programs

◼ more secondary memory to allow for storing more long-term data

11

Input/Output (I/O)

input devices allow the computer to receive data and instructions from

external sources

◼ examples: keyboard, mouse, track pad, touch screen, microphone, scanner

output devices allow the computer to display or broadcast its results

◼ examples: monitor, speaker, printer

12

Software

recall: hardware refers to the physical components of computers

 software refers to the programs that execute on the hardware

a software program is a sequence of instructions for the computer (more
specifically, for the CPU) to carry out in order to complete some task

◼ e.g., word processing (Microsoft Word, Corel WordPerfect)

◼ e.g., image processing (Adobe Photoshop, Flash)

◼ e.g., Web browsing (Microsoft Edge, Mozilla Firefox, Google Chrome, Safari)

13

Operating Systems

the Operating System (OS) is a collection of programs that controls how the

CPU, memory, and I/O devices work together

◼ kernel: manages the CPU's operations, controls how data and instructions are
loaded and executed by the CPU, coordinates other hardware components

◼ file system: organizes and manages files and directories

◼ graphical user interface (GUI): provides intuitive, visual elements for interacting
with the computer

 GUI's utilize windows, icons, menus, and pointers

HTML & Web Pages

a Web page is a text document that contains additional formatting

information in the HyperText Markup Language (HTML)

◼ HTML specifies formatting within a page using tags

◼ in its simplest form, a tag is a word or symbol surrounded by brackets (<>)

1

HTML Tags

required tags in a Web page:

◼ <!doctype html> tells the browser this is a Web page

◼ <html> and </html> enclose the entire HTML document

◼ the head section (enclosed between <head> and </head>) contains information
that the browser uses to control the look of the page

 the head can contain a title for the browser window, enclosed between
<title> and </title>

◼ the body section (enclosed between <body> and </body>) contains the text that
will appear in the page

2

HTML Elements

tags and the text they enclose form an HTML element

<title> Title of the Page </title> is a title element

<head>

 <title> Title of the Page </title>

</head>

 is a head element (which contains a nested title element)

most HTML elements have opening and closing tags, but not all

<!-- simple.html Dave Reed --> is a comment element

◼ a comment is ignored by the browser (it does not appear in the rendered page)

◼ comments are used by the page developer to document page features

3

Text Layout & Formatting

extra white space (spaces, tabs and blank lines) is ignored by the browser
◼ this allows the browser to adjust the text to the window size

you can control some of the text layout using HTML elements
◼ a paragraph element (<p>…</p>) specifies text surrounded by blank lines

◼ a break element (
) causes text to be displayed on a new line

◼ the special symbol forces a space to appear in the text

you can specify some text formatting using other HTML elements
◼ a b element (…) specifies bold text

◼ an i element (<i>…</i>) specifies italicized text

◼ a u element (<u>…</u>) specifies underlined text

◼ a sup element ([…]) specifies superscripted text

◼ a sub element (_…) specifies superscripted text

4

Layout & Formatting Example

5

Sections

in a large document, it is useful to divide the text into sections and then

provide each with a heading describing the content that follows

◼ <h1> … </h1> enclose a Top-level Heading

◼ <h2> … </h2> enclose a Sub-heading
.

.

.

◼ <h6> … </h6> enclose a Sub-sub-sub-sub-sub-heading

the horizontal-rule element <hr> draws a dividing line in the page

6

Section Example

7

Styling Elements

Web browsers rely on user preferences when displaying a page
◼ each browser has a set of default (language, font, text size, color scheme),

which can be reset by the user

◼ can override some of these defaults by adding STYLE attributes

an attribute is qualifier that can be added to an element in its opening tag
◼ the style attribute can be used to set style properties for an element

style="PROPERTY:VALUE"

e.g., can change the text color for an element by setting the color property

<p style="color:red"> Here is some red text. </p>

8

BODY Styling

when a style property is assigned to the body element, it applies to all
elements embedded in the page

<body style="color:darkblue">

 ENTIRE PAGE APPEARS IN DARK BLUE TEXT

 </body>

the background-color property can also be set for the entire page

<body style="background-color:lightgray">

 ENTIRE PAGE APPEARS WITH LIGHT GRAY BACKGROUND
 </body>

can set multiple properties in the same style attribute

<body style="background-color:gray; color:white">

 ENTIRE PAGE APPEARS WITH GRAY BACKGROUND, WHITE TEXT
 </body>

9

SPAN & DIV

in addition to p, the span and div elements are useful for grouping text

◼ span specifies a short span of text embedded in a paragraph

◼ div specifies a page division which groups multiple elements together

span can be used to embedded colored words or phrases

 <p>Isn't this page colorful?</p>

div can be used to group paragraphs and color them as one

<div style="color:white">

 <p>

 You can format multiple paragraphs at once by placing them

 inside a DIV and setting the STYLE attribute of the DIV.

 </p>

 <p>Both of these paragraphs will have white text.</p>

</div>

10

Color Styling Example

11

Font Styling

the font-family property can override the default font typeface

◼ must specify the font name and its family (as a backup)

 <p style="font-family:Helvetica, sans-serif">

 This text appears in Helvetica.

 </p>

 <p style="font-family:Times, serif">This text appears in Times.</p>

the font-size property can override the default size of the font

◼ can be absolute (in pixels) or relative to the current size (as percentage)

 This text appears 20 pixels tall.

 <p style="font-size:150%">This text is 50% larger than normal.</p>

12

Font Styling Example

13

Alignment Styling

the text-align property can set the alignment of text elements

 <h2 style="text-align:center">Centered Heading</h2>

 <h2 style="text-align:right">Right-Justified Heading</h2>

 <h2 style="text-align:justify">Left- and Right-Justified Heading</h2>

the text-indent property indents the first line of a paragraph

 <p style="text-indent:10px">A paragraph with the 1st line indented...</p>

the margin-left and margin-right properties indent the entire paragraph

 <p style="margin-left:10px">A paragraph with all lines indented...</p>

14

Alignment Styling Example

15

Web ≠ Internet

people often confuse the Web and the Internet – they are not the same!

◼ Internet was created in 1969; World Wide Web was created in 1990

1

the Internet could exist without the Web

◼ and did, in fact, for many years (applications included email and news groups)

the Web couldn't exist without the Internet

◼ the Internet is the hardware that stores and executes the Web software

History of the Web

CERN researchers were spread across Europe, but needed to collaborate

◼ in 1989, Berners-Lee devised a system that would allow them to freely
exchange data, regardless of location or computer type

his design integrated two key ideas

1. hypertext (documents with interlinked text and media)

 Web pages can contain images and links to other pages

2. the distributed nature of the Internet
 pages can be stored on machines all across the Internet

 logical connections between pages are independent of physical locations 2

World Wide Web was invented by

Tim Berners-Lee

◼ researcher from 1984-1994 at
the European Laboratory for
Particle Physics (CERN)

◼ founded and serves as director of
the World Wide Web Consortium
(W3C)

◼ knighted by Queen Elizabeth in
2004

Web Timeline

1990: Berners-Lee produced working prototypes of a Web server and browser

1991: Berners-Lee made his software available for free over the Internet

1993: Marc Andreesen and Eric Bina at NCSA wrote the first graphical browser: Mosaic
◼ Mosaic integrated text, image & links, made browsing more intuitive

1994: Andreesen founded Netscape, which marketed the Netscape Navigator

1995: Microsoft released Internet Explorer → the browser wars begin!

1999: Internet Explorer becomes the most popular browser (~90% of market in 2002)

2021: Google Chrome has ~63% of market, then Safari at 19%, Mozilla Firefox at 4%

in 2019, Google claimed to have

indexed more than 130 trillion
pages

others estimate the number of

Web pages could be in the
hundreds of quadrillions

3

Search Engines

as the Web grew, it became difficult to find resources

◼ in general, you needed to somehow know the address of a page to access it

manually generated index sites appeared in the early 1990s

◼ provided lists of popular Web sites, organized by topic or alphabetically

◼ these were not scalable as the Web exploded in size

the first Web search engines appeared in the mid 1990s

◼ used software called Web crawlers, or spiders, to surf the Web, indexing pages

◼ enabled users to search those indexed pages via search words or phrases

unfortunately, the quality of early searches was not very good

◼ the search for a word/phrase might return unrelated or unreliable pages

4

the Google search engine began in 1996 as a

research project by Stanford grad students
Larry Page and Sergey Brin
◼ their goal was to create an easy-to-use search

engine that produced high-quality results
◼ founded Google Inc. in 1998

Google

at the heart of Google's performance is the PageRank algorithm

◼ ranks pages based on their perceived value and trustworthiness

◼ if a page is linked to by many other pages, that suggests that many people find
its contents valuable and trustworthy

◼ moreover, the more valued/trusted those linking pages are, the more impact
their links will have

Brin & Page also revolutionized how browsers made money

◼ they sold targeted adds and charged based on clickthrough

◼ e.g., a shoe store could purchase adds for when a user entered "shoe" or
"footwear" as search terms, and would be charged based on how often users
clicked on the ads

Brin & Page donated the patent for the PageRank algorithm to Stanford

◼ licensed its use back for $336 million in stock

5

Google dominates the search market
▪ performed 5.6 billion searches in 2020
▪ that's 63,000 searches per second!

Viewing a Web Page

a Web page is a text document that contains additional formatting
information in a language called HTML (HyperText Markup Language)

a Web browser is a program that accesses a Web page, interprets its content,
and displays the page

6

Web Server

a Web server is an Internet-enabled computer that executes software for
providing access to certain Web document

◼ it stores Web pages and files (images, videos, …) and sends them to browsers who
request them

7

Web Addresses

Web pages require uniform names to locate and identify them uniquely
◼ each page is assigned a Uniform Resource Locator (URL)
◼ URL's are commonly referred to as Web addresses
◼ the different parts of the Web address provide information for locating the page

8

Viewing Local Web Pages

a Web browser can be used to view pages stored on the same computer
◼ can go through the File menu to select the local page, or

◼ can enter the File location in the address box (without the http prefix)

this feature is handy when developing Web pages
◼ can create a Web page and view it in the browser before uploading to a server

9

Web Protocols: HTML

HyperText Markup Language (HTML) utilizes tags to markup page contents

◼ these tags tell the browser how to display the contents

◼ HTML5 is the current standard, supported by all browsers

10

Web Protocols: HTTP

HyperText Transfer Protocol

(HTTP) defines how messages
between browsers and servers

are formatted

◼ the prefix http:// in a URL

specifies that the HTTP
protocol is to be used in
communicating with the
server

◼ the prefix https:// is
similarly used for secure
(encrypted) HTTP
communications

11

Browser caching

for efficiency reasons, browsers will sometimes cache pages/images

◼ the browser reserves space (a cache folder) on the user's computer

◼ to avoid redundant downloads, the browser will store a copy of a page/image in
that reserved space (along with a timestamp)

◼ the next time the page/image is requested, browser will send a timestamp of the
cached copy

 the server compares that timestamp with one of the stored document

▪ if cached copy is newer, then response says to use it

▪ if server copy is newer, then response includes the new version

in general, browsers are not allowed to access/modify user files

◼ this is for safety – you don't want to visit a Web site and risk having your files
copied or damaged

◼ caching is a loophole (can only access/modify files in cache folder)

NOTE: caching still requires the browser to contact the server

▪ but only have to download the page if it has changed since last cached

12

Cookies

another loophole is cookies

a cookie is a small file that can be stored and accessed by a Web server

◼ similar to caching, browsers reserve space (a cookie folder) on the user's
computer

◼ when the user visits a site, the Web server is allowed to store a small amount of
data in a cookie file (e.g., date & time of visit, items purchased)

◼ when the user returns to that site, the Web server can retrieve any cookies it
previously stored

◼ NOTE: only the site that stored the cookie is able to retrieve it

cookies can improve the user's experience, but can also be intrusive

◼ most browsers enable the user to control the use of cookies

13

Static vs. Dynamic Pages

recall: a Web page uses HTML tags to identify page content and formatting

information

HTML can produce only static pages

◼ static pages look the same and behave in the same manner each time they are
loaded into a browser

in 1995, researchers at Netscape developed JavaScript, a language for creating

dynamic pages

◼ Web pages with JavaScript can change their appearance:

 over time (e.g., a different image each time that a page is loaded), or

 in response to a user’s actions (e.g., typing, mouse clicks, and other input
methods)

1

Programming Languages

JavaScript is a programming language

◼ a programming language is a language for specifying instructions that a
computer can execute

◼ each statement in a programming language specifies a particular action that the
computer is to carry out

 (e.g., changing an image or opening a window when a button is clicked)

some programming languages are general-purpose

◼ popular languages include C++, Java, J#

JavaScript was defined for a specific purpose: adding dynamic content to Web
pages

◼ can associate JavaScript statements with certain HTML elements so that they
react to actions taken by the user (e.g., a button click)

2

ID Attributes

in order for an element to behave dynamically, it must have an ID attribute

◼ ID is assigned a unique identifier by which that element can be accessed and
changed

an identifier should start with a lowercase letter, consist of letters and digits

 e.g., familyImg mysteryImg outputSpan num1Box

once an element has an ID, it can be accessed and altered using dynamic

attributes known as event handlers

◼ the ONMOUSEOVER attribute specifies the action(s) to take place when the
mouse is moved over the element

◼ the ONMOUSEOUT attribute specifies specifies the action(s) to take place when
the mouse is moved off the element

◼ the actions are encoded as statements in the JavaScript language

3

Event Handler Attributes

for example, can have an image that reacts to mouse movements:

<img src="ADDRESS_OF_IMAGE" alt="DESCRIPTIVE_TEXT"

 onmouseover="CODE_TO_EXECUTE_WHEN_MOUSE_GOES_OVER_IMAGE"

 onmouseout="CODE_TO_EXECUTE_WHEN_MOUSE_LEAVES_IMAGE">

the simplest type of action is changing the value of an element's attribute

◼ this is accomplished via a JavaScript assignment statement

ELEMENT_ID.ATTRIBUTE_NAME = NEW_ATTRIBUTE_VALUE;

for example, the following JavaScript assignment will change the SRC
attribute of the element with ID mysteryImg

mysteryImg.src='http://compsciconcepts.com/Images/happy.gif';

4

Mystery Image Page

▪ initially, the
image displays
a '?'

▪ when mouse
moves over,
SRC attribute
is assigned to
happy face

▪ when mouse
leaves, SRC
attribute is
assigned back
to '?'

5

Strings & Syntax Errors

a string literal (or just string) is a sequence of characters enclosed in quotes

◼ to avoid confusion, we will always use double quotes for HTML strings; single
quotes for JavaScript strings

<img id="mysteryImg" src="mystery.gif" alt="Mystery image"

 onmouseover="mysteryImg.src='happy.gif';"

 onmouseout="mysteryImg.src='mystery.gif';">

syntax errors are errors in the format of HTML or JavaScript statements

◼ for example, misspelling an element ID in a JavaScript assignment:

 mysteryimg.src='http://compsciconcepts.com/Images/happy.gif';

unlike HTML syntax errors (which are largely ignored by the browser,

JavaScript syntax errors often just fail

◼ browsers produce error messages that help to identify JavaScript errors

◼ in Google Chrome, error messages appear in the JavaScript Console:

View menu → Developer → JavaScript Console

◼ when a page fails to behave as expected, CHECK THE ERROR MESSAGES!

6

Multiple Actions

JavaScript assignments can similarly change other element attributes

e.g., can change an images height: mysteryImg.height = 200;

if desired, an event handler can perform multiple actions (separated by ;)

◼ in this example, both the SRC and HEIGHT change on mouse events

7

Interaction via Buttons

a button is an HTML element that appears as a labeled rectangle or oval

◼ usually associated with the ONCLICK event handler attribute, which specifies the
action to take place when the button is clicked

general form:

<button onclick="CODE_TO_BE_EXECUTED_WHEN_MOUSE_CLICKS_ON_BUTTON">
 BUTTON_LABEL
</button>

typically, buttons are used to initiate actions on other elements
▪ e.g., click on a button to change the src or height/width of an img

<button onclick="mysteryImg.height=200;">Expand the Image</button>

8

Button Example

image initially
displays a
question mark

when Show
Image button
is clicked, the
image changes
to

when Hide
Image button
is clicked, it
changes back
to ?

9

Dynamic Text

to display text within a page, there are 2 main options

1. alert statement: will display a simple text message in a separate alert window

2. innerHTML attribute: can display text directly in the page

general form of an alert statement: alert('MESSAGE');

◼ when executed, it opens a separate window displaying that message

<button onclick="alert('Yeah, right.');">

 Click for free money!

