Spaces:
Running
on
Zero
Running
on
Zero
added documentation
Browse files
utils.py
CHANGED
@@ -24,7 +24,21 @@ PRESET_PROMPTS = {
|
|
24 |
}
|
25 |
|
26 |
def check_file_size(file_path: str) -> bool:
|
27 |
-
"""Check if a file meets the size requirements.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
if not os.path.exists(file_path):
|
29 |
raise ValueError(f"File not found: {file_path}")
|
30 |
|
@@ -41,7 +55,25 @@ def check_file_size(file_path: str) -> bool:
|
|
41 |
|
42 |
|
43 |
def get_frames(video_path: str, max_images: int) -> list[tuple[Image.Image, float]]:
|
44 |
-
"""Extract frames from a video file.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
check_file_size(video_path)
|
46 |
|
47 |
frames: list[tuple[Image.Image, float]] = []
|
@@ -72,7 +104,26 @@ def get_frames(video_path: str, max_images: int) -> list[tuple[Image.Image, floa
|
|
72 |
|
73 |
|
74 |
def process_video(video_path: str, max_images: int) -> list[dict]:
|
75 |
-
"""Process a video file and return formatted content for
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
result_content = []
|
77 |
frames = get_frames(video_path, max_images)
|
78 |
for frame in frames:
|
@@ -88,7 +139,22 @@ def process_video(video_path: str, max_images: int) -> list[dict]:
|
|
88 |
|
89 |
|
90 |
def extract_pdf_text(pdf_path: str) -> str:
|
91 |
-
"""Extract text content from a PDF file.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
check_file_size(pdf_path)
|
93 |
|
94 |
try:
|
@@ -114,7 +180,23 @@ def extract_pdf_text(pdf_path: str) -> str:
|
|
114 |
|
115 |
|
116 |
def process_user_input(message: dict, max_images: int) -> list[dict]:
|
117 |
-
"""Process user input including files and return formatted content for the model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
if not message["files"]:
|
119 |
return [{"type": "text", "text": message["text"]}]
|
120 |
|
@@ -153,7 +235,26 @@ def process_user_input(message: dict, max_images: int) -> list[dict]:
|
|
153 |
|
154 |
|
155 |
def process_history(history: list[dict]) -> list[dict]:
|
156 |
-
"""Process chat history into the format expected by the model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
messages = []
|
158 |
content_buffer = []
|
159 |
|
@@ -189,12 +290,38 @@ def process_history(history: list[dict]) -> list[dict]:
|
|
189 |
|
190 |
|
191 |
def update_custom_prompt(preset_choice: str) -> str:
|
192 |
-
"""Update the custom prompt based on preset selection.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
if preset_choice == "Custom Prompt":
|
194 |
return ""
|
195 |
return PRESET_PROMPTS.get(preset_choice, "")
|
196 |
|
197 |
|
198 |
def get_preset_prompts() -> dict[str, str]:
|
199 |
-
"""Return the dictionary of preset prompts for the main application.
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
}
|
25 |
|
26 |
def check_file_size(file_path: str) -> bool:
|
27 |
+
"""Check if a file meets the size requirements for processing.
|
28 |
+
|
29 |
+
Validates that the file exists and is within the allowed size limits based on file type.
|
30 |
+
Video files (.mp4, .mov) have a limit of 100MB, while image files have a limit of 10MB.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
file_path (str): The absolute path to the file to be checked.
