Spaces:
Running
on
Zero
Running
on
Zero
added audio processing
Browse files- app.py +47 -6
- requirements.txt +2 -1
- utils.py +62 -6
app.py
CHANGED
@@ -68,6 +68,16 @@ def run(
|
|
68 |
f"system_prompt: {system_prompt} \n model_choice: {model_choice} \n max_new_tokens: {max_new_tokens} \n max_images: {max_images}"
|
69 |
)
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
def try_fallback_model(original_model_choice: str):
|
72 |
fallback_model = model_3n if original_model_choice == "Gemma 3 12B" else model_12
|
73 |
fallback_name = "Gemma 3n E4B" if original_model_choice == "Gemma 3 12B" else "Gemma 3 12B"
|
@@ -235,13 +245,26 @@ def run(
|
|
235 |
yield error_message
|
236 |
|
237 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
demo = gr.ChatInterface(
|
239 |
fn=run,
|
240 |
type="messages",
|
241 |
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
|
242 |
-
textbox=
|
243 |
-
file_types=[".mp4", ".jpg", ".png", ".pdf"], file_count="multiple", autofocus=True
|
244 |
-
),
|
245 |
multimodal=True,
|
246 |
additional_inputs=[
|
247 |
gr.Dropdown(
|
@@ -268,7 +291,7 @@ demo = gr.ChatInterface(
|
|
268 |
label="Model",
|
269 |
choices=["Gemma 3 12B", "Gemma 3n E4B"],
|
270 |
value="Gemma 3 12B",
|
271 |
-
info="Gemma 3 12B: More powerful and detailed responses,
|
272 |
),
|
273 |
gr.Slider(
|
274 |
label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700
|
@@ -293,11 +316,29 @@ demo = gr.ChatInterface(
|
|
293 |
# Connect the dropdown to update the textbox
|
294 |
with demo:
|
295 |
preset_dropdown = demo.additional_inputs[0]
|
296 |
-
|
|
|
|
|
|
|
297 |
preset_dropdown.change(
|
298 |
fn=update_custom_prompt,
|
299 |
inputs=[preset_dropdown],
|
300 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
)
|
302 |
|
303 |
if __name__ == "__main__":
|
|
|
68 |
f"system_prompt: {system_prompt} \n model_choice: {model_choice} \n max_new_tokens: {max_new_tokens} \n max_images: {max_images}"
|
69 |
)
|
70 |
|
71 |
+
# Validate audio files are only used with 3n model
|
72 |
+
if message.get("files"):
|
73 |
+
audio_extensions = [".wav", ".mp3", ".m4a", ".flac", ".ogg"]
|
74 |
+
has_audio = any(any(file.lower().endswith(ext) for ext in audio_extensions) for file in message["files"])
|
75 |
+
|
76 |
+
if has_audio and model_choice != "Gemma 3n E4B":
|
77 |
+
error_msg = "❌ **Audio files are only supported with the Gemma 3n E4B model.**\n\nPlease switch to the Gemma 3n E4B model to process audio files, or remove audio files to continue with the current model."
|
78 |
+
yield error_msg
|
79 |
+
return
|
80 |
+
|
81 |
def try_fallback_model(original_model_choice: str):
|
82 |
fallback_model = model_3n if original_model_choice == "Gemma 3 12B" else model_12
|
83 |
fallback_name = "Gemma 3n E4B" if original_model_choice == "Gemma 3 12B" else "Gemma 3 12B"
|
|
|
245 |
yield error_message
|
246 |
|
247 |
|
248 |
+
def update_file_types(model_choice):
|
249 |
+
"""Update allowed file types based on model selection."""