</button>

◼ alert statements are useful when you want to display a short (1-line) message

◼ the messages are limited, in that they can't include any HTML tags

◼ can be annoying to the user since the pop-up window must be manually closed

note: if a message contains an apostrophe, must use backslash (escape character) to
distinguish it from the ending quote: alert('I\'m happy you are here.');

10

Help Page

when the mouse clicks on
the image, an alert
window is opened,

displaying the message

note: the user must click
OK to close the window

11

innerHTML

better yet, embed the text directly in the page

text-based elements (p, span, div) have an innerHTML attribute

◼ can be used to access or change the text within that element

◼ be careful: the capitalization must be exact

 outputSpan.innerHTML = 'Hello';

 outputDiv.innerHTML =

 '<p>You can write long messages that are embedded directly ' +

 'in the page. You can even add <i>HTML formatting</i> to the ' +

 'text. </p> <p>The contents of this dynamic DIV element is ' +

 'being assigned multiple paragraphs.</p>';

 outputP.innerHTML = outputP.innerHTML + '!';

12

Help Page

initially, outputSpan is blank

when the mouse moves over
the image, a text message is
assigned to
outputSpan.innerHTML
(showing the message)

when the mouse moves off
the image, an empty string is
assigned back to
outputSpan.innerHTML

(erasing the message)

13

Common Errors

two types of errors are common when displaying complex messages

BROKEN STRING: can't start a string on one line and continue on the next

 alert('This example is illegal because the
 string is broken across lines');

 alert('This example is OK because the message ' +
 'is broken into two distinct strings');

DISCONNECTED STRING: if message is broken into pieces, must have +
between the pieces to connect them

 alert('This example is illegal because '
 'there is not a plus connecting the pieces');

 alert('This example is OK because the ' +
 'pieces are properly connected');

error messages in the JavaScript Console make identifying these types of
mistakes much easier 14

Dynamic Style

it is also possible to change the style attribute of an element

◼ must specify the property to be changed: style.PROPERTY

◼ if the property contains a hyphen, instead use capitalization

e.g., background-color → backgroundColor

<p id="colorP"

 onmouseover="colorP.style.color='red';"

 onmouseout="colorP.style.color='black';">

 This text will turn red when the mouse moves over it.

</p>

<p>This is a really

 <span id="colorSpan

 onmouseover="colorSpan.style.backgroundColor='yellow';"

 onmouseout="colorSpan.style.backgroundColor='white';">

 important point to note.

</p>

15

Machine Learning

Machine Learning (ML) is driving many powerful applications

◼ ML utilizes algorithms to process (potentially large) data sets to improve

problem solving

◼ historically, has been seen as a subdiscipline of Artificial Intelligence

◼ the new discipline Data Science utilizes ML to process (potentially large)

data sets to discover patterns

◼ this process is known as Data Mining

Machine Learning relies heavily on supervised learning

◼ algorithms are trained by providing sample inputs and classifications

◼ the algorithms learn to recognize patterns and classify new inputs

1

Example: OCR

Optical Character Recognition is used by devices (e.g., phones,
tablets, scanners) to extract text from images

◼ when scanning printed text, each font has slight variations

◼ handwriting can have extreme variations

◼ programming every variation would be impossible

◼ instead, provide numerous examples and have the program learn to identify
 essentially, the program deduces which features are essential to each character

 uses those features to classify new examples

2

similarly, facial recognition software identifies facial features (e.g.,
distance between eyes, ear size)
◼ can then match those features against new images to identify people

◼ since many features persist regardless of lighting or perspective, can be effective
under varying conditions

◼ many smartphones utilize facial recognition for security

◼ has been used by law enforcement, but false matches and biases have caused
many to rethink

Example: facial recognition

3

autonomous vehicles utilize cameras, radar, lidar (light detection)
and even GPS sense their surroundings
◼ they are programmed to react under specific circumstance, but learn to apply

rules to new situations

◼ they can improve over time as new circumstances are experienced

◼ July-Oct 2022, 605 reported crashes by advanced driver assistance vehicles

Example: self-driving cars

4

ChatGPT (Chat Generative Pre-trained Transformer) was released in
Nov 2022 by OpenAI
◼ was trained by providing recorded conversations and also utilized human trainers

to provide feedback

◼ in addition to carry on on a conversation, can write code, music, poems, …

Example: chatbots

5

how will tools like this change
• education
• writing
• software development
• tech support
• therapy

Example: data mining

6

it was estimated that

1.1 trillion MB of data
was generated every

day in 2021

Data Science is a

discipline that focuses

on extracting patterns
and trends from data

◼ relies on Machine

Learning to process the
massive amounts of
data and learn what
features are significant

Neural Networks

at the core of most Machine Learning algorithms are neural networks

◼ a neural network mimics the structure of the human brain

◼ utilizes supervised learning to develop proficiency in recognizing patterns

neural nets predate modern computers
◼ first invented by McCulloch and Pitts in 1943

7

general brain architecture:
many (relatively) slow neurons,
interconnected

dendrites serve as input devices
(receive electrical impulses from
other neurons)

cell body "sums" inputs from the
dendrites (possibly inhibiting or
exciting)

if sum exceeds some threshold,
the neuron fires an output
impulse along axon

Artificial Neurons

McCulloch & Pitts (1943) described an artificial neuron
◼ inputs are binary: 0 (no input signal) or 1 (input signal)
◼ each input has a weight associated with it
◼ the activation function multiplies each input value by its weight
◼ if the sum of the weighted inputs >= ,

then the neuron fires (outputs 1), else doesn't fire (outputs 0)

8

neural networks are based on the brain metaphor
large number of simple, neuron-like processing elements
large number of weighted connections between neurons

note: the weights encode information, not symbols!
parallel, distributed control
emphasis on learning

if wixi >= , output = 1

if wixi < , output = 0



x
1

x
n

x
2

. . .

w
1

w
2

w
n

Computation via Neurons

can view an (artificial or not) neuron as a computational element

◼ accepts or classifies an input if the output fires

9

INPUT: x1 = 1, x2 = 1

.75*1 + .75*1 = 1.5 >= 1 ➔ OUTPUT: 1

INPUT: x1 = 1, x2 = 0

.75*1 + .75*0 = .75 < 1 ➔ OUTPUT: 0

INPUT: x1 = 0, x2 = 1

.75*0 + .75*1 = .75 < 1 ➔ OUTPUT: 0

INPUT: x1 = 0, x2 = 0

.75*0 + .75*0 = 0 < 1 ➔ OUTPUT: 0



x
1

x
2

.75 .75

this neuron computes the AND function

Learning Algorithm

Rosenblatt (1958) devised a learning algorithm for artificial neurons
◼ start with a training set (example inputs & corresponding desired outputs)
◼ train the network to recognize the examples in the training set (by adjusting the

weights on the connections)
◼ once trained, the network can be applied to new examples

this basic algorithm has been expanded to handle complex applications

10

e.g., OCR

◼ inputs are pixels in a scanned image

◼ a "hidden" layer identifies relevant
features (e.g., horizontal line near top,
diagonal in middle)

◼ the combination of features discovered
by the hidden layer identifies the
character

11

Generalization problem

there is always a danger that the network will focus on specific
(maybe unintentional) features as opposed to general patterns

 to avoid networks that are too specific, cross-validation can be used
1. split training set into training & validation data
2. after each generation, test the net on the validation data
3. continue until performance on the validation data diminishes

1 1 1 1

2 2 2 2

suppose a network is trained to recognize digits:

▪ training set for 1:

▪ training set for 2:

2when the network is asked to identify it comes back with 1. WHY?

Neural Net Applications

Aerospace: Aircraft component fault detectors and simulations, aircraft control systems

Automotive: Improved guidance systems, virtual sensors, warranty activity analyzers

Electronics: Chip failure analysis, circuit chip layouts, machine vision, non-linear modeling, process control

Manufacturing: Machine diagnosis, product design and analysis, visual quality inspection systems

Robotics: Forklift robots, manipulator controllers, trajectory control, and vision systems

Telecommunications: Network monitoring, speech recognition, customer payment processing systems

Banking: Credit card attrition, credit and loan application evaluation, fraud and risk evaluation

Business Analytics: Customer behavior modeling, fraud propensity, market research

Financial: Corporate financial analysis, currency price prediction, loan advising, portfolio trading

Securities: Automatic bond rating, market analysis, and stock trading advisory systems

source: https://www.smartsheet.com/neural-network-applications

12

more than 9,000 companies (including credit cards) use FICO Falcon
◼ uses neural nets to model customer behavior, identify fraud

◼ claims improvement in credit card fraud detection of 30-70%

https://www.smartsheet.com/neural-network-applications

NN example

suppose we wanted to provide guidance on major selection
◼ hypothesis: certain personality traits or life skills suggest certain majors

◼ conduct a survey of students, asking them to self-assess their traits/skills on a
scale of 0 to 1.0, along with their major

◼ build a network of artificial neurons, with three inputs (corresponding to survey
skills) and a single output (corresponding to major)

How
creative

are you?

Good at
problem

solving?

How
extraverted

are you?

Major

stu1 0.85 0.75 0.9 GDE (0)

stu2 0.9 0.7 1.0 GDE (0)

stu3 0.8 0.9 0.6 GDE (0)

stu4 0.2 0.9 0.2 CSC (1)

stu5 0.6 0.8 0.4 CSC (1)

stu6 0.8 0.8 0.8 CSC (1)

13

NN example

◼ feed those inputs and outputs to the network and train it to recognize

◼ once trained, it can be applied to new patterns to classify them (based on best fit)

note: this is a very small, non-scientific example
▪ data scientists typically deal with massive amounts of data (e.g., hundreds or

thousands of survey responses)

▪ utilize analytical methods to ensure statistical significance

14

How

creative

are you?

Good at

problem

solving?

How

extraverted

are you?

Major

stu1 0.85 0.75 0.9 GDE (0)

stu2 0.9 0.7 1.0 GDE (0)

stu3 0.8 0.9 0.6 GDE (0)

stu4 0.2 0.9 0.2 CSC (1)

stu5 0.6 0.8 0.4 CSC (1)

stu6 0.8 0.8 0.8 CSC (1)

History of computing

calculating devices have been around for millennia (e.g., abacus ~3,000 B.C.)

modern "computing technology" traces its roots to the 16-17th centuries

◼ as part of the "Scientific Revolution", people like Kepler, Galileo, and Newton
viewed the natural world as mechanistic and understandable

◼ this led to technological advances & innovation

from simple mechanical calculating devices to powerful modern computers,
computing technology has evolved through technological breakthroughs

1

Generation 0: Mechanical Computers

1642 – Pascal built a mechanical calculating machine

◼ used mechanical gears, a hand-crank, dials and knobs

◼ other similar machines followed

1805 – the first programmable device was Jacquard's loom

◼ the loom wove tapestries with elaborate, programmable patterns

◼ a pattern was represented by metal punch-cards, fed into the
loom

◼ using the loom, it became possible to mass-produce tapestries,
and even reprogram it to produce different patterns simply by
changing the cards

mid 1800's – Babbage designed his "analytical engine"
◼ its design expanded upon mechanical calculators, but was

programmable via punch-cards (similar to Jacquard's loom)

◼ Babbage's vision described the general layout of modern
computers

◼ Ada Lovelace developed instructions for the never-quite-finished
Analytical Engine – is considered the world's first programmer 2

Generation 0 (cont.)

1930's – several engineers independently built
"computers" using electromagnetic relays
◼ an electromagnetic relay is physical switch, which can

be opened/closed via electrical current

◼ relays were used extensively in early telephone
exchanges

◼ Zuse (Nazi Germany) – his machines were destroyed
in WWII

◼ Atanasoff (Iowa State) – built a partially-working
machine with his grad student

◼ Stibitz (Bell Labs) – built the MARK I computer that
followed the designs of Babbage

 limited capabilities by modern standards: could
store only 72 numbers, required 1/10 sec to add,
6 sec to multiply

 still, 100 times faster than previous technology

3

Generation 1: Vacuum Tubes

mid 1940's – vacuum tubes replaced relays
◼ a vacuum tube is a light bulb containing a

partial vacuum to speed electron flow
◼ vacuum tubes could control the flow of

electricity faster than relays since they had no
moving parts

◼ invented by Lee de Forest in 1906

1940's – hybrid computers using vacuum tubes
and relays were built

COLOSSUS (1943)
◼ first "electronic computer", built by the British

govt. (based on designs by Alan Turing)
◼ used to decode Nazi communications during

the war
◼ the computer was top-secret, so did not

influence other researchers

ENIAC (1946)
◼ first publicly-acknowledged "electronic

computer", built by Eckert & Mauchly (UPenn)
◼ 18,000 vacuum tubes and 1,500 relays
◼ weighed 30 tons, consumed 140 kwatts
◼ "programmed" by women CS pioneers

4

Generation 1 (cont.)

COLOSSUS and ENIAC were not general purpose computers
◼ could enter input using dials & knobs, paper tape
◼ but to perform a different computation, needed to reconfigure

von Neumann popularized the idea of a "stored program" computer
◼ Memory stores both data and programs
◼ Central Processing Unit (CPU) executes by loading program instructions from

memory and executing them in sequence
◼ Input/Output devices allow for interaction with the user

virtually all modern machines follow this
von Neumann Architecture

(note: same basic design as Babbage)

programming was still difficult and tedious

◼ each machine had its own machine language, 0's & 1's corresponding to the
settings of physical components

◼ in 1950's, assembly languages replaced 0's & 1's with mnemonic names

 e.g., ADD instead of 00101110

5

Generation 2: Transistors

mid 1950's – transistors began to replace tubes
◼ a transistor is a piece of silicon whose conductivity

can be turned on and off using an electric current
◼ they performed the same switching function of

vacuum tubes, but were smaller, faster, more
reliable, and cheaper to mass produce

◼ invented by Bardeen, Brattain, & Shockley in 1948
(earning them the 1956 Nobel Prize in physics)

some historians claim the transistor was the most
important invention of the 20th century

as the cost of computers dropped, high-level languages were designed
to make programming more natural (& efficient)

 FORTRAN (1957, Backus at IBM)

PROGRAM add
READ *, a,b
s = a + b
PRINT *, ' The sum is ', s
STOP
END

 LISP (1959, McCarthy at MIT)
 COBOL (1960, Hopper at DOD)

6

Generation 3: Integrated Circuits

mid 1960's - integrated circuits (IC) were produced
◼ Noyce and Kilby independently developed techniques for

packaging transistors and circuitry on a silicon chip (Kilby won
the 2000 Nobel Prize in physics)

◼ was made possible by miniaturization & improved manufacturing

◼ allowed for mass-producing useful circuitry

1960's saw the rise of computing for business

 recall: an operating system is a collection of programs that manage
peripheral devices and other resources

◼ in the 60's, operating systems enabled time-sharing, where
users share a computer by swapping jobs in and out

◼ specialized programming languages were developed, e.g.,
Pascal (1971, Wirth), C (1972, Ritchie)

7

U.S. space program was a driving force behind innovation
◼ computers began to replace humans for complex

calculations (e.g., Katherine Johnson)

◼ Margaret Hamilton at MIT led team that developed Apollo
Guidance system

Generation 4: Microprocessors

1971 – Intel marketed the first microprocessor, the

4004, a chip with all the circuitry for a calculator

◼ by the late 1970's, manufacturing advances allowed
for the very large scale integration (VLSI) of hundreds
of thousands of transistors w/ circuitry on a chip

◼ this "very large scale integration" resulted in mass-
produced microprocessors and other useful IC's

◼ since computers could be constructed by simply
connecting powerful IC's and peripheral devices, they
were easier to make and more affordable

◼ Moore's Law (more of an observation, really)–

the number of transistors that could fit on a chip
doubled every 1-2 years

8

Generation 4: Microprocessors

with microprocessors came personal computing
◼ 1975 - Bill Gates & Paul Allen founded Microsoft

Gates wrote a BASIC interpreter for the first PC (Altair)

◼ 1977 - Steve Wozniak & Steve Jobs founded Apple
went from Jobs' garage to $120 million in sales by 1980

◼ 1980 - IBM introduced PC
Microsoft licensed the DOS operating system to IBM

◼ 1984 - Apple countered with Macintosh
introduced the modern GUI-based OS (which was mostly

developed at Xerox)

◼ 1985 - Microsoft countered with Windows

in the 1980's
◼ demand grew for networking computers together

1982: 235 computers connected to ARPANet

1989: 300,000 computers connected to Internet

◼ object-oriented programming represented a new
approach to program design which views a program
as a collection of interacting software objects that
model real-world entities 9

Generation 5: ULSI

the latest generation of computers is still hotly debated
◼ no new switching technologies, ultra large scale integration (ULSI) has changed

how computers are used

1n 1989, the Intel 486 contained 1.2 million transistors
◼ manufacturing improvements are more difficult to achieve as components get

smaller and smaller (Moore's Law in jeopardy?)

workarounds
▪ multi-core processors increase the

chip size by adding duplicate circuitry
so that it can execute operations
simultaneously

▪ parallel processing computers have
multiple independent processors that
can share the load (e.g., a Web
server)

10

Generation 5: ULSI (cont.)

Wi-fi and wireless broadband have made computing mobile and pervasive
◼ wi-fi utilizes radio waves over short distances to connect computers and devices

◼ typical speed & range: 100-200 Mbits/sec, 150-300 feet

1. user enters commands on computer/device

2. command is translated into radio signal, broadcast to wi-fi router

3. router carries out the command via Internet connection

4. response is translated into radio signal, broadcast back to computer/device

◼ a longer range alternative to wi-fi is cellular networking

◼ 4G (15-25 Mbits/sec) & now 5G (50 Mbits/sec – 1 Gbits/sec), nationwide coverage

11

Artificial Intelligence (AI) applications dominate the news
◼ Apple's Siri (2011) and Amazon's Alexa (2014) can recognize voice commands

and control smart home devices

◼ facial recognition software is used by law enforcement and businesses

◼ credit card companies model purchasing patterns to identify fraud

◼ retailers like Amazon use your history to predict future purchases

◼ Self-driving cars from Uber and Tesla use video processing and AI techniques
to control vehicles on open roads

Speed matters

ENIAC (1946)
◼ could perform 385 operations per

second

12

75 years later…

iPhone 13 (2021)
◼ can perform 15.8 trillion operations per

second

◼ 41 billion times faster!

it would take the ENIAC 1,301 years to do what your
iPhone can do in 1 second

Speed REALLY matters

ENIAC (1946)
◼ could perform 385 operations per

second

13

Fugaku supercomputer (2021)
◼ can perform 442 quadrillion operations

per second

◼ 1.1 quadrillion times faster!!!

it would take the ENIAC 36.4 million years to do
what the Fugaku can do in 1 second

Computing entrepreneurs

Richest People in the World

(Forbes, 3/5/21)

1. Jeff Bezos $177.0 billion Age: 57

2. Elon Musk $151.0 billion Age: 50

3. Bernard Arnault $150.0 billion Age: 72

4. Bill Gates $124.0 billion Age: 65

5. Mark Zuckerberg $97.0 billion Age: 36

6. Warren Buffet $96.0 billion Age: 90

7. Larry Ellison $93.0 billion Age: 76

8. Larry Page $91.5 billion Age: 47

9. Sergey Brin $89.0 billion Age: 47

10. Mukesh Ambani $84.5 billion Age: 63

…

14. Steve Ballmer $68.7 billion Age: 64

15. Ma Huatang $65.8 billion Age: 49

14

Text Boxes

HTML event handlers enable the user to interact with the page

e.g., move the mouse over an image to change it

e.g., click on a button to display a text message in a page division

for greater control, the user must be able to enter information into the page

e.g., enter words to complete a fill-in-the-blank story

e.g., enter grades to calculate a course average

a text box is an HTML element that is embedded in the page

 <input type="text" id="BOX_ID" size=NUM_CHARS value="INITIAL_CONTENTS">

▪ the user can enter text directly in the box

▪ a JavaScript statement can then access the contents of the text box by accessing
its VALUE attribute

BOX_ID.value

1

Greetings Page (v.1)

"Jody" is the default
value

when button is
clicked, an alert
window displays 'Hi
Jody'

the user can enter
his/her name in the
text box

note: userBox.value does not
have quotes around it
what would happen if it did?

2

Greetings Page (v.2)

alternatively, could
display the greeting
in a dynamic
paragraph

initially, outputP is
empty

when button is
clicked, the greeting
is assigned to its
INNERHTML attribute

3

Form Letter Example

note: each box must have a unique ID

this page has 3 text
boxes, uses
contents to generate
a custom form letter

4

Simplifying Pages

we should be able to glance at the body of a page and visualize its contents

◼ consider the body of the form generator page

◼ the onclick code has nothing to do with the look of the page but its size and
complexity clutter the body

5

User-defined Functions

can simplify the body by moving the JavaScript statements to the head

◼ define a function that encapsulates those statements; then call from onclick

mathematically speaking, a function is a mapping from inputs to an output

9 → 3 |-2| → 2 max(5, 2) → 5

to a developer, a function is a unit of computational abstraction

◼ a function encapsulates statement(s) under a name; to execute, only need to know
the name (i.e., call the function)

function definition: function call:

function FUNCTION_NAME() {

 STATEMENTS_TO_BE_EXECUTED FUNCTION_NAME();

}

◼ function definitions are place in the head of a page, in a script element 6

Function Example

this page behaves
the same as
form1.html

the action of the
button is
encapsulated in the
GenerateLetter
function in the HEAD
(in SCRIPT tags)

the BODY is
simplified, since the
ONCLICK just
contains a call to the
function

7

Another Example

Animal Gallery: contains
▪ image of an animal
▪ a text box where the user can enter

an animal name
▪ a button for changing the image

note how simple
the BODY is 8

Another Example

each button has its own
corresponding function

when clicked, the function
is called to display a
quotation in the page

note how simple
the BODY is

9

Design Guidelines

✓ be conservative in your use of color

✓ be consistent in your use of formatting

✓ avoid overriding the browser defaults unless it is necessary

✓ don't center paragraphs

✓ label interactive elements (buttons, text boxes) clearly

✓ document the source code in case anyone views it

include a comment block at top with your name, file name, and brief description

✓ use descriptive id names

convention: descriptor + elementType, e.g., vacationImg, outputP

✓ when defining a complex action, place in function definition in the head

and call the function from the event handler

10

Errors and Debugging

in computer jargon, the term bug refers to an error in a program

◼ the process of systematically locating and fixing errors is debugging

three types of errors can occur
1. syntax errors: typographic errors

 e.g., omitting a quote or misspelling a function name

 since the browser catches these, they are usually "easy" to identify and fix

 CHECK THE JAVASCRIPT CONSOLE FOR ERROR MESSAGES!

2. run-time errors: occur when operations are applied to illegal values
 e.g., attempting to multiply a string or divide by zero

 also caught by the browser, which either produces an error message or else returns a
special value (string multiplication produces NaN, division by zero produces Infinity)

 AGAIN, CHECK THE JAVASCRIPT CONSOLE!

1. logic errors: flaws in the design or implementation of a program
 whenever your program produces the wrong result

 since they are not caught by the browser (the program is legal, just not what you
wanted), logic errors are hardest to identify

useful technique for identifying logic errors: diagnostic alert statements
◼ at various intervals in the code, display the values of key variables using alert

◼ you can then isolate at what point the program is going wrong
11

Early science

science: a system of knowledge covering general truths or the operation of

general laws especially as obtained and tested through scientific method
(Merriam-Webster dictionary)

modern science traces its roots back to the Greek
natural philosophers
◼ Thales (6 c B.C.) was first to break from mythology

 observed and devised theories about nature

◼ Plato (4 c B.C.) proposed a grand theory of cosmology
 claimed heavenly bodies move uniformly in circles, because

of their divine, geometric perfection
 believed observation was confused and impure, truth was

found through contemplation

◼ Aristotle (4 c B.C.) proposed a common-sense vision of
the natural world that stood for 2,000 years
 studied and wrote on a cosmology, physics, biology,

anatomy, logic, …
 placed greater emphasis on observation than Plato, but still

not experimental

Greek natural philosophy is "pre-scientific", since it relied on
contemplation/observation, but not experimentation

science is important in our daily lives because:
◼ it advances our understanding of the world and our place in it

◼ scientific advances can lead to practical applications (e.g., technology, medicine, …)

1

Roman times → Middle Ages

Roman civilization built upon the tradition of Greek natural philosophy

◼ the Romans are better known for engineering than theoretical science

◼ Pliny (1 c.) categorized plants, animals and minerals

◼ Galen (2nd century) studied human anatomy and physiology

the fall of Rome (in 476) led to a discontinuity in western civilization

◼ in western Europe, population dropped, literacy virtually disappeared, and Greek
knowledge was lost

◼ in eastern Europe, Greek knowledge was suppressed by orthodox Christianity in
the Byzantine Empire (which finally fell in 1453)

during Europe's "Dark Age," medieval Islam became the

principal heir to Greek science

◼ in the 7th-14th centuries, the Islamic Empire covered
parts of Europe, northern Africa, the Middle East, and
western Asia

◼ Greek writings were preserved and advanced by Arab
scholars

◼ the term "algorithm" is named after Persian scholar
Muhammad ibn Musa al-Khwarismi 2

Scientific Revolution

the Renaissance (15th-16th centuries) was instigated by the

rediscovery of Greek science

◼ Greek knowledge was rediscovered by Crusaders to the Middle East;
retrieved from medieval monasteries

◼ Leonardo da Vinci (1452-1519) was artist, astronomer, geometer,
engineer, …

◼ Gutenberg's printing press made the broad dissemination of
knowledge possible

the Scientific Revolution (16th-17th centuries) was brought about

by a period of intellectual upheaval in Europe

◼ the Protestant Reformation, new world exploration, …

◼ the cultural environment allowed for questioning religious and
scientific dogma – the universe was viewed as a complex machine
that could be understood through observation and experimentation

◼ Copernicus proposed a sun-centered cosmology (1543)

 Kepler refined the heliocentric model, using elliptical orbits (1609)

◼ Galileo pioneered the use of experimentation to validate observational
theories

 father of modern science (as well as modern physics and astronomy)

◼ Newton described universal gravitation, laws of motion (1687) 3

Modern Science

the Scientific Revolution established science as the preeminent source for

the growth of knowledge

◼ biology: Pasteur, Watson & Crick, …

◼ chemistry: Dalton, Mendeleev, Curie, …

◼ physics: Maxwell, Curie, Einstein, …

4

the scientific method provides the common

process by which modern science is conducted

1. Observe a phenomenon

2. Hypothesize how it works

3. Design an experiment to test it

4. Experiment to confirm/deny

5. Analyze the results

6. Revise or refine the hypothesis

generally, the process repeats since the results may
lead to revisions to the hypothesis or experiment

Scientific Method

EXAMPLE: understanding planetary motion

1. Observe that some lights in the night sky move different, faster than others.

2. Hypothesize that those lights (planets) are closer to the earth.

3. Develop a model of motion (say, Copernicus' circular orbits around the sun).

4. Conduct the experiment to see telescopic observations match the model.

5. Analyze the results and see that the observations are close but not exact –
revise the model to use Kepler's elliptical orbits and repeat.

5

the scientific method can be applied to real-world situations as well

◼ EXAMPLE: an auto mechanic observes a misfiring engine, hypothesizes that the cause
is a bad spark plug and designs an experiment (replace it) to test

◼ EXAMPLE: a programmer observes a program that doesn't work, hypothesizes the
cause if a malformed statement and designs an experiment (bug fix) to test

reproducibility is essential to the scientific method

◼ the same experiment, under the same conditions, should produce the same result

◼ if a scientific discovery is not reproducible, it will not be accepted

consistency is a measure of how close the results are each time you conduct the experiment

accuracy is a measure of how close the results are to the correct (or expected) value

Computational Thinking

the scientific method is designed for understanding a phenomenon

◼ may not be directly applicable to real-world problems solving

computational thinking is a problem-solving approach that involves
expressing problems and their solutions in ways that a computer could

execute

◼ first coined by Papert in 1980, made popular by Jeannette Wing in 2006

◼ computational thinking has been recognized by many as an essential 21st century
skill (along with critical thinking, communication, collaboration, and creativity)

6

high-level characteristics of computational thinking

◼ DECOMPOSITION – breaking a large, complex problem into smaller, more
manageable problems

◼ PATTERN MATCHING – recognizing how solutions to similar problems can be applied
to new problems

◼ ABSTRACTION – focusing on important details while ignoring irrelevant information

◼ ALGORITHMS – designing and implementing the solution in the form of an algorithm

real-world example: assembling a bookcase

CT Example

consider the task of finding the oldest person in a room

◼ there are a number of issues to consider, different approaches you could take

DECOMPOSITION

 tasks that will need to be performed:

✓ systematically process each person

✓ be able to determine a person's age

✓ record the names/ages so that will know the oldest at the end

PATTERN MATCHING

 learn from past experiences that were similar

✓ lining the people up will make it easier to cover everyone

✓ pencil & paper are effective for simple tasks like these

ABSTRACTION

 there are a lot of characteristics we don't care about (hair color, middle initial)

✓ if born on the same day, we will consider the same age

✓ if more than one "oldest" person, any one will do

ALGORITHMS

 can now devise an algorithm, step-by-step sequence of instructions, to solve this
7

Algorithm 1

Finding the oldest person (algorithm 1)
1. line up all the people along one wall

2. ask the first person to state his or her name and birthday, then write this
information down on a piece of paper

3. for each successive person in line:

i. ask the person for his or her name and birthday

ii. if the stated birthday is earlier than the birthday on the paper, cross out
old information and write down the name and birthday of this person

when you reach the end of the line, the name and birthday of the oldest person will
be written on the paper

8

Algorithm 1 Analysis

9

algorithm 1 works, since the oldest person will eventually be found & recorded
◼ the amount of time to find the oldest person is proportional to the number of

people

◼ if you double the amount of people, the time needed to find the oldest person will
also double

for example, assume it takes 10 seconds to compare birthdays

 8 people → 10*8 = 80 seconds (1.33 minutes)

 16 people → 10*16 = 160 seconds (2.67 minutes)

 32 people → 10*32 = 320 seconds (5.33 minutes)

 . . .

 100 people → 10*100 = 1,000 seconds (16.67 minutes)

 . . .

 400 people → 10*400 = 4,000 seconds (1 hour & 6.67 minutes)

this algorithm works, but it does not scale well if the number of people gets big
◼ consider a more complex but also more efficient algorithm

Algorithm 2

Finding the oldest person (algorithm 2)
1. line up all the people along one wall
2. as long as there is more than one person in the line, repeatedly

i. have the people pair up (1st with 2nd, 3rd with 4th, etc) – if there is an odd
number of people, the last person will be without a partner

ii. ask each pair of people to compare their birthdays
iii. request that the younger of the two leave the line

when there is only one person left in line, that person is the oldest

10

Algorithm 2 Analysis

11

algorithm 2 works, since the oldest person in a pair never sits and the process
eventually reduces down to that oldest person
◼ the time needed to find the oldest person is proportional to the number of rounds it

takes to shrink the line down to one person (since all pair comparisons in a round
take place simultaneously)

 the number of rounds is the number of times the people can repeatedly be
divided in half (mathematically speaking, the log2 of the number of people)

◼ if you double the amount of people, the time needed to find the oldest person
increases by the cost of one more comparison

for example, assume it takes 10 seconds to compare birthdays

 8 people → 10* log2 8 = 10*3 = 30 seconds (0.5 minutes)

 16 people → 10* log2 16 = 10*4 = 40 seconds (0.67 minutes)

 32 people → 10 * log2 32 = 10*5 = 50 seconds (0.83 minutes)

 . . .

 100 people → 10 * log2 100 = 10*7 = 70 seconds (1.16 minutes)

 . . .

 400 people → 10 * log2 400 = 10*9 = 90 seconds (1.5 minutes)

Multiple Solutions

many real-world problems can be solved in multiple ways
◼ when presented with this problem, most people would devise a solution similar to

Algorithm 1 (with many different variations possible)
 it is simple to describe and understand

 it is reasonably fast for small numbers of people

◼ developing Algorithm 2 requires considerable experience solving similar problems
 must be able to ABSRACT the relevant features of this problem, PATTERN MATCH with

past solutions to similar problems, and DECOMPOSE the solution to fit this new problem.

like most endeavors, the more computational thinking you do, they better you
become at it

12

of people time for Algorithm 1 time for Algorithm 2

8 80 sec 30 sec

16 160 sec 40 sec

32 320 sec 50 sec

…

100 1,000 sec 70 sec

…

400 4,000 sec 90 sec

Data Types

each unit of information processed by a computer belongs to a general
category or data type
◼ JavaScript has three predefined data types

1. string for representing text values (e.g., 'abcd', 'two words')

2. number for representing numeric values (e.g. 12, 3.99)

3. Boolean for representing logical values (true or false) LATER

each data type is associated with a specific set of predefined operators that
may be used by programmers to manipulate values of that type
◼ e.g., we have seen string concatenation via +

◼ similarly, standard operators are predefined for numbers

addition (+), subtraction (-), multiplication (*), division (/)

text boxes allow the user to enter strings and access those entries
◼ there is an equivalent element for numbers: number box

1

Number Box

a number box is an input element (similar to text box)

▪ type attribute is assigned "number" (instead of "text")

▪ optional value attribute is same as for text box – specifies
default value that appears in the box

▪ instead of size attribute, number boxes specify min and max

values – the size is adjusted to fit that range

<input type="number" id="numBox" min=0 max=100 value=50>

2

to access the number in a number box, use valueAsNumber attribute

 numBox.valueAsNumber

Tip Calculator

here, the user enters a check

amount and tip percentage
(default is 15%)

when button is clicked,
accesses those numbers,

calculates & displays tip

3

valueAsNumber vs. value

similar to text boxes, number boxes have a value attribute
▪ the value attribute always returns the contents of the box as a string

▪ this is NOT what you normally want when accessing a number box

 e.g., suppose the user enters 12 in a number box named numBox

numBox.value evaluates to '12'

(numBox.value + 1) evaluates to '121' ???

recall, when + is applied to 2 numbers, addition: 1 + 2 = 3

 when + is applied to 2 strings, concatenation: 'a' + 'b' = 'ab'

 when + is applied to a string and a number, it converts the number to a

 string and concatenates: '12' + 1 = '12' + '1' = '121'

BE CAREFUL TO ALWAYS USE valueAsNumber TO ACCESS NUMBER BOX CONTENTS

4

Variables

a variable is a name used to symbolize a dynamic (changeable) value

▪ as before, assign a value using '=':

VARIABLE = VALUE;

variables are commonly used to simplify code by:

1. storing number values from boxes

amount = amountBox.valueAsNumber;

percent = percentBox.valueAsNumber;

2. or, storing the results of computations

tip = amount * (percent/100);

5

Tip Calculator

code is simplified by use of

variables

tip.toFixed(2) rounds the tip

to 2 decimal places

6

Variable Names

a variable name should start with a lowercase letter, consist of letters & digits

◼ a variable name should be chosen to be descriptive of its purpose

◼ e.g., mysteryImg, outputSpan

7

Variables & Assignments

variables can be assigned various types of values, including numbers and

mathematical expressions

▪ each variable has a memory cell associated with it, where a value can be stored

▪ when an expression appears on the right-hand side, it is evaluated and the result is
assigned to the variable (i.e., stored in its memory cell)

▪ when a variable appears in an expression, its value (i.e., the value stored in its
memory cell) is accessed and substituted into the expression

reminder: '=' is not the equality operator

to avoid confusion: read '=' as 'gets', as in 'y gets y-1' 8

Number Representation

useful facts about JavaScript numbers
◼ to improve readability, very large or very small number are displayed in

scientific notation: XeY represents the value X  10Y

 e.g., 1e24 → 1  1024 → 1000000000000000000000000

◼ JavaScript stores all numbers in memory cells of a fixed size (64 bits)

 as a result, only a finite number of values can be represented

 e.g., 1e308 can be represented, but 1e309 is treated as Infinity

 1e-323 can be represented, but 1e-324 is treated as 0

◼ even within the range 1e-323 . . . 1e309, not all numbers can be represented

 note that between any two numbers lie infinitely more numbers!

 JavaScript can represent approximately 17 significant digits

 e.g.., 0.9999999999999999 can be represented exactly

 0.99999999999999999 is rounded up to 1

9

Patterns & Spacing

note the spacing in the Calculate function

◼ blank lines are ignored by the browser, but are helpful to a developer

◼ here, there are three main tasks

1. get the (numeric) contents of the text boxes

2. perform a computation on those numbers

3. display the result of the computation in the page

◼ inserting blank lines to separate these tasks makes the code easier to
understand

 similar to dividing an essay into paragraphs

◼ be aware: this same pattern will reappear in many pages

10

Predefined Functions

in JavaScript, a function is applied to inputs via a function call

 num = Math.sqrt(25);

here, Math.sqrt is being called with input 25; it returns the output 5

11

functest

the functest.html page is provided for you to explore the different math

functions

◼ select the function from a pull-down menu & inter the input(s) in text box(es)

◼ click the button to see the function call and its output

12

Point Distance

user enters two points (x1, y1)
and (x2, y2) in text boxes

when button is clicked, the
distance between those two
points is calculated and
displayed

13

Compound Interest

114

calculates compound
interest on an investment

user enters initial amount,
interest rate & number of
years

total =
 amount*(+rate/100)years

Math.random

in addition to the above math functions, JavaScript provides a function for
generating a random number
◼ Math.random has no inputs, returns a random real number from the range [0, 1)

◼ note: smallest possible value = 0.0; largest possible value = 0.99999…

Math.random() → 0.3428794638

Math.random() → 0.8776243657

by itself, Math.random is not very useful

◼ but, can use in expressions to expand or shift the range

2*Math.random() → 2*(number from [0, 1) → number from [0, 2)

Math.random()+10 → (number from [0, 1)) + 10 → number from [10, 11)

X*Math.random()+Y → number from [Y, X+Y)

technically, it returns a pseudo-random number,
since it uses a complex algorithm to generate
numbers that appear random (using hidden
inputs like the current time in milliseconds)

15

randtest

16

Pick-4 Example

this page simulates picking
4 numbered balls from
lottery bins

to pick a random integer
from 1 to numBalls

1. pick a # from the range
[1, numBalls+1)

2. then round down

17

Algorithms

the central concept underlying all computation is that of the algorithm

◼ an algorithm is a step-by-step sequence of instructions for carrying out some task

programming can be viewed as the process of designing and implementing

algorithms that a computer can carry out

◼ a programmer’s job is to:

 create an algorithm for accomplishing a given objective, then

 translate the individual steps of the algorithm into a programming language
that the computer can understand

example: programming in JavaScript

◼ we have written programs that instruct the browser to carry out a particular task

◼ given the proper instructions, the browser is able to understand and produce the
desired results

1

Algorithms in the Real World

the use of algorithms is not limited to the domain of
computing
◼ e.g., recipes for baking cookies

◼ e.g., directions to your house

there are many unfamiliar tasks in life that we could
not complete without the aid of instructions

◼ in order for an algorithm to be effective, it must be
stated in a manner that its intended executor can
understand

 a recipe written for a master chef will look different than
a recipe written for a college student

◼ as you have already experienced, computers are
more demanding with regard to algorithm specifics
than any human could be

2

Algorithms & CT

recall the four characteristics of computations thinking: DECOMPOSITION, PATTERN
RECOGNITION, ABSTRACTION and ALGORITHM

▪ the final step in CT is formalizing the solution as an algorithm

▪ a clearly stated algorithm is a blueprint for future problem solving

consider the 2 algorithms (from Ch. C5) for finding the oldest person in a room

3

Algorithm 1 Algorithm 2

Algorithm Analysis

determining which algorithm is "better" is not always clear cut
◼ it depends upon what features are most important to you

 if you want to be sure it works, choose the clearer algorithm

 if you care about the time or effort required, need to analyze performance

algorithm 1 involves asking each person’s birthday and then comparing it to the
birthday written on the page
◼ the amount of time to find the oldest person is proportional to the number of

people

◼ if you double the amount of people, the time needed to find the oldest person will
also double

algorithm 2 allows you to perform multiple comparisons simultaneously
◼ the time needed to find the oldest person is proportional to the number of rounds it

takes to shrink the line down to one person

 which turns out to be the log2 of the number of people

◼ if you double the amount of people, the time needed to find the oldest person
increases by the time required for one more round

4

Algorithm Analysis (cont.)

when the problem size is large, performance differences

 can be dramatic

for example, assume it takes 10 seconds to compare birthdays

◼ for algorithm 1:

 100 people → 10*100 = 1,000 seconds

 200 people → 10*200 = 2,000 seconds

 400 people → 10*400 = 4,000 seconds

 . . .

 1,000 people → 10*1,000 = 10,000 seconds

◼ for algorithm 2:

 100 people → 10* log2 100  = 70 seconds

 200 people → 10* log2 200  = 80 seconds

 400 people → 10* log2 400  = 90 seconds

 . . .

 1,000 people → 10* log2 1,000,000  = 100 seconds

5

Big-Oh Notation

to represent an algorithm’s performance in relation to the size of the

 problem, computer scientists use what is known as Big-Oh notation

◼ executing an O(N) algorithm requires time proportional to the size of problem

 given an O(N) algorithm, doubling the problem size doubles the work

◼ executing an O(log N) algorithm requires time proportional to the logarithm of
the problem size

 given an O(log N) algorithm, doubling the problem size adds a constant
amount of work

based on our previous analysis:

◼ algorithm 1 is classified as O(N)

◼ algorithm 2 is O(log N)

6

Another Algorithm Example

SEARCHING: a common problem in computer science involves storing and

 maintaining large amounts of data, and then searching the data for

 particular values

◼ data storage and retrieval are key to many industry applications

◼ search algorithms are necessary to storing and retrieving data efficiently

◼ e.g., consider searching a large payroll database for a particular record

 if the computer selected entries at random, there is no assurance that the
particular record will be found

 even if the record is found, it is likely to take a large amount of time

 a systematic approach assures that a given record will be found, and that it
will be found more efficiently

there are two commonly used algorithms for searching a list of items

◼ sequential search – general purpose, but relatively slow

◼ binary search – restricted use, but fast

7

Sequential Search

sequential search is an algorithm that involves examining each list item in

sequential order until the desired item is found

sequential search for finding an item in a list

1. start at the beginning of the list

2. for each item in the list

i. examine the item - if that item is the one you are seeking, then you are
done

ii. if it is not the item you are seeking, then go on to the next item in the list

if you reach the end of the list and have not found the item, then it was not in the list

sequential search guarantees that you will find the item if it is in the list

◼ but it is not very practical for very large databases

◼ worst case: you may have to look at every entry in the list

8

Binary Search

binary search involves continually cutting the desired search list in half until

the item is found

◼ the algorithm is only applicable if the list is ordered

 e.g., a list of numbers in increasing order

 e.g., a list of words in alphabetical order

binary search for finding an item in an ordered list

1. initially, the potential range in which the item could occur is the entire list

2. as long as items remain in the potential range and the desired item has not
been found, repeatedly

i. examine at the middle entry in the potential range

ii. if the middle entry is the item you are looking for, then you are done

iii. if the middle entry is greater than the desired item, then reduce the
potential range to those entries left of the middle

iv. if the middle entry is less than the desired item, then reduce the potential
range to those entries right of the middle

by repeatedly cutting the potential range in half, binary search can home in

on the value very quickly

9

Figure8-6.png

Binary Search Example

suppose you have a sorted list of state names, and want to find MD

1. start by examining the middle entry (ND)
since ND comes after MD alphabetically, can eliminate it and all entries that appear to the right

2. next, examine the middle of the remaining entries (IA)

since IA comes before MD alphabetically, can eliminate it and all entries that appear to the left

3. next, examine the middle of the remaining entries (MD)

the desired entry is found

10

http://compsciconcepts.com/C6/search.html

Search Analysis

sequential search
◼ in the worst case, the item you are looking for is in the last spot in the list (or

not in the list at all)
 as a result, you will have to inspect and compare every entry in the list

◼ the amount of work required is proportional to the list size
→ sequential search is an O(N) algorithm

binary search
◼ in the worst case, you will have to keep halving the list until it gets down to a

single entry
 each time you inspect/compare an entry, you rule out roughly half the remaining entries

◼ the amount of work required is proportional to the logarithm of the list size
→ binary search is an O(log N) algorithm

imagine searching a phone book of the United States (330 million people)
◼ sequential search requires at most 330 million inspections/comparisons
◼ binary search requires at most log2(330,000,000) = 29 inspections/comparisons

11

Another Algorithm Example

Newton’s Algorithm for finding the square root of N

1. start with an initial approximation of 1

2. as long as the approximation isn’t close enough, repeatedly

i. refine the approximation using the formula:

 newApproximation = (oldApproximation + N/oldApproximation)/2

 example: finding the square root of 1024

algorithm analysis:

◼ Newton's Algorithm does converge on the square root because each successive
approximation is closer than the previous one

 however, since the square root might be a non-terminating fraction it is
difficult to define the exact number of steps for convergence

◼ in general, the difference between the given approximation and the actual
square root is roughly cut in half by each successive refinement

 → demonstrates O(log N) behavior 12

Algorithms and Programming

programming is all about designing and coding algorithms for solving

problems

◼ the intended executor is the computer or a program executing on that
computer

◼ instructions are written in programming languages which are more constrained
and exact than human languages

the level of precision necessary to write programs can be frustrating to
beginners

◼ but it is much easier than it was 50 years ago

◼ early computers (ENIAC) needed to be wired to perform computations

◼ with the advent of the von Neumann architecture, computers could be
programmed instead of rewired

 an algorithm could be coded as instructions, loaded into the memory of
the computer, and executed

13

Evolution of Languages

the first programming languages were known as
machine languages

◼ consist of instructions that correspond directly to the
hardware operations of a particular machine
 i.e., instructions deal directly with the computer’s physical

components including main memory and CPU registers

 very low level of abstraction

◼ machine language instructions are written in binary
 programming in machine language is tedious and error prone

in early 1950s, assembly languages evolved from
machine languages

◼ replaced binary codes with words like ADD, MOVE
 easier to remember & debug, but still machine-specific

◼ a separate program called an assembler translated the
assembly instructions into machine language

14

in the late 1950's, high-level languages were
introduced
◼ they allow the programmer to write code closer to the

way humans think (as opposed to mimicking hardware
operations)

◼ more natural, plus machine-independent

Program Translation

using a high-level language, the programmer is able to reason at a high-level

of abstraction

◼ but programs must still be translated into machine language that the computer
hardware can understand/execute

real-world analogy: translating a speech from one language to another

15

an interpreter can be used provide a real-time translation

o the interpreter hears a phrase, translates, and immediately
speaks the translation

o ADVANTAGE: the translation is immediate

o DISADVANTAGE: if you want to hear the speech again, must
interpret all over again

a translator (or compiler) translates the entire speech
offline

o the translator takes a copy of the speech, returns when the
entire speech is translated

o ADVANTAGE: once translated, it can be read over and over
very quickly

o DISADVANTAGE: must wait for the entire speech to be
translated

Interpreters

for program translation, the interpretation approach relies on a program

known as an interpreter to translate and execute high-level statements

◼ the interpreter reads one high-level statement at a time, immediately
translating and executing the statement before processing the next one

◼ particularly useful for dynamic, interactive applications (e.g., Web pages)

◼ each execution requires translating again, can be slow

◼ JavaScript is interpreted

16

Compilers

the compilation approach relies on a program known as a compiler to

translate the entire high-level language program into its equivalent
machine-language instructions

◼ the resulting machine-language program can be executed directly on the
computer, very fast

◼ used in large software applications when speed is of the utmost importance

◼ but must compile the entire program before execution, so initial delay

◼ C, C++, Java are compiled*

17

Abstraction

abstraction is the process of ignoring minutiae and focusing on the
big picture
◼ in modern life, we are constantly confronted with complexity

◼ we don't necessarily know how it works, but we know how to use it

e.g., how does a TV work? a car? a computer?

we survive in the face of complexity by abstracting away details
◼ to use a TV/car/computer, it's not important to understand the inner

workings

◼ we ignore unimportant details and focus on those features relevant to
using it

◼ e.g., TV has power switch, volume control, channel changer, …

JavaScript functions (like Math.sqrt) provide computational
abstraction
◼ a function encapsulates some computation & hides the details

◼ the user only needs to know how to call the function, not how it works

◼ simple user-defined functions similarly provide abstractions that
simplify the page 1

User-defined Functions

functions simplify the programmer's task
◼ minimize the amount of detail the developer must remember

e.g., to calculate a square root, only need to remember the name Math.sqrt

◼ minimize the size and complexity of code

e.g., simple user-defined functions in the head simplify buttons in the body

2

the general form of user-defined functions:

function FUNCTION_NAME(PARAMETER1, PARAMETER2, …) {

 STATEMENTS_TO_PERFORM_THE_DESIRED_COMPUTATION

 return OUTPUT_VALUE;

}

◼ parameters are variables that correspond to the inputs when the function is called

 will have as many parameters as there are inputs to the function (could be 0)

◼ a return statement specifies the output value for that function

 optional, as some functions don't return a value (e.g., write a message in page)

Simple example

consider the following function for converting distances:

function InchesToCentimeters(inches) {

 cm = inches * 2.54;

 return cm;

}

◼ the function has one parameter, named inches

◼ when the function is called, an input value must be specified in the parentheses

InchesToCentimeters(10)

3

◼ the input value from the call is assigned to the parameter variable

◼ that variable can then be used in calculations (here, cm = 2.54*10 = 25.4)

◼ when a return statement is reached, the expression is evaluated and returned

a function call can appear in any expression

◼ the return value is substituted for the call when evaluating

outputP.innerHTML = InchesToCentimeters(10); displays 25.4 in outputP

Simple example (cont.)

4

as with any variable, parameter names should convey their purpose:

◼ inches, distanceInInches, lengthInInches, …

convention used throughout the book:

◼ variable/parameter names start with a lowercase letter

◼ function names start with an uppercase letter

◼ if a variable name consists of multiple words, use internal capitalization

since a return statement can specify an expression, we could equivalently

define the function as:

function InchesToCentimeters(distanceInInches) {

 return distanceInInches * 2.54;

}

Conversion Page

note 2 function

definitions in head

still need

parameterless
function

connected to the
button

5

this shows that a function can
contain a call to another function

Pick-4 Revisited

InchesToCentimeters is easy to understand, but not very motivational

for a better example, consider the Pick-4 page from Chapter X5

◼ used Math.random to generate random lottery balls in the range 1..numBalls

 pick1 = Math.floor(numBalls*Math.random() + 1);

 pick2 = Math.floor(numBalls*Math.random() + 1);

 pick3 = Math.floor(numBalls*Math.random() + 1);

 pick4 = Math.floor(numBalls*Math.random() + 1);

◼ tricky, messy, difficult to modify (e.g., suppose we learned balls started at 0)

6

better solution: capture the tricky expression in a function

function RandomInt(low, high) {

 return Math.floor(Math.random()*(high-low+1)) + low;

}

◼ once defined & tested, can be used anywhere a random integer is needed

Pick-4 with Function

RandomInt function makes the
code much easier to
understand & modify

e.g., for balls starting at 0:

pick1 = RandomInt(0, numBalls-1);

pick2 = RandomInt(0, numBalls-1);

pick3 = RandomInt(0, numBalls-1);

pick4 = RandomInt(0, numBalls-1);

7

More Examples

8

parameters & return
values can be strings

function for calculating
point distance (Ch. X5)

function for calculating
compound interest (Ch.
X5)

function for calculating
square root (using
Newton's algorithm from
Ch. C6)

Triangle Page

recall distance.html page from Ch. X5
▪ can simplify by adding Distance function

functions are especially useful if the
calculation is performed multiple times
▪ here, need to calculate the lengths of three

triangle sides
▪ define the complex distance calculation once

in the function
▪ can then call the function repeatedly

9

Function libraries

functions such as RandomInt can be added to head of a page

◼ tedious if functions are to be used in many pages

◼ involves creating lots of copies that all must be maintained for consistency

the alternative for general purpose functions is to place them in a library file

◼ a library file is a separate text file that contains the definitions of one or more
JavaScript functions

◼ by convention, function library files end in .js since they contain JavaScript code

e.g., http://compsciconcepts.com/random.js

10

Function libraries

once a function library file has been created, it can be loaded into any page by
adding a script element whose src is that file

<script src="LIBRARY FILENAME"><script>

◼ this new script elements is added to the head of the page

◼ note that no actual code appears in between the script tags

the code from the library is inserted the script element when the page loads

advantages of library files:

◼ avoid duplication (only one copy of the function definition)

◼ easier to reuse functions (simply load the library file into any page)

◼ easier to modify functions (a single change to the library file automatically
affects all pages that load the library

11

note: there is one script
element for loading the
library
◼ this makes the RandomInt

function accessible within the
page

there is separate script
element for defining the
page-specific function
◼ this function can call the

library function that has been
loaded

Pick-4 Yet Again

12

Dice Example (v. 1)

this page uses the
RandomInt function
from random.js to
pick the random die
images

note: die images are
named die1.gif,
die2.gif, …, die6.gif

13

Dice Example (v. 2)

alternatively, could use
the RandomOneOf
function from the
random.js library to
pick the die images

note: function input
must be a list of options,
contained in [] and
separated by commas

14

Sequences Example

consider the task of generating

random character sequences

 e.g., for creating secure passwords

the user can specify the
characters to choose from in
the text box

uses the RandomChar function
from random.js to pick 3
random characters &
concatenate them

15

Designing Functions

functions do not add any computational power to the language

◼ a function definition simply encapsulates other statements

still, the capacity to define and use functions is key to solving complex

problems, as well as to developing reusable code

◼ encapsulating repetitive tasks can shorten and simplify code

◼ provide units of computational abstraction – user can ignore details

when you write a general-purpose function that could be used in many pages

◼ create a library file and package that function with related functions

◼ these can then be loaded into pages that need those functions

when you define a function that is page-specific:

◼ define it in the head of that page (within a script element)

◼ can have more than one function defined in the same script element

16

Computer “Science”

some people argue that computer science is not a science in the same sense

that biology and chemistry are

◼ the interdisciplinary nature of computer science has made it hard to classify

computer science is the study of computation (more than just machinery)

◼ it involves all aspects of problem solving, including

 the design and analysis of algorithms

 the formalization of algorithms as programs

 the development of computational devices for executing programs

 the theoretical study of the power and limitations of computing

whether this constitutes a "science" is a matter of interpretation

◼ certainly, computer science represents a rigorous approach to understanding
complex phenomena and problem solving

1

Artificial Science

many activities carried out by computer scientists utilize the scientific method

◼ e.g., designing and implementing a large database system requires
hypothesizing about its behavior under various conditioning, experimenting to
test those hypotheses, analyzing the results, and possibly redesigning

◼ e.g., debugging a complex program requires forming hypotheses about where an
error might be occurring, experimenting to test those hypotheses, analyzing the
results, and fixing the bugs

the distinction between computer science and natural sciences like biology,

chemistry, and physics is the type of systems being studied

◼ natural sciences study naturally occurring phenomena and attempt to extract
underlying laws of nature

◼ computer science study human-made constructs: programs, computers, and
computational modes

Herbert Simon coined the phrase "artificial science" to distinguish computer

science from the natural sciences

◼ in Europe, computer science is commonly called "Informatics"

2

Computer Science Themes

since computation encompasses many different types of activities, computer

science research is often difficult to classify

◼ three recurring themes define the discipline

3

Hardware

hardware refers to the physical components of a computer and its supporting

devices

most modern computers implement the von Neumann architecture

◼ CPU + memory + input/output devices

ongoing research seeks to improve hardware design and organization

◼ circuit designers create smaller, faster, more energy-efficient chips

◼ microchip manufacturers seek to miniaturize and streamline production

◼ systems architects research methods to increase throughput (the amount of work
done in a given time period)

 e.g., parallel processing – splitting the computation across multiple CPUs

 e.g., networking – connecting computers to share information and work

4

Software

software refers to the programs that execute on computers

3 basic software categories

1. systems software: programs that directly control the execution of hardware
components (e.g., operating systems)

2. development software: programs that are used as tools in the development of
other programs (e.g. Microsoft.NET, Java SDK)

3. applications software: all other programs, which perform a wide variety of tasks
(e.g., web browsers, word processors, games)

many careers in computer science are related to the design, development,
testing, and maintenance of software

◼ language designers develop and extend programming languages for easier and
more efficient solutions

◼ programmers design and code algorithms for execution on a computer

◼ systems analysts analyze program designs and manage development

5

Theory

theoretical computer scientists strive to understand the capabilities of
algorithms and computers (deeply rooted in math and formal logic)

example: the Turing machine is an abstract computational machine invented
by computer pioneer Alan Turing
◼ consists of: a tape on which characters can be written (I/O)

 a processor that can read/write on the tape, move left or right (CPU)
 space for storing the machine state - a number (memory)

◼ significance of the Turing machine
 it is programmable (example below is programmed to distinguish between

an even or odd number of a's on the tape)
 provably as powerful as any modern computer, but simpler so provides a

manageable tool for studying computation

Turing used this
simpler model to
prove there are
problems that
cannot be solved by
any computer!

6

Subfields of Computer Science

computer science can be divided into subfields

◼ each subfield takes a unique approach to computation

◼ however the common themes of computer science (hardware,
software, and theory) influence every subfield

4 highly visible subfields

1. algorithms and data structures

2. architecture

3. software engineering

4. artificial intelligence and robotics

7

Algorithms and Data Structures

subfield that involves developing, analyzing, and implementing algorithms for

solving problems

application: encryption

◼ encryption is the process of encoding a message so that it is decipherable only
by its intended recipient

 Caesar cipher: shift each letter three down in the alphabet

e.g., ET TU BRUTE → HW WX EUXWH

8

Private-key Encryption

Caesar cipher is an example of private-key encryption

◼ relies on the sender and the recipient sharing a secret key

some modern encryption algorithms rely on private keys

◼ e.g., Advanced Encryption Standard (AES) utilizes 256-bit keys (2256 ≈ 1077
possibilities)

note: the private key must be shared securely

◼ face-to-face meeting? guarded courier?

◼ not feasible for online commerce
9

Public-Key Encryption

in 1976, Whitfield Diffie and Martin Hellman proposed a new approach
◼ instead of a single, private key, public-key encryption utilizes a pair of keys

 a public key is used to encrypt messages
 a private key is required to decrypt the message

◼ the only way to decrypt a message encrypted with a public key is using
the corresponding private key
 as long as the recipient keeps the private key secure, they are free to share

the public key with anyone

10

Encryption and e-commerce

public-key encryption is the basis of almost all secure communication over the
Internet
◼ without it, e-commerce would not be possible

◼ consider what happens when you buy something online

public-key encryption is also used whenever you surf the Web with https://
or use a secure Wi-Fi connection

11

Architecture

subfield concerned with methods of organizing hardware components into
efficient, reliable systems

application: parallel processing
◼ multiple processors can sometimes be utilized to share the computational load
◼ there are costs associated with coordinating the processors and dividing the work, so not well

suited for all tasks
◼ understanding when parallel processing can be used effectively is a common task for

computer architects

◼ e.g., Core 2 Duo and i3 processors are dual core - integrate the circuitry for 2 processors
 can execute two different instructions simultaneously, potentially double execution speed
 similarly, i5 and i7 have 4 cores, i9 has 8 cores

◼ e.g., high-end Web Servers utilize multiple processors
 can service multiple requests simultaneously by

 distributing the load among the processors

◼ IBM's Deep Blue contained 32 general-purpose
processors and 512 special-purpose chess processors

 worked in parallel to evaluate 200 million chess
moves per second)

 first computer to beat a world champ (1997)

◼ its descendent, Watson, contains 2,880 processors

 won Jeopardy challenge in 2011

 used in many applications (weather modeling,
medical diagnosis, satellite imagery analysis)

12

Software Engineering

subfield concerned with creating effective software systems
◼ large projects can encompass millions of lines of code

◼ teams of programmers work together to make an integrated whole
 coordination and testing are key to successful projects

◼ software demand continues to grow, placing pressure on programmers to
produce at faster rates

 clearly, there is a limit to personal productivity

 simply adding more programmers does not solve the problem: increasing numbers
means increased complexity, and coordination becomes an even bigger challenge

◼ the adoption of the object-oriented programming methodology has made it
easier to reuse code 13

Artificial Intelligence

subfield that attempts to make computers exhibit human-like characteristics
(e.g., the ability to reason and think)
◼ in 1950, Turing predicted intelligent computers by 2000 (still not even close)

◼ but, progress has been made in many A.I. realms

 robots in manufacturing

 expert systems – programs that encapsulate expert knowledge in a specific
domain (e.g., for medical diagnosis, credit card fraud detection)

 neural computing – design of architectures that mimic the brain
neural networks are used in handwriting analysis, self-driving cars, facial recognition, …

14

Bioinformatics

multi-disciplinary field that bridges the

gap between biology and computer
science

◼ focuses on using computers and
computer science techniques to solve
biological problems

◼ computers are integrated with various
scientific tools

 e.g., microscopes connected to
computers and digital cameras

◼ computer are used to model biological
systems

 e.g., pharmaceutical companies
model drug interactions to save time
and money

◼ computers are used to store and process
large amounts of biological data

 e.g., Human Genome Project stores
and provides tools for studying DNA 15

Data Science

data science utilizes concepts and methods from computer science, math and

statistics to predict outcomes and extract insights from collections of data

◼ supervised learning: learn to predict future outcomes based on past behavior

 predicting the fluctuations in the stock market based on past performance

 Amazon predicting which products you may want based on past purchases

 Netflix predicting which shows you might like based on your viewing history

◼ unsupervised learning: process data to discover patterns and extract insights

 a baseball team discovering player tendencies or weaknesses

 a government agency using data insights to set policy

16

The Ethics of Computing

as technology becomes more prevalent in society, computing professionals

must ensure that hardware and software are used safely, fairly, and effectively

17

Biology

biology is roughly defined as "the study of life"

◼ it is concerned with the characteristics and behaviors of organisms, how

species and individuals come into existence, and the interactions they
have with each other and with the environment

(en.wikipedia.org/wiki/Biology)

biology encompasses a broad spectrum of academic fields that are
often viewed as independent disciplines

◼ ecology and evolutionary biology study life at the habitat or population
level

◼ developmental biology and genetics study life at organism level

◼ physiology, anatomy, and histology study life at the multicellular level

◼ cell biology studies life at the cellular level

◼ molecular biology, biochemistry, and molecular genetics study life at the
atomic and molecular level

1

http://en.wikipedia.org/wiki/Biology

Impact of Computers

the history of biology dates as far back as the rise of various civilization

◼ while computers are relatively new, they have had a monumental impact on
biological research

3 examples of impact:

1. computer technology is rapidly advancing the tools of scientific research

2. computer models are being used to study complex systems

3. computers are being used to store, process, and analyze large collections of
biological data

note: this list is in no way exhaustive

◼ many aspects of biology and computer science are converging

◼ biology researchers must be savvy computer users and even programmers

◼ computer scientists must be able to solve interdisciplinary problems

2

Technology Tools/Resources

many of the traditional tools of biological research are integrating computer

technology

e.g., the confocal microscope

 invented by Marvin Minsky (computer science pioneer)

 works by focusing a laser on a dyed sample and

 measuring the fluorescent light emitted

 can be used to build up a 3-D model of a sample, stored on

 a computer

e.g., DNA Microarrays to measure the expression levels of genes

the Internet and the Web allow researchers to

share data and publications

◼ speeds the dissemination of information and
the advancement of science

e.g., PubMed, from the National Library of
Medicine

3

https://www.youtube.com/watch?v=6ZzFihESjp0
http://www.ncbi.nlm.nih.gov/pubmed

System Modeling

as computer memory and processing power has increased, it has become
possible to model complex biological systems in software
◼ can attempt to discern natural laws or behaviors by observing the model under

varying conditions
 e.g., models of plant or seashell growth

 e.g., the evolution of cooperative behavior in species, such as bird flocking

◼ can predict the effects of actions over long periods
 e.g., the effects of automobile emissions on global warming

 e.g., the effects of increased fishing on worldwide fishery stocks

◼ can avoid infeasible, unethical, or costly experimentation
 e.g., predict the toxicity of a new drug based on a chemical/biological model as opposed

to animal testing

 e.g., study brain trauma using a neural network model

4

https://www.youtube.com/watch?v=GUkjC-69vaw
http://www.kevs3d.co.uk/dev/lsystems/

Ecosystem Modeling

in the late 1960s, John Conway showed that a simple

model of an environment could produce complex and
interesting behavior

▪ the environment is modeled as a 2-D grid of cells

▪ a cell can be alive (contain an organism) or dead

▪ simple rules model evolution
1. a dead cell becomes alive in the next generation if it has exactly

3 neighbors

2. a living cell survives in the next generation if it has 2 or 3

neighbors

Conway's ideas have been extended to a variety

of ecosystems

▪ here, different colored cells denote different
organisms (sharks & fish)

▪ other systems have modeled:

✓ the growth of viruses

✓ the spread of infectious diseases in a
population

✓ the behavior of an ant colony 5

http://www.cheesygames.com/wator/
http://dave-reed.com/life.html

Bioinformatics

perhaps the biggest impact of computers in biology is in storing, accessing,

and processing large amounts of biological data

the new field of bioinformatics bridges biology and computer science (or

informatics, as it is known in Europe)

◼ broad definition of bioinformatics: the use of computer science techniques to
solve biological problems

◼ narrower but common definition: the application of computer science techniques
to the representation and processing of biological data

as research tools advance, biologists are generating enormous amount of
data

◼ a single experiment with genetic material can produce thousands or millions of
data points

◼ computational and statistical tools are needed to analyze and understand such
volumes of data

6

DNA Overview

DNA is the genetic blue-print of life

◼ made of nucleotides with four bases (A, T, G, C),
organized in a double-helix

◼ the two strands match A+T and C+G base pairs

◼ can think of DNA as encoding information in base 4

a gene is a region of DNA that encodes the

chemical structure of a protein

◼ proteins (e.g., enzymes, hormones, antibodies)
control cellular and organ functions

it is currently believed that there are 20,000-

30,000 different genes in human DNA

◼ roughly 3 billion base pairs

"If our strands of DNA were stretched out in a line, the 46 chromosomes making
up the human genome would extend more than six feet. If the ... length of the 100
trillion cells could be stretched out, it would be ... over 113 billion miles. That is
enough material to reach to the sun and back 610 times." [Source: Centre for
Integrated Genomics]

7

DNA Databases and Tools

often, the source or
purpose of a DNA
sequence can be
determined by
comparing it with
documented genetic
material
◼ several large

databases are
available online

◼ tools for visualizing
and/or searching the
databases are also
available

e.g., the Ensemble site
(www.ensembl.org)
contains visualizations
of the human genome
and other DNA
sequences

8

http://www.ensembl.org/

GenBank

the GenBank public

repository of DNA and
RNA sequence data

contains

◼ partial or complete
genomes for more
than 300,000
organisms

◼ more than 1 trillion
bases of sequence
data

◼ roughly 250 million
new DNA sequences
are added per month

the database can be

accessed and searched
using various tools at

www.ncbi.nlm.nih.gov

9

http://www.ncbi.nlm.nih.gov/

Analog vs. Digital

there are two ways data can be stored electronically

1. analog values represent data in a way that is analogous to real life

◼ signals can vary continuously across an infinite range of values

2. digital values utilize only a finite set of values

1

Analog/Digital Tradeoffs

the major tradeoff between analog and digital is variability vs. reproducibility

◼ analog allows for a (potentially) infinite number of unique signals, but they are
harder to reproduce

 good for storing data that is highly variable but does not need to be
reproduced exactly

◼ digital signals limit the number of representable signals, but they are easily
remembered and reproduced

 good for storing data when reproducibility is paramount

when storing data on a computer, reproducibility is paramount
◼ changing a single bit in a file can drastically change the data

modern computers save and manipulate data as discrete (digital) values
◼ the most effective systems use two distinct (binary) states for representing data
◼ in essence, all data is stored as binary numbers

2

Binary Numbers

in the binary number system, all values are represented using only
the two binary digits 0 and 1, which are called bits

we can also refer to bits by index

▪ rightmost bit is index 0 (representing 20 = 1s place)
▪ next from right is index 1 (representing 21 = 2s place
▪ next over is index 2 (representing 22 = 4s place
▪ . . .
▪ ith index (from right) represents 2i s place

3

note:
• all even numbers end with a 0 bit; odd numbers with 1 bit WHY?
• adding a 0 bit at the end it doubles its value WHY?

Binary → Decimal

4

Decimal → Binary

5

Representing Integers

when an integer value must be saved on a computer, its binary equivalent can

be encoded as a bit pattern and stored digitally

usually, a fixed size (e.g., 32 bits) is used for each integer so that the
computer knows where one integer ends and another begins

◼ the initial bit in each pattern acts as the sign bit (0=positive, 1=negative)

◼ negative numbers are represented in two’s complement notation

 the "largest" bit pattern corresponds to the smallest absolute value (-1)

6

Representing Real Numbers

a real number can be uniquely identified by the two components of its
scientific notation (fractional part and the exponent)

 123.456 = 0.123456 x 103 0.0099 = 0.99 x 10-2

thus, any real number can be stored as a pair of integers
◼ real numbers stored in this format are known as floating point numbers, since

the decimal point moves (floats) to normalize the fraction

standard formats exist for storing real numbers, using either 32 or 64bits

most programming
languages represent
integers and reals
differently

JavaScript simplifies
things by using IEEE
double-precision floating
point for all numbers

7

Representing Characters

characters have no natural

correspondence to binary
numbers

◼ computer scientists devised
an arbitrary system for
representing characters as bit
patterns

◼ ASCII (American Standard
Code for Information
Interchange)

 maps each character to a
specific 8-bit pattern

 note that all digits are
contiguous, as are lower-
and upper-case letters

 '0' < '1' < … < '9'

 'A' < 'B' < … < 'Z'

 'a' < 'b' < … < 'z'

◼ Unicode is a 16-bit extension
to ASCII that supports other
languages 8

Representing Text

strings can be represented as sequences of ASCII/Unicode codes, one for

each character in the string

specific programs may store additional information along with the ASCII

codes

◼ e.g. programming languages will often store the number of characters along
with the ASCII/Unicode codes

◼ e.g., word processing programs will insert special character symbols to denote
formatting (analogous to HTML tags in a Web page)

9

Distinguishing Data Types

how does a computer know what type of value is stored in a particular piece of

memory?

◼ short answer: it doesn't

◼ when a program stores data in memory, it must store additional information as to
what type of data the bit pattern represents

◼ thus, the same bit pattern might represent different values in different contexts

10

Conditional Execution

so far, all of the code you have written has been unconditionally executed

◼ the browser carried out statements in the same set order

in contrast, many programming tasks require code that reacts differently

under varying circumstances or conditions

e.g., a student's course grade depends upon his/her average

e.g., an ESP test requires recognizing when a subject guessed right

e.g., the outcome of a game depends upon die rolls or player moves

conditional execution refers to a program’s ability to execute a statement or

sequence of statements only if some condition holds true

1

If Statements

in JavaScript, the simplest form of conditional statement is the if statement

◼ one action is taken if some condition is true, but a different action is taken if the
condition is not true (called the else case)

◼ the else case is optional

general form of the if statement:

if (BOOLEAN_TEST) {

 STATEMENTS_EXECUTED_IF_TRUE

}

else {

 STATEMENTS_EXECUTED_IF_FALSE

}

note: indentation is not required, but it is STRONGLY
RECOMMENDED to make an if statement readable

2

Boolean Tests

the test that controls an if statement can be any Boolean expression (i.e., an
expression that evaluates to either true or false)

◼ Boolean tests are formed using relational operators because they test the
relationships between values

the Boolean test in an if statement determines the code that will be executed

◼ if the test succeeds (evaluate to true), then the code inside the subsequent
curly braces will execute

◼ if the test fails (evaluates to false), then the code inside the curly braces
following the else will execute

◼ note that if the test fails and there is no else case, the program moves on to
the statement directly after the if

NOTE:

== is for comparisons

= is for assignments

3

If Statement Examples

an if statement is known as a control statement, since its purpose is

to control the execution of other statements

4

Letter Grade Page

since else case is present, it
will display one message or
the other

5

Input Verification

here, an if statement checks to
see if number box is empty (i.e.,
its value attribute is '')

▪ if empty, displays an alert warning

▪ if not, calculates & displays letter
grade as before

note: an if statement can be
nested inside another if
statement

6

common use of if statement:
▪ verify that user input has been entered
▪ warn the user if not

Input Verification

similarly, could add an if statement
to the tip calculator to make sure
the user entered a check amount

▪ what about the tip percent?

7

Cascading If-Else

programming tasks often require code that responds to more than one

condition

◼ this can be accomplished by nesting one if statement inside of another

example: three different grade levels

◼ A-level (grade ≥ 90), passing (60 ≤ grade < 90), failing (grade < 60)

◼ the outer if-else distinguishes A from non-A grades

◼ the nested if-else further separates non-A grades into passing and failing

8

Cascading If-else Structure

nested if-else statements are known as cascading if-else structures because

control cascades down the branches

◼ the topmost level is evaluated first

◼ if the test succeeds, then the corresponding statements are executed and control
moves to the next statement following the cascading if-else structure

◼ if the test fails, then control cascades down to the next if test

◼ in general, control cascades down the structure from one test to another until
one succeeds or the end of the statement is reached

9

A Cleaner Notation

when it is necessary to handle a large number of alternatives, nested if-else
structures can become unwieldy
◼ multiple levels of indentation and curly braces cause the code to look cluttered

make it harder to read/understand

◼ can simplify by removing some unnecessary curly braces & aligning each case to
the left

 nested if statements vs. more readable if-else

10

Letter Grade (cont.)

as before, the student's

average is entered in a
number box

the cascading if-else
structure determines the

corresponding letter grade

11

Embedded Counters

recall the dice pages from Chapter X6

suppose we wanted to keep a count of the number of rolls
◼ we could use a span element to store the count (initially 0)

Number of rolls: 0.

◼ for each roll, access the count, add 1, and reassign

rollSpan.innerHTML = rollSpan.innerHTML + 1; // DOES NOT WORK

12

problem: innerHTML always evaluates to a string
◼ rollSpan.innerHTML + 1 = '0' + 1 = '0' + '1' = '01' (see Ch. X5)

we avoided this problem with number boxes using valueAsNumber
◼ unfortunately, there is no equivalent attribute for a span

◼ fortunately, there is a function that will convert a string into its equivalent number value

rollSpan.innerHTML = Number(rollSpan.innerHTML) + 1; // THIS WORKS!

Dice Stats (v.1)

recall the pages from Ch X6
that simulated dice rolls

add an embedded counter
▪ initially, the span contains 0

▪ its contents are incremented
each time function is called

also add a function to reset the
counter

13

Conditional Counters

counters can be combined with if statements to count conditional events
◼ e.g., to count doubles

 if (roll1 == roll2) {

 doubleSpan.innerHTML = Number(doubleSpan.innerHTML) + 1;

 }

◼ e.g., to count sevens

 if (roll1+roll2 == 7) {

 sevenSpan.innerHTML = Number(sevenSpan.innerHTML) + 1;

 }

14

since doubles and sevens are mutually exclusive, could even combine

 if (roll1 == roll2) {

 doubleSpan.innerHTML = Number(doubleSpan.innerHTML) + 1;

 }

 else if (roll1+roll2 == 7) {

 sevenSpan.innerHTML = Number(sevenSpan.innerHTML) + 1;

 }

Dice Stats (v.2)

to keep stats on doubles and 7s
▪ add spans to the page to keep

track of the # of doubles and #

of sevens

▪ add if-else to conditionally
increment the counters

▪ also update ResetCounts to

that all counters are reset

15

Boolean Expressions

sometimes, simple comparisons between two values may not be adequate to
express the conditions under which code should execute

complex Boolean expressions can be built using logical connectives
TEST1 && TEST2 evaluates to true if TEST1 AND TEST2 are true

TEST1 || TEST2 evaluates to true if TEST1 OR TEST2 arise true

! TEST evaluates to true if TEST is NOT true

if (roll1 == 4 && roll2 == 4) {

 CODE_TO_BE_EXECUTED_IF_4-4_COMBINATION_IS_ROLLED

}

if (roll1 == 4 || roll2 == 4) {

 CODE_TO_BE_EXECUTED_IF_EITHER_ROLL_IS_4

}

if (!(roll1 == 4 && roll2 == 4)) {

 CODE_TO_BE_EXECUTED_ IF_4-4_COMBINATION_IS_NOT_ROLLED

}
16

Dice Stats (v.3)

to also keep stats on natural 7s
▪ add a test for 3-4 or 4-3

combinations
▪ since the test is inside the

sevens case, will only be
executed if the roll is a seven

▪ then, if roll1 is a 3 or a 4,
increment naturalSpan

17

Representing Sounds

computers are capable of representing much more than numbers and text

◼ complex data requires additional techniques and algorithms

EXAMPLE: representing sounds

◼ sounds are inherently analog values with a specific amplitudes and frequencies

◼ when sound waves reach your ear, they cause
your eardrum to vibrate, and your brain
interprets the vibration as sound

◼ e.g. telephones translate a waveform into
electrical signals, which are then sent over
a wire and converted back to sound

◼ e.g. phonographs interpret waveforms stored on
on grooves of a disk (similar to audio cassettes)

◼ analog values cannot be reproduced exactly,
but this is not usually a problem since the
human ear is unlikely to notice small
inconsistencies

tuning
fork

violin

piano

waterfall

1

Representing Sounds (cont.)

when analog recordings are repeatedly duplicated, small errors that were

originally unnoticed begin to propagate

digital recordings can be reproduced exactly without any deterioration

 in sound quality
▪ analog waveforms must be converted to a sequence of discrete values
▪ digital sampling is the process in which the amplitude of a wave is measured at

regular intervals, and stored as discrete measurements

2

Representing Sounds (cont.)

to play a digital recording, a music player must extract the numbers and

reconstruct the analog waveform

3

since there are gaps between measurements, the reconstruction will not be an

exact reproduction of the original
▪ CD takes 44,100 measurements/second, so gaps are small and the

resulting sound is high-quality

Sound compression

CD-quality sound requires significant storage

consider a 3-minute, stereo recording (meaning two separate tracks)

▪ assume each measurement is stored using 2 bytes

3 min x 60 sec/min x 2 tracks x 44,100 nums/sec x 2 bytes/num = 31.752 MB

4

since the typical music album contains 10-20 songs, CD storage requires:

317-634 MB of space
▪ this will fit on a 700 MB disk, but would quickly overwhelm

smartphones and portable music players

also, file size makes downloading or streaming music problematic

4G wireless connection can typically download up to 1.5 MB/second

▪ to download 3 min song: 31.752 MB / 1.5 MB/sec = 21 seconds

▪ to download 20 song album: 634 MB / 1.5 MB/sec = 7 minutes

Sound compression (cont.)

fortunately, techniques have been developed to reduce file size

▪ e.g., filter out sounds beyond the range of human hearing
▪ e.g., recognize when one track masks another

▪ e.g., possibly even simplify the waveform

the MP3 format (introduced in 1993) uses techniques such as these to reduce
file size by 75-95%

▪ 3 minute song: 31.752 x 0.05 = 1.6 MB = 1 second using G4

▪ 20 song album = 634 MB x 0.05 = 31 MB = 20 seconds using G4

MP3 is a lossy format

▪ to achieve that level of compression, it makes simplifications and loses

some of the information in the waveform
▪ this results in lower sound quality when played

5

Impact on the music industry

before the CD in 1982, music piracy was almost non-existent

▪ few people had the technology to copy a phonograph record

▪ recording a cassette was easy, but the sound quality was bad

▪ CDs changed the game

o cheap devices for making perfect, digital copies were readily available

o this panicked the music industry, led to MANY piracy prosecutions

6

before the MP3 format in 1993,

streaming music was not feasible

▪ now, phones & portable players

are the primary music source for

many

▪ other digital audio formats have

followed, e.g., WAV, AIFF, M4P.

Representing Images

like sound, images are inherently analog

◼ real-world colors come in an infinite variety of shades

◼ film photography creates an analog representation using light-sensitive chemicals

like sound, techniques exist for digitizing images

◼ the simplest involves partitioning the image into a grid of picture elements (pixels)
and then converting each pixel into a bit pattern

◼ the digital representation is known as a bitmap

7

Image resolution

resolution refers to the sharpness or clarity of an image

◼ bitmaps that are divided into smaller pixels will yield higher resolution images

◼ the left image is stored using 72 pixels per square inch, each subsequent image has
half the resolution

8

this is a grayscale image

◼ each pixel is a shade of gray, somewhere between black and white

◼ most image formats use 8 bits for a grayscale pixel → 256 shades of gray

◼ as a result, grayscale requires 8x storage of black-and-white

Color images

for color images, can break each color into its red, green & blue components

◼ RGB value is a triple, listing the intensities of red, green & blue on a 0-255 scale

◼ 2563 = 16,777.216 different color combinations can be represented

◼ each component requires 8 bits, so a total of 24 bits per pixel

→ color images require 3x storage of grayscale, 24x the storage of black-and-white

9
experiment with http://compsciconcepts.com/C9/rgb.html

http://compsciconcepts.com/C9/rgb.html

Image compression

color bitmaps can be extremely large
◼ 12 megapixel image → 12 million pixels → 36 MB of storage

common image formats implement various compression techniques to reduce
storage size
◼ GIF (Graphics Interchange Format)

 a lossless format, meaning no information is lost in the compression

 commonly used for precise pictures, such as line drawings

 25-50% reduction possible

◼ PNG(Portable Network Graphics)

 more modern, lossless alternative to GIF - more colors

 10-50% smaller than GIF (so 33-75% reduction from bitmap)

◼ JPEG (Joint Photographic Experts Group)

 a lossy format, so the compression is not fully reversible (but more efficient)

 commonly used for photographs

 90-95% reduction possible

image formats also embed metadata (date, location, source, …) in images
◼ can be useful for tasks such as organizing a photo gallery by data or geography 10

Steganography

an interesting side topic related to images is steganography

◼ the practice of hiding a secret message in plain sight (e.g., within another
message or object)

1. Take your secret message an encode it as bits (using ASCII/Unicode codes):

b1 b2 b3 b4 b5 b6 b7 b8 b9 ...

2. Take an image and break it into its RGB pixels: (R1,G1,B1) (R2,G2,B2) (R3,G3,B3) …

3. For each bit bi in the message, possibly change the Bi component of the
corresponding pixel so that:

o if bi is even, then Bi is also even (add 1 to Bi if necessary)

o if bi is odd, then Bi is also odd (add 1 to Bi if necessary)

the resulting image will look the same to the human eye

◼ e.g., most people can't distinguish between (20, 50, 100) and (20, 50, 101)

but, if you know to look, you can extract the message bits from the pixels

11

Example:

suppose the message starts with 'M' (whose ASCII value is 01001101)

and the image starts with pixels:

(100,200,50) (100,200,50) (100,202,52) (98,203,53) (88,190,48) (88,188,47) (86,180,40) (80,160,43)

then, embed the message bits in the B components of the pixels:

(100,200,50) (100,200,51) (100,202,52) (98,203,54) (88,190,49) (88,188,47) (86,180,40) (80,160,43)

to an unsuspecting viewer, the image will look normal

to a person who knows to look, the message bits can easily be extracted

(100,200,50) (100,200,51) (100,202,52) (98,203,54) (88,190,49) (88,188,47) (86,180,40) (80,160,43)

        

 0 1 0 0 1 1 0 1

12

Representing movies

in principle, a movie is a sequence of images

(frames) that are displayed in sequence to
produce the effect of motion

◼ typically, 24 frames/sec

MPEG or MP4 format uses a variety of techniques to
compress video

◼ individual frames use techniques similar to JPEG

◼ since much of successive frames are same, need
only store changes from frame to frame

elements of MPEG are included in the ATSC

(Advanced Television Systems Committee)

standard for digital TV

◼ individual frames use techniques similar to JPEG

other related formats are DVD & Blu-Ray

13

ASCII movies

for a fun and creative

exercise, make your
own movies

each frame is "drawn"
using characters

from the keyboard

frames are separated

using =====

the button will "play"

the movie, 5

frames/second

14

Software Models

when studying complex systems (e.g., weather, stock markets, voting),

software models provide a fast & cost-effective tool for gaining insights

◼ computer simulations can be much faster than real-world counterparts

e.g., can simulate centuries of climate change in seconds

◼ can be much cheaper to simulate than to study the real-world system

e.g., can try different investment strategies without risking real money

◼ can control for parameters that are difficult to obtain reliably in real-world

e.g., can speculate on how changes in demographics would affect an election

we will consider 2 examples of modeling real-world systems

1. disease spread

2. volleyball game

software models always make simplifying assumptions

◼ must always be careful to examine the model and make sure that the
simplifications do not invalidate conclusions drawn from the simulations

1

Disease Spread

when there is a disease outbreak (e.g., COVID-19), the CDC and other health

organizations build software models to

◼ better understand and warn the public about the disease

◼ study potential interventions (e.g., social distancing, vaccines)

these models can be very complex, taking into account:

◼ transmission method, patient incubation period, population density, …

a very simple model uses the basic reproduction number, R0: the number of

people that a patient will infect over the course of their infection

◼ if R0 < 1, then each patient infects fewer than 1 other (on average), so the disease
will eventually die out

◼ if R0 = 1, then each patient infects exactly 1 other (on average), so the disease
spreads steadily (known as an endemic)

◼ if R0 > 1, then each patient infects more than 1 other (on average), so the disease
spreads exponentially (known as an epidemic or pandemic)

2

R0 Example

suppose a disease has R0 = 2, 100 people infected:

1. in 1st wave, those 100 patients infect 200 (2 per person on average)

2. in 2nd wave, the 200 patients from wave 1 infect 400

3. in 3rd wave, the 400 patients from wave 2 infect 800

 . . .

10. in 10th wave, the 51,200 patients from wave 9 infect 102,400

3

estimated R0 for common diseases:

◼ seasonal flu R0 ≈ 0.9-2.1

◼ Smallpox R0 ≈ 7

◼ Polio R0 ≈ 7

◼ Measles R0 ≈ 18

◼ COVID-19 in U.S., March 2020 R0 ≈ 4

◼ COVID-19 in U.S., October 2020 R0 ≈ 2

◼ COVID-19 in U.S., March 2021 R0 ≈ 0.9

note: R0 is not fixed – medical
treatments and behavior changes
can affect it

fortunately, vaccines have been
developed for many highly
contagious diseases

Disease Spread Example

similar to Hailstone & compound
interest examples from Ch. X8
▪ currentWave counter controls

the loop
▪ currentCases calculates the

new cases each wave
▪ totalCases sum keeps track of

the total number of cases

4

Graphical user interface, text

Description automatically generated

http://compsciconcepts.com/X9/disease.html

Model Results

5

Modeling Tradeoffs

advantages:

◼ CONVENIENCE: software models can be executed anywhere sufficient computer
power is available

◼ SAFETY: since software models run on a computer, they pose no risk to patients
or researchers

◼ SPEED: the speed at which software models can be executed is only limited by
the complexity of the model and the processing power of the computer

◼ CUSTOMIZABILITY: software models are typically built with parameters that
can be adjusted to test different conditions

◼ REPRODUCABILITY: as they are fast and customizable, software models can
be repeated to confirm results and compare outcomes under different conditions

6

disadvantages:

◼ OVERSIMPLIFICATION: by their very definition, software models simplify the
systems they are modeling, potentially ignoring factors that may be important

◼ INCORRECTNESS: as with any software system, software models can contain
errors that impact the results

◼ OVERCONFIDENCE: due to flaws in design or implementation, model can
produce results that look reasonable but are incorrect or misleading

Nondeterministic Models

the R0 model of disease spread is deterministic

◼ it follows rules that unambiguously determine the output

◼ i.e., same inputs will always produce the same output

many real-world systems are too complex to model deterministically

◼ instead, they utilize probabilities to capture unpredictable features

◼ i.e., same input should produce similar but not necessarily identical results

7

consider a nondeterministic model of disease spread

◼ each day, an infectious patient has a certain probability of infecting those with
whom they come in contact

◼ allows us to introduce more complex variables: locality & infectious period

◼ e.g., once infected, a patient will be contagious for 4 days & have 20% probability
of infecting those with whom they come in contact

2-D Disease Spread

the user can control
▪ the size of the grid
▪ infection probability

▪ contagious period

initially, there is a single
infected person at the
center of the grid

can click a button to see:
▪ a single day
▪ a series of days (with

delays in between)

8

Graphical user interface, application

Description automatically generated

http://compsciconcepts.com/X9/disease2D.html

2-D Disease Spread

white square: uninfected
person

black square: infect &
contagious person

gray square: infected but
no longer contagious

the simulation is highly
sensitive to changes in
the infection rate &
contagious period

9

Volleyball Simulations

in 1998, FIVB switched the scoring system for international volleyball

◼ old system: sideout scoring – only serving team can win a point

◼ new system: rally scoring – a point is awarded on every rally

◼ the goal was to make games more exciting and more consistent in length

in conjunction, they extended games from 15 points to 25 points

◼ the new game length was intended to maintain competitive balance

HOW DID THEY DETERMINE THE NEW GAME LENGTH?

for our model:

◼ assume each team has a ranking (1-100) that quantifies their strength

◼ by comparing team strengths, can determine the likelihood of winning a rally

 e.g., if team1 is 80 and team2 is 40, team1 twice as likely to win a given rally

◼ to simulate a game, repeatedly simulate points and keep score

the game is over when a team reaches 25 points (must win by 2)

10

Simulation Details

the following is a general layout of the simulation

score1 = 0;

score2 = 0;

while (GAME_NOT_OVER) {

 DETERMINE_WINNER_OF_RALLY

 if (TEAM1_WON_RALLY) {

 score1 = score1 + 1;

 }

 else {

 score2 = score2 + 1;

 }

 DISPLAY_SCORE

}

need to figure out the
loop condition

also need to figure out
how to simulate a rally

11

Simulation Details

if we ignore the win-by-2 rule, the loop test is straightforward

 while (score1 < 25 && score2 < 25) {

be careful with loop tests

◼ they are not stopping conditions, they are continuing conditions

◼ the game continues as long as both teams are under 25 points

12

the win-by-2 condition adds another possibility of continuing

◼ continue if both teams are under 25 points OR within 1 point of each other

 while ((score1 < 25 && score2 < 25) ||

 (Math.abs(score1-score2) < 2)) {

Simulation Details

to simulate a single rally, we need to pick the winner probabilistically

◼ if team1 is X% better, they should be X% more likely to win any given rally

◼ we can simulate this using RandomInt (from the random.js library)

1. generate a random integer in the range 1 to (strength1+strength2)

2. if that random integer <= strength1, then team1 wins the rally

3. otherwise, team2 wins the rally

◼ e.g., suppose team1 has strength 50 and team2 has strength 50

if pick a random number in 1…100, it is equally likely to be 1..50 as 51..100

◼ e.g., suppose team1 has strength 80 and team2 has strength 40

if pick a random number in 1…120, it is twice as likely to be 1..80 as 81-120

13

Volleyball

14

Table

Description automatically generated

http://compsciconcepts.com/X9/volleyball.html

Simulating Many Games

with any nondeterministic model, need to perform a large number of

simulations to obtain statistically meaningful results

◼ with only a small number, lucky/unlucky streaks can greatly skew the results

◼ e.g., 7 HEADS out of 10 coin flips would not shock you, 700 out of 1,000 should

if we want to simulate thousands of games, we don't need to see
point-by-point scores
◼ similar to roll stats example from Ch. X8, simply keep a counter of wins/losses and

display the final result when done

15

1. remove the statements from PlayGame that display the score

2. instead, add an if statement at the end of the function that determines the winner
and returns either 'team1' or 'team2'

3. define a function that simulates a specified number of games (by calling PlayGame
inside a loop) and keeps count of wins by team1

Volleyball

16

Graphical user interface, text

Description automatically generated

http://compsciconcepts.com/X9/volleystats.html

Electricity and Switches

modern computers are powered by electricity, using electrical signals to store

and manipulate information

the components of a computer require electrical power to carry out their

assigned task

◼ electricity generates the light that shines through a computer screen,
illuminating the individual pixels that make up images and letters

◼ electricity runs the motor that spins the hard-drive disk, allowing information to
be accessed

◼ main memory and CPU employ electrical signals to store and manipulate data

◼ bit patterns are represented by the presence or absence of electrical current
along a wire

1

Electricity Basics

electricity is a flow of electrons, the negatively charged particles in atoms,
through a medium
◼ good conductors of electricity allow for the flow of electrons with little resistance

(e.g., copper, silver, gold)

◼ other elements, especially nonmetals, are poor conductors (e.g., carbon, oxygen)

electricity can be quantified in amperes or voltage

◼ amperes gauge electron flow: 1 amp is equal to 6.24 quintillion electrons flowing
past a given point each second

◼ voltage measures the physical force produced by the flow of electrons: standard
household in United States has 110 to 120 volt outlets

2

Switches

the most basic tool for controlling the flow of electricity is a switch

◼ a switch can be flipped to connect or disconnect two wires, thus regulating the
flow of electricity between them

3

example: a light switch on a wall

serves as an intermediary
between the power line

entering your home and the

outlet that operates a lighting
fixture

◼ if the switch is turned on,
then the wires that link the
outlet to the power line are
connected, and the lighting
fixture receives electricity

◼ if the switch is turned off,
then the connection is
interrupted, and no power
reaches the outlet

Transistors

as we saw in Chapter C4, advances in switching technology have defined the
generations of computers
◼ 1930’s – electromagnetic relays served as physical switches, with on/off

positions controlled by the voltage to a magnet
◼ 1940’s – vacuum tubes replaced relays, which were faster (since no moving

parts) but tended to overheat and burn out frequently
◼ 1948 – the transistor was developed by Bardeen, Brattain, and Shockley

 a transistor is a solid piece of metal attached to a wire that serves as a
switch by alternatively conducting or resisting electricity

 transistors allowed for the development of smaller, faster machines at a
lower cost

4

semiconductors are metals that can be

manipulated to be either good or bad conductors
of electricity

◼ the first transistors were made of germanium and
gold, but modern transistors are constructed from
silicon

◼ through a process known as doping, impurities are
added to a slab of silicon, causing the metal to act
as an electrical switch

Transistors as Switches

a PMOS transistor is positively doped, so that the switch is ON (or closed)

when there is no current on the control wire, but OFF (or open) when
current is applied

5

transistors can be combined with other electronic components to form
circuits, which control the flow of electricity in order to produce a particular
behavior

From Transistors to Gates

consider the following circuit combining a PMOS transistor with a power
supply
◼ note: the power supply is connected to the transistor input wire, the circuit input

is connected to the control wire

◼ if no current (0 volts) is applied to the circuit input wire, the transistor will be ON
to allow current to travel on the output wire

◼ if current (5 volts) is applied to the circuit input wire, the transistor will be OFF
so no current reaches the output wire

◼ the result is that the output is the opposite of the input

◼ this circuit known as a NOT gate

6

Gates and Binary Logic

the term “gate” suggests a simple circuit that controls the flow of electricity

◼ in the case of a NOT gate, the flow of electricity is manipulated so that the
output signal is always opposite of the input signal

◼ we can think of a gate as computing a function of binary values

 0 represents no current; 1 represents current

 the symbol to the left (triangle w/ circle) is often used to denote a NOT gate

 the truth table to the right describes the mapping of input to output

7

note: NOT gates invert voltages in the same way that the JavaScript NOT

operator (!) inverts Boolean values

 0 corresponds to false; 1 corresponds to true

Gates and Binary Logic

many other simple circuits can be defined to perform useful tasks

◼ AND gate – produces voltage on its output wire if both input wires carry voltage

8

Gates and Binary Logic

◼ OR gate – produces voltage on its output wire if either input wire carries voltage

9

From Gates to Circuits

basic logic gates can be combined to build more advanced circuitry

example: adding two binary numbers

although binary addition is relatively straightforward, designing a circuit for
adding binary numbers is quite complex
◼ instead of starting at the transistor level, we can use AND, OR, and NOT gates

◼ focus first on the addition of 2 bits

 requires two input lines, two output lines (sum of inputs and possible carry)

 the circuit consist of four gates (known as a half-adder)

10

Full-adder Circuit

the term “half-adder” refers to the fact that when you add binary numbers

containing more than one bit, summing the corresponding bit pairs by
column is only half the job

◼ you must also consider that a bit might be carried over from the previous
addition

◼ using half-adders and logical gates as building blocks, we can design a circuit
that takes this into account (known as a full-adder)

11

4-bit Adder Circuit

using full-adders as building blocks, we can design a more complex circuit

that sums two 4-bit numbers

◼ since a full-adder is required to add each corresponding bit pair together (along
with possible carry), the circuit will need four full-adders wired together

12

Designing Memory Circuitry

main memory and registers within the CPU are composed of circuitry
◼ whereas adders manipulate inputs to produce outputs, memory circuits must

maintain values over time

◼ the simplest circuit for storing a value is known as a flip-flop

 it can be set to store a 1 by applying current on an input wire

 it can be reset to store a 0 by applying current on another input wire

13

Flip-flop Circuit

a flip-flop stores a value by feeding the output currents back into the circuit

◼ the value is maintained by current flowing around and around the circuit

◼ a current burst on the Set wire produces output current, which then cycles

14

◼ a current burst on the Reset wire produces no output current

From Circuits to Microchips

initially, circuits were built by wiring together individual transistors
◼ this did not lend itself to mass production

◼ even simple circuits consisting of 10s or 100s of transistors were quite large

15

in 1958, two researchers (Jack Kilby and Robert Noyce) independently

developed techniques that allowed for the mass-production of circuitry

◼ circuitry (transistors + connections) is layered onto a single wafer of silicon,
known as a microchip or chip

◼ since every component is integrated onto the same microchip, these circuits
became known as integrated circuits

the production of integrated circuits is one of the

most complex engineering processes in the world

◼ transistors can be as small as 5 nanometers
(~ 1/16,000th the width of a human hair)

◼ since a hair or dust can damage circuitry, chips
are created in climate-controlled "clean rooms"

Manufacturing ICs

16

1. initially, the silicon chip is covered with a semiconductor material, then coated with a layer of
photoresist (a chemical sensitive to UV light)

2. transistors are then printed onto a mask (transparent surface on which an opaque coating has been
applied to form patterns)

3. UV light is filtered through the mask, passing through the transparent portions and striking the

surface of the chip in the specified pattern

4. the photoresist exposed to UV light reacts, hardening the layer of the semiconductor below it

5. the photoresist that was not exposed and the soft layer of semiconductor below are etched away,
leaving only the desired pattern of semiconductor material on the surface of the chip

6. the process can be repeated 40-60 times depositing multiple layers

Packaging Microchips

since a silicon chip is fragile, the chip is encased in plastic for protection
◼ metal pins are inserted on both sides of the packaging,

 facilitating easy connections to other microchips

impact of the microchip
◼ lower cost due to mass production

◼ faster operation speed due to the close proximity of circuits on chips

◼ simpler design/construction of computers using prepackaged components

17

Moore’s Law describes the
remarkable evolution of
manufacturing technology
◼ Moore noted the # of

transistors on a chip
doubles every 1-2 years

◼ has held true for 50 years
◼ technology has slowed, but

the pattern continues to
hold due to multicore
processors

Most impactful inventions

science writer Daniel Stone ranked the 10 most important/impactful inventions

◼ do you agree with his list?