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
bool: True if the file meets size requirements.
|
37 |
+
|
38 |
+
Raises:
|
39 |
+
ValueError: If the file doesn't exist, or if the file size exceeds the maximum
|
40 |
+
allowed size for its type.
|
41 |
+
"""
|
42 |
if not os.path.exists(file_path):
|
43 |
raise ValueError(f"File not found: {file_path}")
|
44 |
|
|
|
55 |
|
56 |
|
57 |
def get_frames(video_path: str, max_images: int) -> list[tuple[Image.Image, float]]:
|
58 |
+
"""Extract frames from a video file at regular intervals.
|
59 |
+
|
60 |
+
Opens a video file and extracts frames at evenly distributed intervals to get
|
61 |
+
a representative sample of the video content. Each frame is converted to RGB
|
62 |
+
format and returned as a PIL Image along with its timestamp.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
video_path (str): The absolute path to the video file (.mp4 or .mov).
|
66 |
+
max_images (int): The maximum number of frames to extract from the video.
|
67 |
+
Must be a positive integer.
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
list[tuple[Image.Image, float]]: A list of tuples where each tuple contains
|
71 |
+
an Image.Image object (the extracted frame in RGB format) and a float
|
72 |
+
(the timestamp of the frame in seconds, rounded to 2 decimal places).
|
73 |
+
|
74 |
+
Raises:
|
75 |
+
ValueError: If the video file cannot be opened or if file size validation fails.
|
76 |
+
"""
|
77 |
check_file_size(video_path)
|
78 |
|
79 |
frames: list[tuple[Image.Image, float]] = []
|
|
|
104 |
|
105 |
|
106 |
def process_video(video_path: str, max_images: int) -> list[dict]:
|
107 |
+
"""Process a video file and return formatted content for model input.
|
108 |
+
|
109 |
+
Extracts frames from a video file, saves them as temporary PNG files, and
|
110 |
+
formats them into a structure suitable for multimodal model input. Each frame
|
111 |
+
is paired with descriptive text indicating its timestamp.
|
112 |
+
|
113 |
+
Args:
|
114 |
+
video_path (str): The absolute path to the video file to be processed.
|
115 |
+
max_images (int): The maximum number of frames to extract and process.
|
116 |
+
|
117 |
+
Returns:
|
118 |
+
list[dict]: A list of dictionaries representing the processed video content.
|
119 |
+
The structure alternates between text descriptions and image references:
|
120 |
+
{"type": "text", "text": "Frame {timestamp}:"} and
|
121 |
+
{"type": "image", "url": "/path/to/temp/frame.png"}.
|
122 |
+
|
123 |
+
Note:
|
124 |
+
Creates temporary PNG files that are not automatically cleaned up.
|
125 |
+
The caller is responsible for cleanup if needed.
|
126 |
+
"""
|
127 |
result_content = []
|
128 |
frames = get_frames(video_path, max_images)
|
129 |
for frame in frames:
|
|
|
139 |
|
140 |
|
141 |
def extract_pdf_text(pdf_path: str) -> str:
|
142 |
+
"""Extract text content from a PDF file.
|
143 |
+
|
144 |
+
Opens a PDF file and extracts all readable text content from each page.
|
145 |
+
Pages are numbered and formatted for readability. Empty pages are skipped.
|
146 |
+
|
147 |
+
Args:
|
148 |
+
pdf_path (str): The absolute path to the PDF file to be processed.
|
149 |
+
|
150 |
+
Returns:
|
151 |
+
str: The extracted text content with page numbers and formatting.
|
152 |
+
If no text is found, returns a message indicating no content was found.
|
153 |
+
|
154 |
+
Raises:
|
155 |
+
ValueError: If the file size validation fails or if PDF processing encounters
|
156 |
+
an error that prevents text extraction.
|
157 |
+
"""
|
158 |
check_file_size(pdf_path)
|
159 |
|
160 |
try:
|
|
|
180 |
|
181 |
|
182 |
def process_user_input(message: dict, max_images: int) -> list[dict]:
|
183 |
+
"""Process user input including files and return formatted content for the model.
|
184 |
+
|
185 |
+
Takes a user message that may contain text and file attachments, processes each
|
186 |
+
file according to its type, and returns a structured format suitable for
|
187 |
+
multimodal model input. Handles videos, PDFs, and image files.
|
188 |
+
|
189 |
+
Args:
|
190 |
+
message (dict): A dictionary containing user input with keys:
|
191 |
+
"text" (str) - The user's text message, and
|
192 |
+
"files" (list[str]) - List of file paths attached to the message.
|
193 |
+
max_images (int): Maximum number of frames to extract from video files.
|
194 |
+
|
195 |
+
Returns:
|
196 |
+
list[dict]: A list of dictionaries representing the processed content with
|
197 |
+
types "text" or "image" and corresponding content data. Includes error
|
198 |
+
messages for files that cannot be processed.
|
199 |
+
"""
|
200 |
if not message["files"]:
|
201 |
return [{"type": "text", "text": message["text"]}]
|
202 |
|
|
|
235 |
|
236 |
|
237 |
def process_history(history: list[dict]) -> list[dict]:
|
238 |
+
"""Process chat history into the format expected by the model.
|
239 |
+
|
240 |
+
Converts chat history from the UI format into the structured format required
|
241 |
+
by multimodal language models. Groups consecutive user messages and handles
|
242 |
+
different content types (text, images, videos, PDFs) appropriately.
|
243 |
+
|
244 |
+
Args:
|
245 |
+
history (list[dict]): A list of chat history items, where each item contains
|
246 |
+
"role" (str) - either "user" or "assistant", and
|
247 |
+
"content" - the message content (str for text, tuple for files).
|
248 |
+
|
249 |
+
Returns:
|
250 |
+
list[dict]: A list of messages formatted for the model with "role" and
|
251 |
+
"content" keys, where content is a list of dictionaries with "type"
|
252 |
+
and associated data.
|
253 |
+
|
254 |
+
Note:
|
255 |
+
Groups consecutive user messages into a single message. Videos and PDFs
|
256 |
+
in history are replaced with placeholder text to avoid reprocessing.
|
257 |
+
"""
|
258 |
messages = []
|
259 |
content_buffer = []
|
260 |
|
|
|
290 |
|
291 |
|
292 |
def update_custom_prompt(preset_choice: str) -> str:
|
293 |
+
"""Update the custom prompt based on preset selection.
|
294 |
+
|
295 |
+
Returns the appropriate preset prompt text based on the user's selection.
|
296 |
+
If "Custom Prompt" is selected, returns an empty string to allow manual input.
|
297 |
+
|
298 |
+
Args:
|
299 |
+
preset_choice (str): The name of the selected preset prompt. Should match
|
300 |
+
one of the keys in PRESET_PROMPTS or be "Custom Prompt".
|
301 |
+
|
302 |
+
Returns:
|
303 |
+
str: The preset prompt text corresponding to the selection, or an empty
|
304 |
+
string if "Custom Prompt" is selected or if the preset is not found.
|
305 |
+
"""
|
306 |
if preset_choice == "Custom Prompt":
|
307 |
return ""
|
308 |
return PRESET_PROMPTS.get(preset_choice, "")
|
309 |
|
310 |
|
311 |
def get_preset_prompts() -> dict[str, str]:
|
312 |
+
"""Return the dictionary of preset prompts for the main application.
|
313 |
+
|
314 |
+
Provides a copy of the predefined prompt templates that can be used throughout
|
315 |
+
the application. Each preset is designed for a specific use case and contains
|
316 |
+
detailed instructions for the AI model's behavior.
|
317 |
+
|
318 |
+
Returns:
|
319 |
+
dict[str, str]: A dictionary mapping preset names to their prompt texts.
|
320 |
+
Includes prompts for general assistance, document analysis, visual content
|
321 |
+
analysis, educational tutoring, technical review, and creative storytelling.
|
322 |
+
|
323 |
+
Note:
|
324 |
+
Returns a copy of the PRESET_PROMPTS dictionary to prevent accidental
|
325 |
+
modification of the original constants.
|
326 |
+
"""
|
327 |
+
return PRESET_PROMPTS.copy()
|