|
250 |
+
base_types = [".mp4", ".jpg", ".png", ".pdf"]
|
251 |
+
if model_choice == "Gemma 3n E4B":
|
252 |
+
# Add audio file types for 3n model
|
253 |
+
return base_types + [".wav", ".mp3", ".m4a", ".flac", ".ogg"]
|
254 |
+
return base_types
|
255 |
+
|
256 |
+
# Create a custom textbox that we can update
|
257 |
+
custom_textbox = gr.MultimodalTextbox(
|
258 |
+
file_types=[".mp4", ".jpg", ".png", ".pdf"],
|
259 |
+
file_count="multiple",
|
260 |
+
autofocus=True
|
261 |
+
)
|
262 |
+
|
263 |
demo = gr.ChatInterface(
|
264 |
fn=run,
|
265 |
type="messages",
|
266 |
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
|
267 |
+
textbox=custom_textbox,
|
|
|
|
|
268 |
multimodal=True,
|
269 |
additional_inputs=[
|
270 |
gr.Dropdown(
|
|
|
291 |
label="Model",
|
292 |
choices=["Gemma 3 12B", "Gemma 3n E4B"],
|
293 |
value="Gemma 3 12B",
|
294 |
+
info="Gemma 3 12B: More powerful and detailed responses, supports images, videos, and PDFs. Gemma 3n E4B: Faster processing with efficient performance, supports images, videos, PDFs, and audio files."
|
295 |
),
|
296 |
gr.Slider(
|
297 |
label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700
|
|
|
316 |
# Connect the dropdown to update the textbox
|
317 |
with demo:
|
318 |
preset_dropdown = demo.additional_inputs[0]
|
319 |
+
custom_textbox_input = demo.additional_inputs[1]
|
320 |
+
model_dropdown = demo.additional_inputs[2]
|
321 |
+
|
322 |
+
# Update custom prompt when preset changes
|
323 |
preset_dropdown.change(
|
324 |
fn=update_custom_prompt,
|
325 |
inputs=[preset_dropdown],
|
326 |
+
outputs=[custom_textbox_input]
|
327 |
+
)
|
328 |
+
|
329 |
+
# Update file types when model changes
|
330 |
+
def update_textbox_file_types(model_choice):
|
331 |
+
allowed_types = update_file_types(model_choice)
|
332 |
+
return gr.MultimodalTextbox(
|
333 |
+
file_types=allowed_types,
|
334 |
+
file_count="multiple",
|
335 |
+
autofocus=True
|
336 |
+
)
|
337 |
+
|
338 |
+
model_dropdown.change(
|
339 |
+
fn=update_textbox_file_types,
|
340 |
+
inputs=[model_dropdown],
|
341 |
+
outputs=[demo.textbox]
|
342 |
)
|
343 |
|
344 |
if __name__ == "__main__":
|
requirements.txt
CHANGED
@@ -9,4 +9,5 @@ loguru
|
|
9 |
python-dotenv
|
10 |
opencv-python
|
11 |
timm
|
12 |
-
pymupdf
|
|
|
|
9 |
python-dotenv
|
10 |
opencv-python
|
11 |
timm
|
12 |
+
pymupdf
|
13 |
+
librosa
|
utils.py
CHANGED
@@ -2,12 +2,15 @@ import os
|
|
2 |
import cv2
|
3 |
import fitz
|
4 |
import tempfile
|
|
|
|
|
5 |
from PIL import Image
|
6 |
from loguru import logger
|
7 |
|
8 |
# Constants
|
9 |
MAX_VIDEO_SIZE = 100 * 1024 * 1024 # 100 MB
|
10 |
MAX_IMAGE_SIZE = 10 * 1024 * 1024 # 10 MB
|
|
|
11 |
|
12 |
|
13 |
def check_file_size(file_path: str) -> bool:
|
@@ -16,13 +19,17 @@ def check_file_size(file_path: str) -> bool:
|
|
16 |
raise ValueError(f"File not found: {file_path}")
|
17 |
|
18 |
file_size = os.path.getsize(file_path)
|
|
|
19 |
|
20 |
-
if
|
21 |
if file_size > MAX_VIDEO_SIZE:
|
22 |
raise ValueError(f"Video file too large: {file_size / (1024*1024):.1f}MB. Maximum allowed: {MAX_VIDEO_SIZE / (1024*1024):.0f}MB")
|
|
|
|
|
|
|
23 |
else:
|
24 |
if file_size > MAX_IMAGE_SIZE:
|
25 |
-
raise ValueError(f"Image file too large: {file_size / (1024*1024):.1f}MB. Maximum allowed: {MAX_IMAGE_SIZE / (1024*1024):.0f}MB")
|
26 |
|
27 |
return True
|
28 |
|
@@ -74,6 +81,44 @@ def process_video(video_path: str, max_images: int) -> list[dict]:
|
|
74 |
return result_content
|
75 |
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
def extract_pdf_text(pdf_path: str) -> str:
|
78 |
"""Extract text content from a PDF file."""
|
79 |
check_file_size(pdf_path)
|
@@ -114,14 +159,22 @@ def process_user_input(message: dict, max_images: int) -> list[dict]:
|
|
114 |
logger.error(f"File size check failed: {e}")
|
115 |
result_content.append({"type": "text", "text": f"Error: {str(e)}"})
|
116 |
continue
|
|
|
|
|
117 |
|
118 |
-
if
|
119 |
try:
|
120 |
result_content = [*result_content, *process_video(file_path, max_images)]
|
121 |
except Exception as e:
|
122 |
logger.error(f"Video processing failed: {e}")
|
123 |
result_content.append({"type": "text", "text": f"Error processing video: {str(e)}"})
|
124 |
-
elif
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
try:
|
126 |
logger.info(f"Processing PDF file: {file_path}")
|
127 |
pdf_text = extract_pdf_text(file_path)
|
@@ -162,9 +215,12 @@ def process_history(history: list[dict]) -> list[dict]:
|
|
162 |
content_buffer.append({"type": "text", "text": content})
|
163 |
elif isinstance(content, tuple) and len(content) > 0:
|
164 |
file_path = content[0]
|
165 |
-
|
|
|
166 |
content_buffer.append({"type": "text", "text": "[Video uploaded previously]"})
|
167 |
-
elif
|
|
|
|
|
168 |
content_buffer.append({"type": "text", "text": "[PDF uploaded previously]"})
|
169 |
else:
|
170 |
content_buffer.append({"type": "image", "url": file_path})
|
|
|
2 |
import cv2
|
3 |
import fitz
|
4 |
import tempfile
|
5 |
+
import librosa
|
6 |
+
import numpy as np
|
7 |
from PIL import Image
|
8 |
from loguru import logger
|
9 |
|
10 |
# Constants
|
11 |
MAX_VIDEO_SIZE = 100 * 1024 * 1024 # 100 MB
|
12 |
MAX_IMAGE_SIZE = 10 * 1024 * 1024 # 10 MB
|
13 |
+
MAX_AUDIO_SIZE = 50 * 1024 * 1024 # 50 MB
|
14 |
|
15 |
|
16 |
def check_file_size(file_path: str) -> bool:
|
|
|
19 |
raise ValueError(f"File not found: {file_path}")
|
20 |
|
21 |
file_size = os.path.getsize(file_path)
|
22 |
+
file_lower = file_path.lower()
|
23 |
|
24 |
+
if file_lower.endswith((".mp4", ".mov")):
|
25 |
if file_size > MAX_VIDEO_SIZE:
|
26 |
raise ValueError(f"Video file too large: {file_size / (1024*1024):.1f}MB. Maximum allowed: {MAX_VIDEO_SIZE / (1024*1024):.0f}MB")
|
27 |
+
elif file_lower.endswith((".wav", ".mp3", ".m4a", ".flac", ".ogg")):
|
28 |
+
if file_size > MAX_AUDIO_SIZE:
|
29 |
+
raise ValueError(f"Audio file too large: {file_size / (1024*1024):.1f}MB. Maximum allowed: {MAX_AUDIO_SIZE / (1024*1024):.0f}MB")
|
30 |
else:
|
31 |
if file_size > MAX_IMAGE_SIZE:
|
32 |
+
raise ValueError(f"Image/document file too large: {file_size / (1024*1024):.1f}MB. Maximum allowed: {MAX_IMAGE_SIZE / (1024*1024):.0f}MB")
|
33 |
|
34 |
return True
|
35 |
|
|
|
81 |
return result_content
|
82 |
|
83 |
|
84 |
+
def process_audio(audio_path: str) -> list[dict]:
|
85 |
+
"""Process an audio file and return formatted content for the model."""
|
86 |
+
check_file_size(audio_path)
|
87 |
+
|
88 |
+
try:
|
89 |
+
# Load audio file
|
90 |
+
audio_data, sample_rate = librosa.load(audio_path, sr=None)
|
91 |
+
duration = len(audio_data) / sample_rate
|
92 |
+
|
93 |
+
# Get basic audio features
|
94 |
+
rms = librosa.feature.rms(y=audio_data)[0]
|
95 |
+
spectral_centroids = librosa.feature.spectral_centroid(y=audio_data, sr=sample_rate)[0]
|
96 |
+
zero_crossings = librosa.zero_crossings(audio_data, pad=False)
|
97 |
+
|
98 |
+
# Calculate statistics
|
99 |
+
avg_rms = np.mean(rms)
|
100 |
+
avg_spectral_centroid = np.mean(spectral_centroids)
|
101 |
+
zcr_rate = np.sum(zero_crossings) / len(audio_data)
|
102 |
+
|
103 |
+
# Create audio analysis text
|
104 |
+
audio_analysis = f"""Audio Analysis:
|
105 |
+
- Duration: {duration:.2f} seconds
|
106 |
+
- Sample Rate: {sample_rate} Hz
|
107 |
+
- Average RMS Energy: {avg_rms:.4f}
|
108 |
+
- Average Spectral Centroid: {avg_spectral_centroid:.2f} Hz
|
109 |
+
- Zero Crossing Rate: {zcr_rate:.4f}
|
110 |
+
- File: {os.path.basename(audio_path)}"""
|
111 |
+
|
112 |
+
result_content = [{"type": "text", "text": audio_analysis}]
|
113 |
+
|
114 |
+
logger.debug(f"Processed audio file {audio_path} - Duration: {duration:.2f}s")
|
115 |
+
return result_content
|
116 |
+
|
117 |
+
except Exception as e:
|
118 |
+
logger.error(f"Error processing audio {audio_path}: {e}")
|
119 |
+
raise ValueError(f"Failed to process audio file: {str(e)}")
|
120 |
+
|
121 |
+
|
122 |
def extract_pdf_text(pdf_path: str) -> str:
|
123 |
"""Extract text content from a PDF file."""
|
124 |
check_file_size(pdf_path)
|
|
|
159 |
logger.error(f"File size check failed: {e}")
|
160 |
result_content.append({"type": "text", "text": f"Error: {str(e)}"})
|
161 |
continue
|
162 |
+
|
163 |
+
file_lower = file_path.lower()
|
164 |
|
165 |
+
if file_lower.endswith((".mp4", ".mov")):
|
166 |
try:
|
167 |
result_content = [*result_content, *process_video(file_path, max_images)]
|
168 |
except Exception as e:
|
169 |
logger.error(f"Video processing failed: {e}")
|
170 |
result_content.append({"type": "text", "text": f"Error processing video: {str(e)}"})
|
171 |
+
elif file_lower.endswith((".wav", ".mp3", ".m4a", ".flac", ".ogg")):
|
172 |
+
try:
|
173 |
+
result_content = [*result_content, *process_audio(file_path)]
|
174 |
+
except Exception as e:
|
175 |
+
logger.error(f"Audio processing failed: {e}")
|
176 |
+
result_content.append({"type": "text", "text": f"Error processing audio: {str(e)}"})
|
177 |
+
elif file_lower.endswith(".pdf"):
|
178 |
try:
|
179 |
logger.info(f"Processing PDF file: {file_path}")
|
180 |
pdf_text = extract_pdf_text(file_path)
|
|
|
215 |
content_buffer.append({"type": "text", "text": content})
|
216 |
elif isinstance(content, tuple) and len(content) > 0:
|
217 |
file_path = content[0]
|
218 |
+
file_lower = file_path.lower()
|
219 |
+
if file_lower.endswith((".mp4", ".mov")):
|
220 |
content_buffer.append({"type": "text", "text": "[Video uploaded previously]"})
|
221 |
+
elif file_lower.endswith((".wav", ".mp3", ".m4a", ".flac", ".ogg")):
|
222 |
+
content_buffer.append({"type": "text", "text": "[Audio uploaded previously]"})
|
223 |
+
elif file_lower.endswith(".pdf"):
|
224 |
content_buffer.append({"type": "text", "text": "[PDF uploaded previously]"})
|
225 |
else:
|
226 |
content_buffer.append({"type": "image", "url": file_path})
|