(Daniel Stone. “The 10 Inventions that Changed the World.” National Geographic Magazine, June 2017.)

1

more than any other invention, computer technology is still evolving, which

means that it continues to impact society in new ways

Impact on Money

40+ years ago, the U.S. was a cash-based society

2 tech developments changed that

1. cheap, portable devices for processing credit card
transactions

2. expansion of the Internet

 banks could treat money as numbers in a file

 led to expansion of ATMs, debit cards, online banking

many Americans now live virtually cash-free
▪ in 2019, 39 billion credit card transactions, 10 billion ATM transactions

▪ in 2020, most individuals carried less than $40

cryptocurrencies like Bitcoin are growing in popularity

▪ market-based, not backed by government or bank

▪ offers complete anonymity, potentially tax free

▪ very volatile, not clear if will be widely accepted

2

Negatives: debt & security

the convenience of ATMs, debit/credit cards has led to a debt crisis for many

◼ avg. credit card interest rate: 16%

◼ by comparison: 30-year mortgage (2.8%), 5-year CD (0.31%)

2021 credit card debt in U.S. totaled $807 billion

◼ avg. household credit-card debt: $6,270

electronic money meant fewer muggings, but introduced identity theft & fraud

◼ nearly half of Americans experienced in 2020, total loss of $712 billion

3

Computers in Everyday Tasks

modern life also depends on thousands of less obvious, hidden computer
applications

embedded processors are computer chips that are built into appliances and
machinery to control their workings
◼ they account for more than 98% of all computer processors

◼ modern homes contain hundreds of embedded processors
 in ovens, television remote controls, cordless phones, automatic thermostats, …

◼ automobiles employ embedded processors to control a wide variety of
components

4

Computers in Everyday Tasks

society has also been affected by the

availability of personal computers
and easy-to-use software

◼ software can enable people to
accomplish tasks previously
reserved for highly trained
professionals, e.g.,

 word processing and desktop
publishing software

 video editing software

 tax preparation software

smart phones and hand-held

computers have driven the
development of mobile apps
◼ in June 2021, Apple's App Store listed

2.2 million apps, Google's Play Store
listed 3.4 million apps

◼ Amazon's Kindle & Sony's Reader
enable downloading and reading
electronic books

5

Negatives: overreliance

as society becomes dependent on complex, computer-based products and

services, the effects of errors or system failures become far-reaching

computer-system bugs can produce dire consequences

◼ from 1985-1987, 4 cancer patients died from radiation overdoses due to a single
coding error in medical equipment software

◼ in 1991, 28 soldiers were killed by a Scud missile because a software
error(involving number roundoff) caused the Patriot missile to miss its target

◼ in 1999, NASA’s Mars Climate Orbiter went off course and was destroyed in the
Martian atmosphere (the problem was due to software inconsistencies which
used different measurement conversions, e.g., English vs. Metric)

◼ in 2010, Toyota recalled more than 400,000 hybrid due to faulty anti-lock brake
software (estimated cost exceeds $6 billion)

◼ in 2012, Knight Capital group lost $461 million in 30 minutes due to a bug in
their online trading software

◼ from 2016-2019, self-driving cars have caused 6 fatalities

to avoid errors, various software design and testing methodologies are used

◼ however, as the size and complexity of the software grows, design and testing
become exponentially more difficult

◼ Windows 2000 – 35 million lines of code, 63,000 known bugs 6

Internet/Web for Information

many users utilize the Internet/Web as an information source

online resources are quickly replacing (or complementing) traditional sources
of information

◼ Web sites can be updated 24 hours/day, can report on breaking stories

◼ text can be integrated with other types of media

◼ the immediacy of online delivery system is especially appealing

independent media organizations have utilized the Web to present stories and

opinions that might not otherwise reach a mainstream audience

in order to compete, many newspapers/magazines now offer online services

7

Internet/Web for Information

the majority of Web pages are unique resources created by individuals and

private organizations

◼ you can find Web content on virtually any topic

◼ to help navigate the vast sea of information, search engines automatically
catalog Web pages and allow users to search for data by topic or keywords

8

Negatives: fake news

the openness of the Web allows for a diversity of views to be presented

◼ but, not all views are fact-based or unbiased

◼ misinformation or disinformation (intentional misinformation) are widespread

Americans rated online misinformation a major problem (2019)

◼ only 26% were very confident in their ability to recognize fake news

9

Negatives: info overload

the impressive range of information available online can be viewed as a

strength, but it is also one of the greatest weaknesses

◼ as of 2019, Web estimated in hundreds of billions of pages (maybe much more)

◼ finding specific info can be hard, even with search engines

since most Internet/Web content lacks editorial review, it is up to the user to

evaluate its credibility

10

Internet/Web for Communication

many users were originally drawn to the Internet by the availability of

electronic mail and newsgroups

◼ in 2021, 4.1 billion active email users worldwide (1.8 billion used Gmail)

◼ 319.6 billion email messages were sent/received each day (~50% spam)

increasingly, the Internet is being
used for social networking

◼ in 2021, 97% of Americans own
cell phone, 85% own smartphone

◼ 23 billion texts sent in 2020

social media sites have grown in
popularity

1. Facebook
2. YouTube
3. Whatsapp
4. WeChat
5. Instagram

11

Negatives: addiction

studies have shown social media can be physically & emotionally addictive

▪ in 2018, average adult spent 6 hours/day on connected devices

▪ assuming 7 hours of sleep, that's 35% of waking day

nomophobia: fear of being detached from mobile phone connectivity

12

Negatives: cyberbullying

preteen & teen use of social media has led to bullying via text & social media

▪ annual survey in U.K. identifies negative consequences

▪ suicide rate for teen girls in U.S. increased 65% from 2010-2015,

coinciding with rise in smartphone social media use

also, texting while driving is 6x more dangerous than drunk driving

13

Internet/Web for Commerce

another popular function of the Web is to facilitate electronic commerce,

or e-commerce

◼ businesses have recognized the Web’s potential as an advertising medium,
and as a tool for reaching new customers

◼ some business sites are information-based (providing background on the
company or product descriptions)

◼ other business sites are transaction-based (allowing customers to purchase
products or services directly)

online shopping has numerous advantages for the consumer

◼ you can make purchases from your home at any time

◼ it is easy to comparison shop

◼ many online retailers, such as Amazon.com, allow consumers to research
products as well as purchase them

14

Internet/Web for Commerce

total online sales in 2020: $861 billion

some of the most successful sites are

online offshoots of traditional retailers

◼ Walmart, Best Buy, PetSmart

Amazon is by far the dominant force

◼ more than 1/3 of ecommerce sector

15

the Web has provided a new advertising channel for businesses

◼ e-commerce sites charge fees for hosting advertising banners on Web pages

 banner ads are clickable images that promote a company’s product or service

 users who click on the ad are directed to the company’s Web site

◼ the Web’s structure allows for a direct connection between ads and related
purchasing interfaces

when using credit cards or shopping online,

consumers sacrifice privacy for the sake
of convenience

◼ companies maintain records of consumer
purchases

◼ private details can be inferred from
shopping patterns

◼ companies often sell customer profiles to
marketing firms

Web users can limit exploitation by

interacting only with reputable online

businesses with privacy policies

◼ such policies will explain what information
is collected by the business and how that
information is to be used (and shared)

16

Negatives: privacy

Negatives: security

email also raises privacy concerns

◼ email messages travel through numerous routers, and each router represents a
security risk

◼ when a message is received it is commonly stored in a file on the recipient’s
computer – there is a danger that unauthorized users might get access

few laws apply directly to electronic privacy

◼ courts overwhelmingly favor employers over employees in privacy suits

◼ unless explicitly stated, it is generally accepted that employers may access any
content on company-owned machines

increasing occurrences of phishing attacks, in which people are fooled into

surrendering sensitive information via email

privacy is closely linked with security

◼ with online transactions, credit card numbers or other personal information can
be intercepted and subsequently result in identity theft

◼ encryption methods are commonly used to secure information transmissions, but
online fraud is still a continuing problem

17

In conclusion…

"Technology is, of course, a double edged sword. Fire can cook our
food but also burn us." – Jason Silva

overall, changes brought about by computers have been extremely positive

◼ there is no going back, computers are integrated into our lives

not all change is good, so you need to be informed and diligent about the

choices you make

◼ social media allows people to connect over distances, but also can lead to
physical isolation and cyber-bullying

◼ facial recognition can add security to banking, but can invade privacy and be
discriminatory

hopefully, this book has helped you better understand computer technology

and its applications

◼ will enable you to make informed choices about how you adopt technology

18

The Digital Divide

access to computers & Internet/Web offers numerous advantages

▪ education, citizenship, employment, …

a troubling aspect of recent technological developments is that the benefits
associated with computers are not shared equally by all

1

lower income

Americans are
far less likely to

be online

many rely on

smartphones for
access

The Digital Divide (cont.)

similarly, inequities occur for those with minority ancestry or disabilities

2

Homework Gap

the Digital Divide was highlighted during the 2020 COVID-19 pandemic

◼ many schools closed and students were transitioned to online classes

◼ those with home computers and reliable Internet were able to interact via
videoconferencing software & complete online assignments

◼ those without were severely disadvantaged

3

Addressing Inequities

in late 1990s, U.S. government prioritized Internet connectivity

▪ by 2003, nearly all public schools were connected (vs. 35% in 1994)

▪ most public libraries provide free access to Internet-enabled computers

▪ programs (e.g., Lifeline, Emergency Broadband Benefit) subsidize

cellular and Internet bills for low-income families

4

numerous not-for-profit organizations address the Digital Divide

▪ National Digital Inclusion Alliance coordinates hundreds of organizations

▪ EveryoneOn connects low-income families with affordable Internet plans

and devices

▪ Computers for Kids takes old computers, refurbishes them, and donates
them to schools and needy kids

▪ Boys and Girls Club of America offers educational programs

The Global Divide

globally, wealthier countries are more likely to have computers/Internet

the U.N. and World Economic Forum lead numerous initiatives

◼ 2021 Generation Equality Forum raised $40 billion in new investments

many private sector initiatives as well

▪ One Laptop Per Child has donated more than 3 million low-power laptops

5

in 2014, 3 countries

accounted for half
of all Internet traffic

1. China (29%)

2. U.S. (13%)
3. Japan(8%)

Diversity in the Tech Sector

6

tech industry is one of the most dynamic & exciting sectors of the economy

▪ no other industry has the same potential for rapidly taking ideas and turning
them into devices/applications that change the world

▪ e.g., cell phones & smartphones widely adopted within 10 years

many applications were the brainchild of a single person or small team

▪ Word Wide Web Tim Berners-Lee, 1990

▪ Mosaic browser Mark Andreesen & Eric Bina, 1994

▪ Google Larry Page & Sergey Brin, 1998

▪ Facebook Mark Zuckerberg, 2004

▪ Twitter Jack Dorsey, 2006

▪ Instagram Kevin Systrom & Mike Krieger, 2010

all these pioneers/innovators/entrepreneurs are white males

▪ women and people of color have been and continue to be
underrepresented in the tech industry (especially in leadership)

Success Stories

7

certainly, there have been successful leaders and innovators

◼ Jerry Lawson (1940-2011): led development of first
cartridge-based video game, founded VideoSoft in 1980.

◼ Marissa Mayer (1975-): first female engineer at Google, led
in development of Google Maps, Google Earth & Street Maps.
CEO of Yahoo! from 2012-2017.

◼ Luis von Ahn (1979-): founded digital security company
reCAPTCHA. Also founder and CEO of DuoLingo.

◼ Whitney Wolfe Herd (1989-): founded Bumble, youngest
woman to take her company public on NYSE & youngest
female self-made billionaire.

Underrepresentation

in 2020, women were > 50% of U.S. workforce, but only 26% of tech jobs

◼ only 7% of Fortune 500 CEOs were women

even greater underrepresentation for minority groups

◼ Hispanic/Latinx Americans: 18% of workforce, 8% of tech jobs

◼ African Americans: 13% of workforce, 5% of tech jobs

8

Increasing Diversity

9

tech companies are addressing equity/diversity, but change has been slow

◼ changing company culture to be more inclusive

◼ changing hiring practices to bring in more diversity

◼ creating mentoring programs for women & minority employees

one problem is that stereotypes & misinformation influence people when they

are young

◼ TV & movies perpetuate white/Asian male sterotypes

◼ access to computers in schools is not equitable

◼ among 2020 college graduates with major in computer science:

 18% were women, 10% were Hispanic/Latinx, 9% were African American

many initiatives are focused on providing access/mentoring for young people

◼ e.g., National Center for Women & Information Technology (NCWIT), AnitaB.org,
Code.org, Black Girls Code, and Hispanics in Computing

◼ AP CS Principles course launched in 2017, specifically designed to increase
participation by women and minorities

Benefits of Diversity

studies have shown numerous benefits of diversity in the workplace

1. companies are more productive when teams are diverse in
background/perspective

2. different viewpoints & experiences produce a diversity of ideas, which

can encourage innovation

3. an openness to workers who look and think differently means

outstanding candidates who might have been overlooked are now
hired

4. a diverse workforce is better at understanding and responding to a

diverse client base

5. the products designed and built by a diverse team tend to be higher

quality and more equitable

e.g., cell phone interfaces designed by men that are difficult to use by women
with smaller hands

e.g., 5-year gap between release of Apple emojis and emojis with different
skin tones

10

Algorithmic bias

algorithmic bias occurs when faulty assumptions and poor design practices

lead to software that discriminates

1. in 2015, Amazon announced it was abandoning interview software that was
proven to discriminate against women candidates

2. in 2016, ProPublica published a report documenting how sentencing software
used in courts discriminated against minority suspects

3. in 2019, Science published a report documenting how hospital software for
screening patients discriminated against minority and low-income patients

4. Several studies have confirmed that facial recognition software misidentifies
women and people of color disproportionally, leading to more arrests due to use
by law enforcement.

in all these cases, algorithmic bias was not intentional

• lack of diversity led to unquestioned assumptions & flawed development process

11

Bridging the Divide

when combating any form of discrimination and inequity, awareness is the

first step

in the past decade, awareness of the Digital Divide has led to change

◼ governments and companies are leading equity efforts

◼ young women and people of color are being encouraged to consider future
careers in computing

◼ recognition of toxic corporate cultures & unfair hiring practices are producing
change (albeit slowly)

◼ recognition of the dangers of algorithmic bias is leading to new design and
testing methodologies

12

