Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from huggingface_hub import login | |
| from collections.abc import Iterator | |
| from transformers import ( | |
| Gemma3ForConditionalGeneration, | |
| TextIteratorStreamer, | |
| Gemma3Processor, | |
| Gemma3nForConditionalGeneration, | |
| Gemma3ForCausalLM | |
| ) | |
| import spaces | |
| import tempfile | |
| from threading import Thread | |
| import gradio as gr | |
| import os | |
| from dotenv import load_dotenv, find_dotenv | |
| import cv2 | |
| from loguru import logger | |
| from PIL import Image | |
| dotenv_path = find_dotenv() | |
| load_dotenv(dotenv_path) | |
| model_27_id = os.getenv("MODEL_27_ID", "google/gemma-3-4b-it") | |
| model_12_id = os.getenv("MODEL_12_ID", "google/gemma-3-4b-it") | |
| model_3n_id = os.getenv("MODEL_3N_ID", "google/gemma-3-4b-it") | |
| input_processor = Gemma3Processor.from_pretrained(model_27_id) | |
| model_27 = Gemma3ForConditionalGeneration.from_pretrained( | |
| model_27_id, | |
| torch_dtype=torch.bfloat16, | |
| device_map="auto", | |
| attn_implementation="eager", | |
| ) | |
| model_12 = Gemma3ForCausalLM.from_pretrained( | |
| model_12_id, | |
| torch_dtype=torch.bfloat16, | |
| device_map="auto", | |
| attn_implementation="eager", | |
| ) | |
| model_3n = Gemma3nForConditionalGeneration.from_pretrained( | |
| model_3n_id, | |
| torch_dtype=torch.bfloat16, | |
| device_map="auto", | |
| attn_implementation="eager", | |
| ) | |
| def get_frames(video_path: str, max_images: int) -> list[tuple[Image.Image, float]]: | |
| frames: list[tuple[Image.Image, float]] = [] | |
| capture = cv2.VideoCapture(video_path) | |
| if not capture.isOpened(): | |
| raise ValueError(f"Could not open video file: {video_path}") | |
| fps = capture.get(cv2.CAP_PROP_FPS) | |
| total_frames = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| frame_interval = max(total_frames // max_images, 1) | |
| max_position = min(total_frames, max_images * frame_interval) | |
| i = 0 | |
| while i < max_position and len(frames) < max_images: | |
| capture.set(cv2.CAP_PROP_POS_FRAMES, i) | |
| success, image = capture.read() | |
| if success: | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| pil_image = Image.fromarray(image) | |
| timestamp = round(i / fps, 2) | |
| frames.append((pil_image, timestamp)) | |
| i += frame_interval | |
| capture.release() | |
| return frames | |
| def process_video(video_path: str, max_images: int) -> list[dict]: | |
| result_content = [] | |
| frames = get_frames(video_path, max_images) | |
| for frame in frames: | |
| image, timestamp = frame | |
| with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file: | |
| image.save(temp_file.name) | |
| result_content.append({"type": "text", "text": f"Frame {timestamp}:"}) | |
| result_content.append({"type": "image", "url": temp_file.name}) | |
| logger.debug( | |
| f"Processed {len(frames)} frames from video {video_path} with frames {result_content}" | |
| ) | |
| return result_content | |
| def process_user_input(message: dict, max_images: int) -> list[dict]: | |
| if not message["files"]: | |
| return [{"type": "text", "text": message["text"]}] | |
| result_content = [{"type": "text", "text": message["text"]}] | |
| for file_path in message["files"]: | |
| if file_path.endswith((".mp4", ".mov")): | |
| result_content = [*result_content, *process_video(file_path, max_images)] | |
| else: | |
| result_content = [*result_content, {"type": "image", "url": file_path}] | |
| return result_content | |
| def process_history(history: list[dict]) -> list[dict]: | |
| messages = [] | |
| content_buffer = [] | |
| for item in history: | |
| if item["role"] == "assistant": | |
| if content_buffer: | |
| messages.append({"role": "user", "content": content_buffer}) | |
| content_buffer = [] | |
| messages.append( | |
| { | |
| "role": "assistant", | |
| "content": [{"type": "text", "text": item["content"]}], | |
| } | |
| ) | |
| else: | |
| content = item["content"] | |
| if isinstance(content, str): | |
| content_buffer.append({"type": "text", "text": content}) | |
| elif isinstance(content, tuple) and len(content) > 0: | |
| file_path = content[0] | |
| if file_path.endswith((".mp4", ".mov")): | |
| content_buffer.append({"type": "text", "text": "[Video uploaded previously]"}) | |
| else: | |
| content_buffer.append({"type": "image", "url": file_path}) | |
| if content_buffer: | |
| messages.append({"role": "user", "content": content_buffer}) | |
| return messages | |
| def run( | |
| message: dict, | |
| history: list[dict], | |
| system_prompt: str, | |
| max_new_tokens: int, | |
| max_images: int, | |
| temperature: float, | |
| top_p: float, | |
| top_k: int, | |
| repetition_penalty: float, | |
| ) -> Iterator[str]: | |
| logger.debug( | |
| f"\n message: {message} \n history: {history} \n system_prompt: {system_prompt} \n " | |
| f"max_new_tokens: {max_new_tokens} \n max_images: {max_images}" | |
| ) | |
| messages = [] | |
| if system_prompt: | |
| messages.append( | |
| {"role": "system", "content": [{"type": "text", "text": system_prompt}]} | |
| ) | |
| messages.extend(process_history(history)) | |
| messages.append( | |
| {"role": "user", "content": process_user_input(message, max_images)} | |
| ) | |
| inputs = input_processor.apply_chat_template( | |
| messages, | |
| add_generation_prompt=True, | |
| tokenize=True, | |
| return_dict=True, | |
| return_tensors="pt", | |
| ).to(device=model_27.device, dtype=torch.bfloat16) | |
| streamer = TextIteratorStreamer( | |
| input_processor, timeout=60.0, skip_prompt=True, skip_special_tokens=True | |
| ) | |
| generate_kwargs = dict( | |
| inputs, | |
| streamer=streamer, | |
| max_new_tokens=max_new_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| top_k=top_k, | |
| repetition_penalty=repetition_penalty, | |
| do_sample=True, | |
| ) | |
| t = Thread(target=model_27.generate, kwargs=generate_kwargs) | |
| t.start() | |
| output = "" | |
| for delta in streamer: | |
| output += delta | |
| yield output | |
| demo = gr.ChatInterface( | |
| fn=run, | |
| type="messages", | |
| chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]), | |
| textbox=gr.MultimodalTextbox( | |
| file_types=[".mp4", ".jpg", ".png"], file_count="multiple", autofocus=True | |
| ), | |
| multimodal=True, | |
| additional_inputs=[ | |
| gr.Textbox(label="System Prompt", value="You are a helpful assistant."), | |
| gr.Slider( | |
| label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700 | |
| ), | |
| gr.Slider(label="Max Images", minimum=1, maximum=4, step=1, value=2), | |
| gr.Slider( | |
| label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7 | |
| ), | |
| gr.Slider( | |
| label="Top P", minimum=0.1, maximum=1.0, step=0.05, value=0.9 | |
| ), | |
| gr.Slider( | |
| label="Top K", minimum=1, maximum=100, step=1, value=50 | |
| ), | |
| gr.Slider( | |
| label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.1 | |
| ) | |
| ], | |
| stop_btn=False, | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |